Rahmawaty, Dinda Dwi (2025) ANALISIS PENGARUH USIA TERHADAP SENTIMEN PENGGUNA APLIKASI HALODOC MENGGUNAKAN ALGORITMA RANDOM FOREST. Skripsi thesis, UPN Veteran Yogyakarta.
|
Text
1_Skripsi Full_124210049_Dinda Dwi Rahmawaty.pdf Restricted to Repository staff only Download (7MB) |
|
|
Text
2_Cover_124210049_Dinda Dwi Rahmawaty.pdf Download (433kB) |
|
|
Text
3_Abstrak_124210049_Dinda Dwi Rahmawaty.pdf Download (447kB) |
|
|
Text
4_Halaman Pengesahan_124210049_Dinda Dwi Rahmawaty.pdf Download (453kB) |
|
|
Text
5_Daftar Isi_124210049_Dinda Dwi Rahmawaty.pdf Download (358kB) |
|
|
Text
6_Daftar Pustaka_124210049_Dinda Dwi Rahmawaty.pdf Download (370kB) |
Abstract
ABSTRAK
Penelitian ini menganalisis pengaruh usia terhadap sentimen pengguna aplikasi Halodoc
menggunakan algoritma Random Forest, dengan mempertimbangkan usia sebagai faktor
demografis penting yang memengaruhi persepsi, harapan, dan pengalaman pengguna dalam
layanan telemedisin. Data ulasan pengguna dikumpulkan melalui kuesioner, dikelompokkan
ke dalam empat kategori usia, dan diberi label sentimen positif atau negatif. Tahapan
praproses meliputi pembersihan teks, normalisasi, penghapusan stopword, tokenisasi,
penggantian emotikon, dan ekstraksi fitur TF-IDF, kemudian dilakukan klasifikasi
menggunakan Random Forest. Evaluasi model menggunakan confusion matrix dengan
metrik akurasi, presisi, recall, dan F1-score. Hasil menunjukkan kinerja terbaik pada
kelompok usia 19–33 tahun dengan akurasi 95%, presisi 95.45%, recall 95%, dan F1-score
94.99%. Kelompok usia lainnya memiliki kinerja yang lebih rendah namun bervariasi, yang
mengonfirmasi bahwa segmentasi usia berpengaruh signifikan terhadap hasil klasifikasi
sentimen. Penelitian ini berkontribusi dengan mengintegrasikan segmentasi demografis
dalam analisis sentimen pada konteks telemedisin, serta memberikan wawasan teoretis dan
rekomendasi praktis untuk meningkatkan layanan kesehatan digital di Indonesia.
Kata kunci: analisis sentimen, Halodoc, Random Forest, pengaruh usia, telemedisin.
vii
ABSTRACT
This study analyzes the influence of age on user sentiment toward the Halodoc application
using the Random Forest algorithm, considering age as a significant demographic factor
that shapes perceptions, expectations, and user experiences in telemedicine. User review
data were collected through questionnaires, grouped into four age categories, and labeled
as positive or negative sentiment. Preprocessing included text cleaning, normalization,
stopword removal, tokenization, emoticon replacement, and TF-IDF feature extraction,
followed by classification using Random Forest. Model evaluation employed a confusion
matrix with performance metrics including accuracy, precision, recall, and F1-score. The
results showed that the highest performance was achieved in the 19–33 age group, with an
accuracy of 95%, precision of 95.45%, recall of 95%, and F1-score of 94.99%. Other age
groups showed lower yet varying performance, confirming that age segmentation
significantly affects sentiment classification outcomes. This research contributes by
integrating demographic segmentation into sentiment analysis within the telemedicine
context, providing both theoretical insights and practical recommendations to enhance
digital healthcare services in Indonesia.
Keywords: sentiment analysis, Halodoc, Random Forest, age influence, telemedicine.
viii
| Item Type: | Tugas Akhir (Skripsi) |
|---|---|
| Uncontrolled Keywords: | sentiment analysis, Halodoc, Random Forest, age influence, telemedicine. |
| Subjek: | Z Bibliography. Library Science. Information Resources > ZA Information resources |
| Divisions: | Fakultas Teknik Industri > (S1) Informatika |
| Depositing User: | Eko Yuli |
| Date Deposited: | 13 Nov 2025 09:42 |
| Last Modified: | 13 Nov 2025 09:59 |
| URI: | http://eprints.upnyk.ac.id/id/eprint/45448 |
Actions (login required)
![]() |
View Item |
