INTISARI

Pabrik Alumina dirancang dengan kapasitas 400.000 ton/tahun, menggunakan bahan baku Bauksit dan Natrium Hidroksida (NaOH). Pabrik dirancang akan didirikan di Kab. Tayan, Kalimantan Barat. Bahan baku bauksit diperoleh dari PT. Antam Tbk, Kab. Tayan, Kalimantan Barat dan Natrium Hidroksida (NaOH) diperoleh dari PT. Asahimas Chemical Tbk, Cilegon. Pabrik dirancang beroperasi secara kontinyu selama 330 hari dalam setahun, dengan proses produksi selama 24 jam/hari dan luas tanah yang diperlukan 4,8 ha. Perusahaan akan didirikan dengan badan hukum Perseroan Terbatas (PT) dengan jumlah karyawan 148 orang.

Alumina tipe Smelter Grade dibuat dengan proses Bayer yang terdiri dari tiga tahap yaitu: tahap digestion, precipitation, dan calcination. Tahap digestion, bauksit direaksikan dengan NaOH di dalam reaktor alir tangki berpengaduk, pada suhu 140°C dan tekanan 4 atm. Suhu reaktor dijaga tetap dengan menggunakan Dowtherm A sebagai media pendingin. Hasil keluaran dari reaktor digestion diumpankan ke Rotary Drum Vacuum Filter (RDVF-01), diperoleh keluaran cake berupa red mud dalam bentuk slurry yang tidak ikut bereaksi pada reaktor digestion yang kemudian dialirkan ke UPL. Keluaran filrat RDVF-01 berupa NaAlO₂ masuk ke tahap precipitation yang bereaksi dengan H_2O membentuk kristal Alumina Trihidrat (Al₂O₃.3H₂O), proses ini berlangsung di dalam Reaktor Precipitator pada suhu 60 °C dan tekanan 1 atm, suhu reaktor dijaga tetap dengan menggunakan media pemanas Dowtherm A. Keluaran dari reaktor precipitation diumpankan ke Rotary Drum Vacuum Filter (RDVF-02), diperoleh keluaran filtrat berupa campuran NaOH yang diumpankan menuju Evaporator (EV-01) untuk dipekatkan menjadi NaOH 48% dan di recycle kembali menuju reaktor digestion. Keluaran cake (RDVF-02) berupa Al₂O₃.3H₂O menuju tahap calcination dengan diumpankan menuju Rotary Kiln (RK-01). Proses kalsinasi berjalan pada suhu 1000 °C dan tekanan 1 atm. Terjadi serangkaian tahap dan reaksi dekomposisi Al_2O_3 . $3H_2O$ pada setiap zona rotary kiln hingga menjadi padatan Alumina (Al_2O_3). Hasil keluaran (RK-01) diumpankan ke rotary cooler (RC-01) untuk diturunkan suhu padatannya menjadi 50°C dan disimpan sementara dalam silo sebelum dikemas. Utilitas terdiri dari air start-up sebanyak 239.297,802 kg/jam dan air make-up sebanyak 107.030,528 kg/jam yang diolah dari air Sungai Kapuas. Kebutuhan Dowtherm A sebanyak 169.238,662 kg/jam. Kebutuhan bahan bakar fuel oil sebanyak 132,811 kg/jam, kebutuhan bahan bakar solar sebanyak 19.851,920 kg/tahun, dan kebutuhan bahan bakar LNG sebanyak 1.218,74 kg/jam yang diperoleh dari PT. Pertamina (Persero). Daya listrik terpasang sebesar 3.562 kW disuplai dari PLN dengan cadangan 1 unit generator dengan daya 3.562 kW. Kebutuhan udara tekan sebanyak 38,4 m³/jam untuk memenuhi kebutuhan instrumentasi.

Ditinjau dari segi ekonomi, pabrik membutuhkan Fixed Capital Investment sebesar \$100.439.253 dan Rp401.662.103.563 dan Working Capital sebesar \$10.933.231 dan Rp3.194.135.605.368.. Analisa ekonomi pabrik alumina ini menunjukkan nilai ROI sebelum pajak sebesar 58,23% dan ROI setelah pajak sebesar 47,99%. Nilai POT sebelum pajak adalah 1,71 tahun dan POT sesudah pajak adalah 1,98 tahun. BEP sebesar 40,94% kapasitas produksi dan SDP sebesar 24,89% kapasitas produksi. DCFR sebesar 28,15%. Berdasarkan hasil analisa ekonomi tersebut, maka pabrik alumina layak untuk dikaji lebih lanjut.

Kata Kunci : Alumina, NaOH, Bauksit, Reaktor Alir Tangki Berpengaduk