DAFTAR ISI

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALAMAN JUDUL</td>
</tr>
<tr>
<td>HALAMAN PENGESAHAN</td>
</tr>
<tr>
<td>PERNYATAAN KEASLIAN KARYA ILMIAH</td>
</tr>
<tr>
<td>KATA PENGANTAR</td>
</tr>
<tr>
<td>HALAMAN PERSEMBAHAN</td>
</tr>
<tr>
<td>RINGKASAN</td>
</tr>
<tr>
<td>DAFTAS ISI</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
</tr>
</tbody>
</table>

BAB I. PENDAHULUAN 1

1.1. Latar Belakang .. 1
1.2. Permasalahan .. 2
1.3. Maksud dan Tujuan .. 2
1.4. Metodologi ..
 1.4.1. Pengumpulan Data 3
 1.4.2. Evaluasi Trajectory Pemboran Berarah 5
1.5. Sistematika Penulisan 5

BAB II. TINJAUAN UMUM LAPANGAN 7

2.1. Sejarah Singkat JOB – Pertamina – Petrochina East Java 7
2.2. Letak Geografis Lapangan dan Sejarah Lapangan Y 8
2.3. Kondisi geologi Lapangan Y 9
 2.3.1 Formasi Lidah ... 10
 2.3.2. Formasi Mundu .. 11
 2.3.3. Formasi Ledok .. 11
 2.3.4. Formasi Wonocolo.................................... 12
 2.3.5. Formasi Ngrayong 12
 2.3.6. Formasi Tuban .. 14
2.4. Geofisika Lapangan Y 17
BAB III. TEORI DASAR PEMBORAN BERARAH 20

3.1. Tujuan dan Alasan Dilakukannya Pemboran Berarah 22
 3.1.1. Tujuan Dilakukan Pemboran Berarah 22
 3.1.2. Alasan Dilakukan Pemboran Berarah 23
3.2. Tipe Pemboran Berarah ... 27
3.3. Perencanaan Lintasan (Trajectory) Pemboran Berarah 28
3.4. Penentuan Titik Bor Sumur Minyak 29
3.5. Perencanaan Trajectory Directional Drilling 32
 3.5.1. Perencanaan Trajectory Vertikal & Horizontal Section. 32
 3.5.2. Penentuan Kick Off Point 35
 3.5.3. Penentuan Radius Pembelokan dan Sudut Inklinasi 36
 3.5.3.1. Penentuan Radius Pembelokan 36
 3.5.3.2. Penentuan Sudut Inklinasi 37
 3.5.3.3. Penentuan Build-up Section 38
 3.5.3.4. Penentuan Tangent Section 38
 3.5.3.5. Penentuan Jarak Terukur (Measured Depth) 39
3.6. Pengarah Lubang Bor ... 40
 3.6.1. Metode Stokenbury .. 40
 3.6.2. Metode Orientasi Dasar Lubang 41
3.7. Peralatan Pembelok Lubang 42
 3.7.1. Jet Bit ... 42
 3.7.2. Knuckle Joint .. 45
 3.7.3. Whipstock .. 46
 3.7.4. Adjustable Kick-Off (AKO) Sub 49
 3.7.5. Positive Displacement Motors (PDM) 51
 3.7.6. Rotary Steerable System (RSS) 54
3.7.7. Peralatan Lainnya .. 57
 3.7.7.1. Bent Sub ... 57
 3.7.7.2. Non Magnetic Drill Collar 58
 3.7.7.3. Stabilizer ... 58
DAFTAR ISI
(Lanjutan)

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8. Pengontrolan Penyimpangan Lubang Bor</td>
</tr>
<tr>
<td>3.8.1. Konsep Fulcrum</td>
</tr>
<tr>
<td>3.8.2. Konsep Pendulum</td>
</tr>
<tr>
<td>3.8.3. Konsep Stabilisasi</td>
</tr>
<tr>
<td>3.9. Faktor-faktor yang Mempengaruhi Kemiringan dan Arah Lubang Bor</td>
</tr>
<tr>
<td>3.9.1. Faktor Formasi</td>
</tr>
<tr>
<td>3.9.1.1. Miniature Whipstock Theory</td>
</tr>
<tr>
<td>3.9.1.2. Formation Drillability Theory</td>
</tr>
<tr>
<td>3.9.1.2.1. Perubahan Batuan Keras ke Lunak</td>
</tr>
<tr>
<td>3.9.1.2.2. Perubahan Batuan Lunak ke Keras</td>
</tr>
<tr>
<td>3.9.1.3. Formasi Dengan Bidang Kemiringan Lebih Besar Dari 45°</td>
</tr>
<tr>
<td>3.9.2. Faktor Mekanis</td>
</tr>
<tr>
<td>3.9.2.1. Weight On Bit (WOB)</td>
</tr>
<tr>
<td>3.9.2.2. Rotation Per Minute (RPM)</td>
</tr>
<tr>
<td>3.9.3. Faktor Hidrolika</td>
</tr>
<tr>
<td>3.9.3.1. Kehilangan Tekanan Di Permukaan</td>
</tr>
<tr>
<td>3.9.3.2. Kehilangan Tekanan Di Drillstring</td>
</tr>
<tr>
<td>3.9.3.3. Kehilangan Tekanan Di Annulus</td>
</tr>
<tr>
<td>3.9.3.4. Kehilangan Tekanan Di Pahat</td>
</tr>
<tr>
<td>3.9.3.5. Optimasi Bit Hydraulics</td>
</tr>
<tr>
<td>3.9.3.6. Surface Horsepower</td>
</tr>
<tr>
<td>3.9.3.7. Bottom Hole Horsepower</td>
</tr>
<tr>
<td>3.9.3.7.1. Hidrolik (Jet) Impact Force</td>
</tr>
<tr>
<td>3.9.3.8. Hidrolika Pahat</td>
</tr>
<tr>
<td>3.9.3.8.1. Konsep Bit Hydraulic Horse Power (BHHP)</td>
</tr>
</tbody>
</table>
DAFTAR ISI
(Lanjutan)

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.3.8.2. Konsep Bit Hydraulic Impact (BHI)</td>
</tr>
<tr>
<td>3.9.3.8.3. Konsep Jet Velocity (JV)</td>
</tr>
<tr>
<td>3.9.3.8.4. Analisa Hidrolika pada Annulus</td>
</tr>
<tr>
<td>3.9.3.8.5. Cutting Transport Ratio (Ft)</td>
</tr>
<tr>
<td>3.10. Survey Pemboran Berarah</td>
</tr>
<tr>
<td>3.10.1 Peralatan Survey</td>
</tr>
<tr>
<td>3.10.1.1. Peralatan Measurement While Drilling (MWD)</td>
</tr>
<tr>
<td>3.10.1.2. Peralatan Survey Single Shot dan Multi Shot</td>
</tr>
<tr>
<td>3.10.1.3. Peralatan Survey Gyro</td>
</tr>
<tr>
<td>3.10.2. Pengaruh Kemagnetan Bumi</td>
</tr>
<tr>
<td>3.11. Metode Perhitungan Hasil Survey</td>
</tr>
<tr>
<td>3.12. Dog Leg Severity</td>
</tr>
<tr>
<td>3.13. Perencanaan Anti-Collision</td>
</tr>
<tr>
<td>3.14. Radius Toleransi Target Reservoir</td>
</tr>
</tbody>
</table>

BAB. IV KAJIAN TRAJECTORY PEMBORAN BERARAH
SUMUR “X” DIRECTIONAL DRILLING LAPANGAN
"Y" JOB PERTAMINA – PETROCHINA EAST JAVA 106

4.1. Perencanaan Trajectory Pemboran Berarah Sudut Inklinasi dan Azimuth Direction Sumur “X” 108

4.1.1 Perencanaan Manual Pemboran Berarah Sumur “X” 111

4.1.1.1. Penentuan Build-up Section 113

4.1.1.2. Penentuan Tangent Section 114

4.1.1.3. Penentuan Total Jarak (Measured Depth) 114

4.1.1.4. Perhitungan Data Survey Pemboran Berarah Sumur “X” 114

4.2. Pelaksanaan Trajectory Pemboran Sudut Inklinasi Dan Azimuth Direction Sumur “X” 118

4.3. Kajian Trajectory Pemboran Berarah terhadap Penyimpangan Sudut Inklinasi dan Azimuth Direction serta Penanggulangannya pada Sumur “X” 128
DAFTAR ISI
(Lanjutan)

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul diurutkan</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Kajian Faktor Formasi</td>
<td>129</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Kajian Faktor Mekanis</td>
<td>131</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Kajian Faktor Hidrolik</td>
<td>135</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Kajian Keberhasilan Proses Pemboran</td>
<td>148</td>
</tr>
<tr>
<td>BAB. V</td>
<td>PEMBAHASAN</td>
<td>150</td>
</tr>
<tr>
<td>BAB. IV</td>
<td>KESIMPULAN</td>
<td>154</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td>158</td>
<td></td>
</tr>
</tbody>
</table>