ABSTRAK

Penentuan jalur pengujian (path testing) merupakan tahapan krusial dalam metode
pengujian White Box untuk menjamin seluruh alur logika dalam kode program telah
terverifikasi secara menyeluruh. Namun, proses identifikasi jalur independen (basis path)
dan pembangkitan data uji secara konvensional atau manual memiliki kelemahan signifikan,
yaitu risiko kesalahan manusia (human error) yang tinggi serta kebutuhan waktu yang besar,
terutama pada perangkat lunak dengan struktur kontrol yang kompleks. Penelitian ini
bertujuan untuk merancang dan membangun sebuah sistem otomatisasi pengujian white box
yang mampu mengekstraksi jalur independen dan membangkitkan rencana pengujian (zest
plan) secara otomatis.

Metode yang digunakan dalam penelitian ini berbasis pada pemanfaatan Abstract
Syntax Tree (AST) untuk membedah struktur kode sumber Python menjadi representasi
hirarki data. Representasi tersebut kemudian ditransformasikan menjadi objek Control Flow
Graph (CFQG) yang merepresentasikan hubungan antar titik keputusan (decision points)
dalam program. Sistem menghitung nilai kompleksitas siklomatis menggunakan standar
McCabe untuk menentukan jumlah jalur independen minimum yang diperlukan.
Penelusuran jalur dilakukan dengan mengimplementasikan algoritma Depth-First Search
(DFS) yang dilengkapi dengan teknik backtracking guna memastikan pencapaian path
coverage sebesar 100%.

Sistem ini memiliki keunggulan pada fitur Automated Test Case Generation, di mana
sistem menggunakan teknik pemindaian ekspresi reguler (regex extraction) untuk
menganalisis kondisi pada setiap node dan memberikan saran data input yang akurat agar
jalur tersebut dapat dieksekusi. Selain itu, sistem bertindak sebagai test oracle dengan
memprediksi ekspektasi output melalui mekanisme substitusi nilai variabel secara dinamis.

Efektivitas sistem diuji melalui dua skenario utama: logika aritmatika sederhana dan
sistem analisis risiko investasi yang melibatkan struktur perulangan (while loop), operator
logika majemuk (and/or), serta percabangan bersarang (nested if). Hasil pengujian
menunjukkan bahwa sistem mampu mengidentifikasi seluruh jalur independen—termasuk
jalur pengecualian seperti pembagian nol dan validasi data—secara presisi dan identik
dengan hasil analisis manual, namun dengan efisiensi waktu pemrosesan yang jauh lebih
tinggi. Luaran penelitian ini berupa laporan analisis komprehensif dalam format HTML yang
menyajikan visualisasi grafis alur program, rincian metrika kompleksitas, serta tabel rencana
pengujian yang siap digunakan oleh pengembang perangkat lunak.

Kata Kunci: White Box Testing, Basis Path, Abstract Syntax Tree, Cyclomatic Complexity,
Automated Test Case Generation, Control Flow Graph.



ABSTRACT

Independent path identification is a critical stage in the White Box Testing method to
ensure that all logical flows within a program's source code are comprehensively verified.
However, conventional or manual processes for identifying independent paths (basis paths)
and generating test cases possess significant weaknesses, including a high risk of human
errvor and substantial time requirements, particularly for software with complex control
structures. This research aims to design and develop an automated white box testing system
capable of extracting independent paths and generating comprehensive test plans
automatically.

The methodology employed in this study is based on utilizing the Abstract Syntax
Tree (AST) to decompose Python source code into a hierarchical data representation. This
representation is then transformed into a Control Flow Graph (CFG) object, illustrating the
relationships between decision points within the program. The system calculates Cyclomatic
Complexity using McCabe's standard to determine the minimum number of independent
paths required for full coverage. Path traversal is executed by implementing the Depth-First
Search (DFS) algorithm, integrated with backtracking techniques to guarantee 100% path
coverage.

The system features an advanced Automated Test Case Generation capability,
utilizing regular expression (regex) scanning techniques to analyze conditions at each node
and provide accurate input data suggestions to trigger the execution of specific paths.
Furthermore, the system serves as a test oracle by predicting expected outputs through a
dynamic variable substitution mechanism.

The system's effectiveness was validated through two primary scenarios: simple
arithmetic logic and a complex investment risk analysis system involving while loops,
compound logical operators (and/or), and nested branching. The results demonstrate that
the system can precisely identify all independent paths—including exception paths such as
division by zero and data validation errors—with results identical to manual analysis while
achieving significantly higher processing efficiency. The final output of this research is a
comprehensive analysis report in HTML format, providing graphical visualizations of
program flows, detailed complexity metrics, and ready-to-use test plan tables for software
developers.

Keywords: White Box Testing, Basis Path, Abstract Syntax Tree, Cyclomatic Complexity,
Automated Test Case Generation, Control Flow Graph.

vi



