SOLUSI MISKELOLA TANAH DAN AIR
UNTUK MEMAKSIMALKAN KESEJAHTERAAN RAKYAT

PROSIDING

SEMINAR & KONGRES NASIONAL IX
HITI

5-7 Desember 2007
UPN "VETERAN" YOGYAKARTA

UPI "Veteran" Yogyakarta
Universitas Gadjah Mada
Departemen Kehutanan RI

sinarmas forestry
adaro enviroment

SAM
PT. Pekerjaan Nasional VIII
(PT. NIKORIN)
PROSIDING
Kongres Nasional IX
Himpunan Ilmu Tanah Indonesia (HITI)

Solusi Miskelola Tanah dan Air untuk
Memaksimalkan Kesejahteraan Rakyat

BUKU 1

- Pengelolaan Tanah, Kualitas Lahan dan Efisiensi Pemanfaatan Air

- Pemanfaatan, Mitigasi Kerusakan Dan Rehabilitasi Lahan
 Serta Tata Ruang Wilayah

Tim Penyunting:
Bostang Radjaagukguk
Bambang Djadmo Kertonegoro
Djat'ar Shiddieq
Bambang Hendro Sunarminto
Sugiman Soiyo Wardoyo
Mohammad Nurcholis
Benito Heru Purwanto
Nasih Widya Yuwono
Parfoyo

Diterbitkan oleh
UPN "Veteran" Yogyakarta Press
Universitas Pembangunan Nasional "Veteran" Yogyakarta
Jl. Lingkar Utara Condongcatur Yogyakarta 55283
Telp. 0274-486401, 48733 Fax 0274-486400
http://www.upnyk.ac.id

YOGYAKARTA
5 - 7 DESEMBER 2007
DAFTAR ISI

BUKU 1:

KATA PENGANTAR ... iii
DAFTAR ISI .. iv

Peningkatan produktivitas lahan melalui pengelolaan bahan organik menuju pertanian berkelaunjuan
Ishak J. dan Setiari M. .. 1

Keragaman Kepadatan Ultisol Terhadap Pertumbuhan Bibit Akasia di Jambi
(Studi Areal HTI milik PT. Wirakarya Sakti)
M. Syafrief .. 11

Sifat-sifat tanah yang menjadi faktor pembatas produktivitas lahan kering marginal di Lombok Timur dan alternatif penanggulangannya
Al Dariah, Neneng L.N., S. Marwanto S.T. Talouhu .. 19

Monitoring kualitas tanah dalam sistem budidaya sayuran organik
Wiwik H., D. Setyorini dan F. Agus .. 30

Pengaruh vegetasi pionir terhadap sifat-sifat biologi tanah dalam proses rehabilitasi lahan alang-alang
P. Prawito .. 40

Layanan ekologi cacing jenis penggali tanah dalam mempertahankan makroporositas tanah lahan pertanian bekas hutan
Widyatmani S.D, Kurniatun H., Didik S. .. 53

Peningkatan produktivitas lahan kering masam melalui perbaikan pola tanam, pemberian bahan organik dan kapur
Joko Purnomo ... 66

Karacteristik tanah pada lahan kering dan alternatif pengelolaannya untuk pertanian di kabupaten Pasir, Kaimatan Timur
Hikmatullah dan D. Subardja .. 80

Efisiensi penggunaan air dan radiasi surya pada sistem tumpangsari jagung padi gogo di lahan berkilim kering
Laode Sabarudin dan Siti Leomo ... 92

Pengaruh penambahan air melalui sistem irigasi tetes sederhana pada periode kritis kekeringan terhadap perkembangan bunga dan buah pada beberapa jenis cabang Kopi Arabika (Coffea arabica L.)
T. Sutikno dan S.A. Budiman .. 104
Karacterisasi kualitas pupuk organik dengan teknik pengomposan untuk budidaya pertanian organik
Diah S., L.R. Widowati dan W. Hartati

117

Sistem pengelolaan lahan sesuai harkat (Splash versi 1.02): sistem pengambilan keputusan dalam memilih teknik konservasi tanah dan air dalam skala usaha tani
T. Radfi, A. Darfiah dan A. Rachman

129

Pengaruh sistem pola usaha tani pada lahan miring terhadap aliran permukaan dan erosi
Yatti Sugianti

149

Modal perhitungan neraca air kebun kelapa sawit dengan aplikasi bangunan konservasi tanah dan air
K. Murtialaksono, Hesriel H.Si., Wijaksana D., dan Yayan Hidayat

162

Integrasi budidaya kopi arabika dengan ternak kambing serta pemanfaatan limbah ternak untuk biogas dan pupuk kandang
Scetanto A. dan Sri Mulato

172

Identifikasi potensi sumberdaya lahan dan arahan pertanian di lahan pasang surut
Agus S., M. Hikmat, Dwi H.

178

Dilema pengelolaan sumberdaya lahan pulau-pulau kecil kasus degradasi sumberdaya tanah di jazirah leitimur pulau Ambon
Rafael M. Oock dan E.J. Giasperz

194

Dampak deforestasi terhadap hidrologi dearah aliran sungai di DAS Brantas Hulu, Jawa Timur
Didik S., G. Storkb, Sudarto, W.H. Utamo, dan Widianto

204

Efisiensi penggunaan air irigasi dari sumber air tanah dalam ground water pada lahan kering pasiran lombok utara dengan teknologi irigasi sprinkler big fun
Suwardji

225

Validasi model Dss Konservasi Tanah (Splash Versi 1.02)
Rahma D. Y. dan A. Darfiah

239

Deposit dan sifat-sifat mineral zeolit serta pemanfaatannya sebagai bahan pembentuk tanah
Suwardi

248

Respon tanaman bawang mereh (Allium ascalonicum) yang dilinokulasi MVA pada ragam cara pemberian BO dan jeda pengairan di lahan kering pulau lombok
Lolita E. S. dan Sukertono

258

Eksplosasi kualitas lahan dan produktivitas untuk pengembangan kriteria kesesuaian lahan untuk jambu mete (Anacardium occidentale L.)
Widiatmaka, A. Sutandi, U. Daras, Anas, A. Krisnohnadi

270
Oxisol dan manajemennya dari kecamatan Cariu-Kabupaten Bogor dan Kecamatan Cintang-Kabupaten Serang
Tatat S.A. dan Djunaedi A. Rachim .. 280

Aplikasi sistem olah tanah konservasi pada lahan kering berklaim kering di Lombok Timur
Al Darlah, Neneng L.N., Sidik H.T. .. 281

 Produktivitas tanaman padi sawah pada tanah mineral masam di Lampung Timur
M. Al-Jabri dan Ishak Juarsah ... 301

Penerapan teknik konservasi dan air dalam peningkatan produksi kelapa sawit
K. Murtiaksono, Eddy S., H. Dadan dan Sudarmo .. 310

Peningkatan kualitas lahan sulfat masam terbaru melalui optimasi teknik pengelolaan tanah dan air
Haryono dan Tugas Vudari .. 319

Penetapan kurva retensi air tanah laboratorium secara tensiogravimetri dengan gips block
Cahyoadi B. dan Niken S. ... 327

Pengaruh pupuk mikro asal Cina terhadap pertumbuhan dan hasil kacang tanah di Inceptisols
Mas Teddy Sutriadi .. 338

Dinamika populasi bakteri nitrifikasi dan potensial nitrifikasi di Alfisols Jumantono dengan perlakuan kualitas seresah yang mengandung senyawa alelopati
Widaningsih, Erliita Cendrasari, Jauhari S. ... 348

Pengaruh dekomposisi bahan organik terhadap pertumbuhan dan perkembangan tanaman jagung
Haryono .. 360

Dampak negatif terhadap lingkungan tanah dan air akibat adanya miskelola TPA sempah
Zelly E. Tamod ... 371

Kesesuaian lahan untuk tanaman jagung (Zea mays L.) dan kakao (Theobroma cacao L.) di kec. Sentolo kab. Kulon Progo
Anjai A.A., Bambang H.S., Gusti A. .. 380

Kesesuaian lahan untuk tanaman kedelai (Glycine max L.) dan melinjo (Gnetum gnemon L.) di kec. Sentolo kab. Kulon Progo
Anjai A.A., Bambang H.S., Heni D.K .. 395

Kesesuaian lahan untuk tanaman kelapa (Cocos nucifera L.) dan pisang (Musa spp. L.) di kec. Pengasih kab. Kulon Progo
Anjai A.A., Bambang H.S., P.K.Pandamnara T.Y. ... 411
Pengaruh kualitas terutama Cr terhadap beberapa sifat tanah di sepanjang Sungai Winongo Jogjakarta
Anjali A.A., Syamul A.S., Ismi Purba .. 428

Upaya pelepasan fosfat terperangkap dalam bentuk occluded melalui kombinasi mekanik, kimia dan biologi pada budidaya tanah sawah
Lenny S.N., Syekh Fani dan M. Munir .. 454

Pengaruh perakuan kualitas seresah kedalaman tanah terhadap dinamika populasi mikroba nitrifikasi dan mikroba heterotrof terkait pengendalian nitrifikasi secara hayati
Mukhali Ilirani, Ratih Septian .. 470

Inovasi teknologi konservasi air untuk meningkatkan produksi cabai dan pendapatan usaha tani lahan kering
S.H. Tala'ohu ... 481

Peran akar pohon dalam mencegah gerakan tanah
Kurniati H., Afr S., Veronika K., Didik S., Widiyanto dan Meine v.N .. 496

Bioremediasi: salah satu strategi meningkatkan keberhasilan rehabilitasi lahan bekas tambang
Enny Widyati ... 510

Metode rehabilitasi lahan kering terdegradasi untuk meningkatkan kualitas lahan
Abdullah A., B.H. Sunarminto, M. Drajad, S. Mawanto .. 521

Partisipasi masyarakat dalam pengelolaan lingkungan : studi pendahuluan mengenai kemauan masyarakat wilayah bahaya banjir untuk membayar jasa lingkungan lahan pertanian
Irawan dan Undang Kumiai .. 534

Dampak tsunami terhadap kondisi tanah pada lahan pertanian
Achmad R. dan Deddy Erlandi ... 548

Analisis hierarki wilayah dan land rent poisa usaha tani padi dan bawang merah serta faktor-faktor yang mempengaruhi pemilihannya di kabupaten Bantul propinsi D.I. Yogyakarta
Santun R.P.S., Andrea E.P., Dyah R.P. .. 557

Revegetasi sebagai alternatif memperbaiki sifat kimia tanah pada lahan bekas tambang batu bara
S. Setyo Wardoyo .. 565

Karacteristik lahan wilayah bencana longsor di sub desa Kaliputih kec. Panti keb. Jember
Cahyo Prayogo ... 581

Manipulasi lingkungan tempat tumbuh sebagai upaya terpadu pengembangan
technologi rehabilitasi lahan pasca tsunami di Banda Aceh
Cahyono A., Anwar B., Dewi W., Soni H., Barkah S. ... 594
ABSTRAK

Kata Kunci: revegetasi, pucuk tanah, sifat kimia tanah

PENDAHULUAN

Pengertian dan Latar Belakang

Revegetasi adalah salah satu metode/bentuk di dalam reklamasi lahan, dengan menanam vegetasi (tanaman) kembali pada lahan bekas tambang sesuai dengan perencanaan reklamasi yang sudah ditetapkan bersamaan dengan perencanaan penambangan. Revegetasi sendiri secara rinci meliputi (1) pekerjaan teknik yaitu mempersiapkan lahan meliputi merencanakan kapasitas saluran, kemiringan lahan dan saluran, bentuk teras (penjajaran timbunan), luas kolam penampungan lumpur (KPL), pengelolaan top soil (tanah pucuk, istilah tambang) dll; (2) Kegiatan penanaman vegetasi meliputi pembibitan atau pemilihan jenis yang sesuai, cara penanaman, pemeliharaan, pemantauan dll.

Reklamasi Lahan adalah suatu usaha untuk memperbaiki lahan yang telah rusak/tidak sesuai, menjadi lahan yang sesuai untuk penggunaan/permukiman tertentu. Sebagai contoh (1) lahan yang rusak (land degradation) adalah lahan bekas tambang, maka lahan tersebut dapat direklamasi menjadi tempat rekreasi, waduk, kolam ikan, perumahan, perkebunan atau revegetasi saja (kombinasi tan hutan atau pioner, tan buah, cover-crop dll). Lahan bekas tambang sbg juga bisa direstorasi, dikembalikan kebentuk penggunaan semula seperti sebelum ditambang misalnya kawasan hutan lindung ditambang, maka setelah selesai dijadikan hutan lindung kembali. Kedua cara sbg diatas

Sebagai contoh (2) adalah lahan marjinal, tetapi masih asli belum rusak (tdk sesuai) misalnya: (a) Lahan rawa pasang surut, direklamasi menjadi lahan pertanian (perlakuan areal pertanian); (b) Lahan rawa lebak, direklamasi menjadi lahan pertanian; (c) Lahan gambut, direklamasi menjadi Industri (di Finlandia), sebagai bahan bakar berbentuk briket; atau direklamasi menjadi lahan pertanian contoh: proyek gambut sejuta ha di Kalteng. (d) Lahan pantai (rawa), misalnya Muara Kapuk/Kapuk Naga Jakarta, direklamasi menjadi penunahan (Bengunan gedung), pariwisata dan sebagian untuk perkebunan. Dengan demikian reklamasi dapat diterapkan pada lahan-lahan bekas tambang, lahan pasang surut (termasuk gambut), lebak dan tanah mineral selain tambang misalnya pasir pantai, lahan dinin gunung berapi, tanah kegaraman dan pantai untuk penelamburgeran kota.

Ditinjau dari komposisi kimia, batubara didominasi oleh unsur C, H, O dan S (Gambar 1). Unsur S sering menimbulkan masalah kemasan tanah karena berbentuk asam sulfat. Unsur lain yang terdapat dalam batubara adalah P, K, Fe, Al, Si, Ca, Mg dan Na (Edgar, 1983). Sebagai contoh batubara jenis Lignite mempunyai kandungan unsur kimia secara berturut-turut: sulfur total 1,7 %, sulfat (SO₄) 0,12 %, P 0,007 %, K 0,2 %, Fe 2,0 %, Al 1,6 %, Si 4,9 %, Ca 1,2 %, Mg 0,31 % dan Na 0,21 % (Edgar, 1983).

Untuk memfokuskan permasalahan dalam reklamasi lahan bekas tambang, maka makalah ini akan membahas reklamasi metode revegetasi sebagai alternatif memperbaiki sifat kimia tanah, dengan tujuan mengetahui pengaruh umur revegetasi terhadap sifat kimia tanah pada lahan bekas tambang batubara.
Dasar Hukum Revegetasi

Secara umum dasar hukum revegetasi sama dengan dasar hukum reklamasi. Kebijaksanaan dasar mengenai pengelolaan sumberdaya alam tercatat pada pasal 33 ayat (3) Undang Undang Dasar 1945, yang berbunyi: "Bumi dan air, dan kekayaan alam yang terkandung di dalamnya dilikuid oleh negara dan dipergunakan untuk sebesar-besarnya kemakmuran rakyat". Keterkaitannya dengan pasal tersebut pertambangan merupakan komponen/sub-sistem dari sistem kekayaan alam, sehingga pengelolaannya perlu secara terkoordinasi, baik pada tahap perancanaan, pelaksanaan maupun tahap pengendalian pemanfaatannya (Harsono, 1993).

Menurut Undang Undang No. 11 Tahun 1987 tentang Ketentuan-ketentuan Pokok Pertambangan, khususnya pasal 8 mengatur tentang hubungan kuasa pertambangan dengan hak-hak atas tanah, bahwa pemegang kuasa pertambangan diwajibkan mengganti kerugian akibat dari usahanya atas segala sesuatu yang berada di atas tanah kepada yang berhak atas tanah di dalam lingkungan daerah kuasa pertambangan maupun di luaranya. Hal ini berkaitan dengan pasal 30 yang berbunyi: "Apabila selesai melakukan penambangan bahan galian pada suatu tempat pekerjaan, pemegang kuasa pertambangan yang bersangkutan diwajibkan mengembalikan tanah sedemikian rupa, sehingga tidak menimbulkan bahaya penyakit atau bahaya lainnya bagi masyarakat.

Gambar 1. Rumus Bangun Batubara (Edgar, 1983)
sekitarnya*. Apabila sengaja melakukan perbuatan yang menyebabkan rusaknya lingkungan hidup atau tercemarnya lingkungan hidup maka akan kena ketentuan pidana sesuai pasal 22 Undang-Undang No.4 Tahun 1982 tentang Ketentuan-ketentuan Pokok Lingkungan Hidup.

Dengan demikian dalam perencanaan pembiayaan suatu usaha pertambangan harus diperhitungkan perilunya cadangan biaya yang akan diperlukan setelah selesainya kegiatan penambangan guna melakukan pekerjaan reklamasi sebagai bagian integral dari pembangunan pertambangan berkelanjutan.

Selesai penambangan peruntukan penggunaan tanah selanjutnya harus disesuaikan dengan peruntukan yang baru menurut Undang-Undang No. 24 Tahun 1992 tentang Penataan Ruang atau rencana umum tata ruang (RUTR) kawasan yang bersangkutan (Harsono, 1993). Kegiatan dalam rangka penataan ruang seyoginya tidak dianggap sebagai kegiatan yang bersifat permanen, karena setelah selesai kegiatan deposit bahan tambang yang tidak habis/tidak ekonomis lagi untuk diadakan penambangan lebih lanjut, harus tetap dapat mempertimbangkan kemungkinan bagi peruntukan yang lain, sesuai rencana tata ruang yang berlaku.

Tujuan Revegetasi

Sesuai dengan Undang-Undang No. 4 Tahun 1982 dan Undang-Undang No. 24 Tahun 1992, bahwa revegetasi sebagai bagian dari reklamasi bertujuan untuk mengelola lingkungan bekas tambang menjadi daerah yang bebas pencemaran secara lestari dalam jangka waktu yang lama dan mengadakan penataan ruang sesuai dengan RUTR kawasan yang bersangkutan. Secara khusus revegetasi bertujuan mengembalikan vegetasi yang telah dirusak selama penambangan menjadi lahan yang bervegetasi lagi sesuai isi perjanjian dengan Penda Propinsi setempat.

PENTINGNYA REVEGETASI

Kegiatan pertambangan tetap mempunyai tanggung jawab terhadap lingkungan, karena pembangunan pertambangan mempunyai asas pembangunan yang berkelanjutan. Sektor pertambangan mempunyai kesempatan besar untuk mengentaskan kermiskinan secara langsung maupun tidak langsung terutama di daerah-daerah terpencil dimana pembangunan sektor-sektor lain belum dimulai (Sudjana, 1993).

Sebelum kegiatan penambangan dimulai, maka reklamasi/penataan lingkungan harus sudah direncanakan bersamaan dengan perencanaan tahapan lainnya. Untuk kegiatan pertambangan secara umum adalah eksplorasi, pembangunan pabrik, penambangan, pemurnian dan reklamasi. Perusahaan harus menginvestasikan sebagian
kekayaan di Bank sebagai jaminan reklamasi. Perusahaan yang sudah lama berdiri sebelum adanya Undang-Undang No. 4 Tahun 1982, maka harus selalu menyisihkan hasil produksinya untuk reklamasi. Dengan demikian supaya reklamasi/penataan lingkungan tidak terasa mahal, maka harus direncanakan sebelum kegiatan penambangan dimulai.

Dalam reklamasi perlu ditetapkan peruntukan/manfaat bekas tambang kelaian akan digunakan, hal ini tergantung pada: (1) jenis bahan galian, (2) teknik penambangan, (3) topografi daerah penambangan, (4) kondisi tanah dan batuan bekas tambang, (5) lingkungan di sekitar tambang, (6) kondisi masyarakat yang ada di sekitar pertambangan, dan (7) biaya untuk memperoleh manfaat yang terbaik (Tjoludo, 1993)

KEGIATAN PENAMBANGAN BATUBARA DAN DAMPAKNYA

Keadaan Umum Sebelum Di Tambang

Daerah penambangan Batubara PTBA Muare Enim pada waktu awal merupakan hutan sekunder dan sebagian kecil kebun rakyat. Sedangkkan wilayah penambangan PT Mahakam Sumber Jaya (Kaltim), PT Kaltim Prima Coal (KPC) dan PT Adaro Indonesia (Kalsel), daerah yang akan dibuka untuk tambang batubara umumnya merupakan hutan hujan tropis yang lebat, kaya flora dan fauna, masih tercipta lingkungan yang stabil antara interaksi dan interrelasi antar sub-sistem (abiotik dan biotik), berjalan sempurna. Klasifikasi hutan hujan tropis (Van Steenis, 1935 dalam Poerwo et al., 1993) mempunyai ciri-ciri sebagai berikut: (1) kaya akan jenis tanaman dan hewan, (2) terbentuk oleh suatu proses yang berlangsung cukup lama sehingga terbentuk hubungan yang cukup stabil antara tumbuh-tumbuhan, hewan dan lingkungan, dan (3) berkembang pada kondisi tanah yang minim akan nutrisi tumbuhan. Bagian nutrisi terbesar ditempat pada biomas hutan (tumbuhan dan binatang) dan cepat mengalami daur ulang. Jika pada pengelolaannya terjadi penebangan yang mengakibatkan biomas ini terkikis dan hilang maka tanah tersebut menjadi miskin unsur hara. Dengan demikian ditinjau dari vegetasi yang tumbuh daerah penambangan batubara di Kalimantan umumnya miskin unsur hara tanaman.
Kegiatan Tambang Batubara

Teknik penambangan sangat menentukan mudah tidaknya pelaksanaan revegetasi, maka urutan dan teknik penimbunan overberden dan pucuk tanah harus sekaligus diperhitungkan termasuk pekerjaan-pekerjaan teknik yang berhubungan dengan revegetasi. Penambangan dilakukan secara bertahap perblok dengan harapan untuk memindahkan overberden dan pucuk tanah dari blok satu ke blok lainnya tidak terlalu jauh.

Pengupasan/pembongkaran dimulai urut dari pucuk tanah, dilanjutkan overberden dan terakhir batubara sampai kedalaman sesuai dengan dalarnya batubara (Gambar 2). Di PTBA sampai sedalam 150 m.

Gambar 2. Urutan Kegiatan Penambangan Batubara

Dampak Penambangan Batubara Terhadap Sifat Tanah

Dampak yang ditimbulkan dari kegiatan ini adalah produktivitas dan stabilitas lahan rendah, karena rusaknya/turunnya sifat fisik, kimia dan biologi tanah.

(1) Perubahan sifat fisik yang terjadi antara lain: (a) profil tanah rusak, (b) daerah bebas penambangan berbentuk cekungan dan berlereng terjal, (c) tanah di bagian lereng atas daerah penimbunan menjadi padat karena beroperasinya alat-alat berat, (d) tanah di lereng bagian bawah menjadi lepas-lepas sehingga ketahanan geser rendah dan mudah tererosi, (e) mengurangi fungsi hidrologis, (f) rusaknya struktur tanah sehingga daya simpan air rendah.

(2) Perubahan sifat kimia yang terjadi antara lain: (a) hilangnya unsur hara dan bahan organik yang ikut hilangnya tanah bagian atas, sehingga mengurangi tingkat kesuburan, (b) bercampurnya material menyebabkan pH tidak homogen, lebih-lebih...
adanya sulfat yang khas pada lahan bekas tambang batubara pH cenderung rendah, sehingga kesulitan menentukan dosis pengapuran dan pemupukan.

(3) Perubahan sifat biologi yang terjadi adalah hilangnya bahan organik (termasuk seresah), sehingga mengurangi sumber energi bagi mikroorganisme tanah akibatnya populasi mikrobia turun dan kesuburan tanah menjadi turun.

TEKNIK REVEGETASI

Persiapan Lahan

Tahap ini adalah memperbaiki lahan bekas pertambangan dahulu, agar dapat berperan sebagai media pertumbuhan tanaman yang memadai, maka perlu usaha-usaha sebagai berikut:

1. Memadukan rencana penyiapan lahan untuk revegetasi dengan rencana penambangan sebagai suatu hal yang saling terkait.
2. Leveling yaitu mengatur topografi daerah timbunan hubungannya dengan arah airan, penjenjangan lapisan overberden dan tanah pucuk.
3. Merencanakan jumlah saluran beserta kapasitasnya disesuaikan dengan curah hujan setempat.
4. Mengendalikan air permukaan dengan cara mengatur timbunan tanah dalam bentuk teras (sebaiknya miring kedalam) dan pembuatan KPL.
5. Pengelolaan top soil (pucuk tanah) akan dibahas tersendiri

Pengelolaan Tanah Pucuk

Pengelolaan tanah pucuk adalah mengatur dan memisahkan top soil dengan tanah lainnya, karena tanah pucuk banyak mengandung unsur hara dan mineral yang merupakan media tanam yang baik. Hal-hal yang harus diperhatikan tanah pucuk:

1. Pengamatan profil tanah dan identifikasi pelapisan tanah sampai endapan bahan galian (pekerjaan sebelum tanah pucuk dibongkar).
2. Tanah pucuk sebaiknya langsung ditebar pada daerah yang sudah direncanakan atau diletakkan disuatu tempat sebagai stok tanah pucuk.
3. Timbunan tanah pucuk tidak lebih dari 2 meter dan ditamami covercrop jenis leguminosa.

4. Pengupasan tanah sebaiknya jangan dilakukan dalam keadaan basah, untuk menghindari kerusakan struktur tanah.

5. Tidak dilakukan pemadatan, karonaakan menutup pori-pori tanah.

6. Pucuk tanah yang mempunyai sifat ekstrim harus di treatment dulu mis: mempunyai pH < 5 dan > 8, tekstur pasir (>70 % pasir atau kerikil) dan lempung berat (> 60 % lampung).

7. Bila tanah pucuk tipis, maka perlu diperhatikan:
 a. Diprioritaskan daerah yang rawan erosi, dengan peneberan 30 – 50 cm (dimungkinkan akan tanaman masih bisa berkembang).
 b. Dilakukan pencampuran antara top-soil dengan sub-soil yang warnanya masih mendekati. Top-soil tidak boleh dicampur dengan bahan induk atau batuan induk.
 c. Langsung ditamami dengan Leguminosa secara rapat menutup semua permukaan tanah.

Perbaikan Kondisi Tanah

Manfaat dari mulsa tersebut adalah: (1) Melindungi agregat tanah dari energi kinetik hujan; (2) Meningkatkan penyerapan air oleh tanaman; (3) Mengurangi volume dan kecepatan run-off, dan (4) Memelihara temperatur dan kelembaban tanah. Umumnya kulit kayu masih mempunyai C/N rasio yang tinggi (>30), sehingga tidak langsung bisa ditaman. C/N rasio harus diturunkan dengan menambah N atau menunggu sampai terbentuk kompos.
Hampir semua tambang batubara di Indonesia memanfaatkan Lumpur dari KPL digunakan sebagai penutup permukaan tanah. Lumpur hanya sebagai hasil sampingan, sehingga hanya mampu penutup sebagian kecil lapisan tanah. Penguraan PKL hanya setahun sekali pada musim kemarau. Lumpur tidak langsung bisa digunakan, tetapi dilakukan pengeringan dulu untuk mengurangi kadar air dan menambah oksigen.

Pemilihan Jenis Pohon

Pemilihan jenis-jenis pohon merupakan kunci utama dalam menentukan dalam tingkat keberhasilan revegetasi. Pendekatan cara memilih jenis adalah sebagai berikut:

1. Adaptabilitas
 Jenis yang dipilih adalah pohon yang dapat beradaptasi dengan lingkungan setempat seperti suhu, curah hujan, tinggi tempat, jenis tanah. Hal ini dapat dilakukan dengan cara: (a) mengevaluasi karakteristik jenis pohon dengan kondisi lingkungan setempat, (b) memilih jenis-jenis lokal yang potensial, (c) mengevaluasi jenis-jenis non lokal yang telah tumbuh, dan (d) melakukan percobaan untuk mendapatkan spesies baru.

2. Kecepatan pertumbuhan
 Prioritas utama adalah jenis yang cepat tumbuh, tajuknya lebar dan berlapis-lapis serta berkahan kuat dan dalam.

3. Teknik silvikultur harus diketahui
 Untuk memudahkan dalam pengelolaan dan pemeliharaan, jenis-jenis terpilih perlu diketahui teknik budidayanya misalnya perakuan biji, teknik persemaian, waktu memindahkannya ke lapangan, toleransi terhadap cahaya, genangan air dan hama penyakit.

4. Ketersediaan tanaman
 Jenis yang terpilih hendaknya dapat diperbanyak dengan mudah baik vegetatif maupun generatif. Tanaman dicari yang mudah didapat dan tersedia dalam jumlah yang cukup.

5. Simbiose dengan mikroba
 Jenis yang dipilih juga sebaiknya yang dapat bersimbiose dengan bakteri penambah N dan fungi penambah P misalnya mikoriza, sehingga dapat menghemat pupuk.
Pemeliharaan dan Monitoring Tanaman

Pemeliharaan dilakukan seperti halnya pengelolaan tanaman secara umum misalnya penyulaman, pemupukan, penyiraman, pengendalian hama dan penyakit serta gulma; sehingga tidak perlu dijelaskan terperinci.

Monitoring selalu dilakukan misalnya tumbang/patah, rusak karena hewan liar deb cepat ditangani agar lahan tidak terbuka dan tanah tidak tererosi. Tanaman yang mati terserang penyakit cepat dibakar/disterilikan kemudian dibenamkan ke dalam tanah.

PENGARUH UMUR REVEGETASI TERHADAP SIFAT KIMIA TANAH

Hasil penelitian yang disajikan berikut adalah mengambil contoh di PT Adaro Indonesia (Kalimantan Barat) dan PT Mahakam Sumber Jaya (Kalimatan Timur) yang dilakukan oleh mahasiswa dibawah bimbingan penulis pada periode tahun 2005 – 2006.

Sifat kimia yang diteliti adalah unsur hara makro dan unsur yang erat hubungannya dengan pertumbuhan tanaman revegetasi dan unsur yang berpengaruh terhadap kemasaman tanah. Contoh tanah yang diambil disesuaikan dengan kedalaman pucuk tanah (kurang lebih 50 cm dikomposisi)

Data Tabel 1. adalah sifat kimia tanah PT Adaro Indonesia yang direklamasi dengan umur revegetasi yang berbeda menggunakan tanaman Albizia sp. Umur revegetasi yang diambil adalah 0 th, 5 th dan 10 th.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat Kimia Tanah</th>
<th>0 th</th>
<th>5 th</th>
<th>10 th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bahan Organik (%)</td>
<td>0,79*</td>
<td>1,30*</td>
<td>4,21*</td>
</tr>
<tr>
<td>2.</td>
<td>N-total (%)</td>
<td>0,03</td>
<td>0,07</td>
<td>0,18</td>
</tr>
<tr>
<td>3.</td>
<td>N-NH4 (ppm)</td>
<td>7,31*</td>
<td>9,18*</td>
<td>48,67*</td>
</tr>
<tr>
<td>4.</td>
<td>N-NO3 (ppm)</td>
<td>1,46*</td>
<td>1,67*</td>
<td>7,93*</td>
</tr>
<tr>
<td>5.</td>
<td>P-total (ppm)</td>
<td>8,47*</td>
<td>41,22*</td>
<td>233,33*</td>
</tr>
<tr>
<td>6.</td>
<td>P-dd (ppm)</td>
<td>0,25</td>
<td>0,21</td>
<td>2,10</td>
</tr>
<tr>
<td>7.</td>
<td>K-total (ppm)</td>
<td>33,50*</td>
<td>89,82*</td>
<td>112,63*</td>
</tr>
<tr>
<td>8.</td>
<td>K-dd (cmol(+)kg)</td>
<td>0,02*</td>
<td>0,03*</td>
<td>15,50*</td>
</tr>
<tr>
<td>9.</td>
<td>pH H2O</td>
<td>3,96</td>
<td>4,80</td>
<td>5,47</td>
</tr>
<tr>
<td>10.</td>
<td>pH KCl</td>
<td>3,74</td>
<td>4,76</td>
<td>5,33</td>
</tr>
<tr>
<td>11.</td>
<td>Al-dd (cmol(+)kg)</td>
<td>0,01</td>
<td>0,03</td>
<td>0,00</td>
</tr>
<tr>
<td>12.</td>
<td>Fe lsruf (ppm)</td>
<td>99,96*</td>
<td>107,20*</td>
<td>0,32*</td>
</tr>
<tr>
<td>13.</td>
<td>SO4 (%)</td>
<td>1,45*</td>
<td>1,52*</td>
<td>0,004*</td>
</tr>
<tr>
<td>14.</td>
<td>C/N ratio</td>
<td>14,47*</td>
<td>14,69*</td>
<td>13,33*</td>
</tr>
</tbody>
</table>

Keterangan: * ada beda nyata antar umur revegetasi

Sifat kimia tanah nomor 1 sampai dengan 10 semakin meningkat dengan semakin lamanya umur revegetasi semakin baik, sebaliknya nomor 11 sampai dengan 14 semakin
menurun semakin baik. Dari data Tabel 1, ternyata secara umum no. 1-10 juga semakin meningkat dan no. 11-14 semakin menurun artinya umur revegetasi semakin lama semakin baik memperbaiki sifat kimia tanah. Hal ini disebabkan karena semakin lama umur revegetasi siklus unsur hara nomor 2-8 semakin stabil, di samping dapat suplai unsur hara dari bahan organik produk revegetasi. Dengan meningkatnya kation-kation base dan pada awal revegetasi sering diberikan kapur, maka pH juga semakin meningkat, sehingga Al dan Fe larut semakin rendah.

Penelitian di PT Mahakam Sumber Jaya (Kaltim) disajikan pada Tabel 2. Tanaman yang digunakan revegetasi tidak sama, karena kesulitan mencari tanaman yang monokultur dan sejenis. Umur revegetasi yang diambil adalah 0 th, 6 th dan 11 th. Pada umur 6 th tanaman yang digunakan adalah tanaman Albizia sp., sedangkan pada umur 11 th menggunakan vegetasi Gleresictae sp. Setiap tahapan revegetasi perusahaan ingin mencoba tanaman yang berbeda-beda, belakangan mengembangkan tanaman buah-buahan bahkan mencoba tanaman perkebunan Kelapa Sawit, sehingga untuk membandingkan sifat kimia yang benar-benar disebabkan oleh umur revegetasi relatif sulit. Oleh karena itu didekatkan dengan menggunakan kriteria.

Tabel 2. Sifat Kimia Tanah dengan Umur Revegetasi Berboda pada Lahan Bekas Tambang Batubara PT Mahakam Sumber Jaya th 2006

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat Kimia Tanah</th>
<th>Umur Revegetasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 th</td>
</tr>
<tr>
<td>1.</td>
<td>C-Organik (%)</td>
<td>0.38 (SR)</td>
</tr>
<tr>
<td>2.</td>
<td>N-total (%)</td>
<td>0.07 (SR)</td>
</tr>
<tr>
<td>3.</td>
<td>P-total (mg/100g)</td>
<td>64.33 (ST)</td>
</tr>
<tr>
<td>4.</td>
<td>K-total (mg/100g)</td>
<td>454.77 (ST)</td>
</tr>
<tr>
<td>5.</td>
<td>Ca (cmol/l/kg)</td>
<td>6.1 (R)</td>
</tr>
<tr>
<td>6.</td>
<td>K (cmol/l/kg)</td>
<td>0.27 (R)</td>
</tr>
<tr>
<td>7.</td>
<td>Mg (cmol/l/kg)</td>
<td>0.93 (R)</td>
</tr>
<tr>
<td>8.</td>
<td>Na (cmol/l/kg)</td>
<td>0.22 (R)</td>
</tr>
<tr>
<td>9.</td>
<td>pH H2O</td>
<td>4.87 (asam)</td>
</tr>
<tr>
<td>10.</td>
<td>Al-dd (ppm)</td>
<td>750 (ST)</td>
</tr>
<tr>
<td>11.</td>
<td>Fe-dd (ppm)</td>
<td>1.53 (SR)</td>
</tr>
<tr>
<td>12.</td>
<td>SO4 (ppm)</td>
<td>66.67 (S)</td>
</tr>
<tr>
<td>13.</td>
<td>Cl/N rasio</td>
<td>11.33 (S)</td>
</tr>
</tbody>
</table>

Keterangan: SR=sangat rendah, R=rendah, S=sedang, T=tenggi, ST=sangat tinggi
Sumber: Wahyunengsi (2006) dibawah bimbingan penulis, di olah dan dimodifikasi

Berdasarkan data Tabel 2, sifat kimia nomor 1 s/d 9 pada revegetasi tahun ke-6, secara umum sama dengan sebelum direklamasi kecuali Mg naik dari rendah menjadi tinggi, sedangkan P dan Ca justru turun, mungkin disebabkan karena unsur tersebut sudah mulai diserap tanaman tetapi proses mineralisasi organik dan anorganik lambat. Pada tahun ke-11 Ca naik sedikit, tetapi kebalikannya Mg turun sedikit menjadi sedang.
Kation-kation basa yang rendah menyebabkan pH juga tidak meningkat. Al dan Fe relatif tetap, sedangkan SO₄ dan C/N rasio menurun di tahun ke-11. Dengan demikian revegetasi di PT Mahakam Sumber Jaya ini hanya dapat memperbaiki Mg, SO₄ dan C/N rasio.

Pengaruh revegetasi terhadap sifat kimia tanah di PTBA belum diteliti, tetapi sampel lumpur yang mengalir dari lahan revegetasi berumur 3 tahun dari 8 sampel (lokasi) mempunyai sifat kimia rata-rata sebagai berikut: pH 6,76; KPK 19,78 (cmol(+) /kg); C-organik 4,31 %; N-total 3,35 %; P total 3,35 ppm; K 0,39 (cmol(+) /kg); Mg 9,28 (cmol(+) /kg); KB 85,49 % dan Fe 85,39 ppm (PTBA, 2006). Hampir semua sifat kimia tanah bagus untuk revegetasi kecuali P dan K rendah, namun bisa diatasi dengan pemupukan. Walaupun ini data dari tanah permukaan (lumpur), bisa diasumsikan bahwa tanah tersebut mempunyai sifat kimia yang baik.

Dari tiga contoh tersebut di atas diasumsikan bahwa revegetasi yang telah dilaksanakan oleh masing-masing perusahaan dapat memperbaiki sifat kimia tanah di lahan bekas tambang batubara.

KESIMPULAN
Berdasarkan uraian tersebut di atas, maka dapat disimpulkan sebagai berikut:
1. Perencanaan revegetasi harus sudah dimulai bersamaan dengan perencanaan tahapan penambangan lainnya
2. Teknik revegetasi harus didahului dengan pekerjaan teknik persiapan lahan sampai dengan monitoring tanaman di akhir revegetasi.
3. Revegetasi dapat memperbaiki sifat kimia tanah di lahan bekas tambang batubara.

DAFTAR PUSTAKA

Undang-Undang No. 11 Tahun 1967 tentang Ketentuan-ketentuan Pokok Pertambangan, Jakarta.

Undang-Undang No. 4 Tahun 1982 tentang Ketentuan-ketentuan Pokok Pengelolaan Lingkungan Hidup, Jakarta.

Undang-Undang No. 24 Tahun 1992 tentang Penataan Ruang, Jakarta.