

PENGOLAHAN LIMBAH SAMPAH ORGANIK MENJADI PRODUK PUPUK RAMAH LINGKUNGAN ALTERNATIF BERSTANDAR INDUSTRI

Mengatasi Masalah Pencemaran Limbah Organik dan Mengolahnya Menjadi Pupuk Organik Berkualitas dan Bernilai Ekonomi

Dyah Sugandini, Didi Saidi, Sri Dwi Ari Ambarwati, Bambang Sugiarto, Muhamad Kundarto, Windy Anindya Pamuji, Trisna Adisti, Aina Nur Salsabilla, Muktiarya Yodhatama, Daniel Alfanito Setiawan Tambun

Pengolahan Limbah Sampah Organik Menjadi Produk Pupuk Ramah Lingkungan Alternatif Berstandar Industri: Mengatasi Masalah Pencemaran Limbah Organik dan Mengolahnya Menjadi Pupuk Organik Berkualitas dan Bernilai Ekonomi

Penulis

Dyah Sugandini, Didi Saidi, Sri Dwi Ari Ambarwati, Bambang Sugiarto, Muhamad Kundarto, Windy Anindya Pamuji, Trisna Adisti, Aina Nur Salsabilla, Muktiarya Yodhatama, Daniel Alfanito Setiawan Tambun

Tata Letak

Anisa Hidayati

Desain Sampul

Nabris Mufti A.

15.5 x 23 cm, viii + 79 hlm. Cetakan Pertama, Juni 2024

ISBN:

Diterbitkan oleh:

ZAHIR PUBLISHING

Kadisoka RT. 05 RW. 02, Purwomartani, Kalasan, Sleman, Yogyakarta 55571 e-mail: zahirpublishing@gmail.com

Anggota IKAPI D.I. Yogyakarta No. 132/DIY/2020

Hak cipta dilindungi oleh undang-undang.

Dilarang mengutip atau memperbanyak sebagian atau seluruh isi buku ini tanpa izin tertulis dari penerbit.

KATA PENGANTAR

Puji syukur kami panjatkan kehadirat Allah SWT, yang telah memberikan rahmat dan hidayah-Nya sehingga kegiatan penulisan buku "Pengolahan Limbah Sampah Organik Menjadi Produk Pupuk Ramah Lingkungan Alternatif Berstandar Industri: Mengatasi Masalah Pencemaran Limbah Organik dan Mengolahnya Menjadi Pupuk Organik Berkualitas dan Bernilai Ekonomi"

Buku ini disusun dalam rangka membantu kalangan akademik dan dunia industri dalam memahami proses pengelolaan limbah organik. Dekomposisi bahan organik memerlukan waktu yang lama, sehingga pengelolaan limbah organik sangat penting dilakukan untuk menjaga lingkungan yang sehat, bersih dan tidak kumuh. Proses dekomposisi harus dapat dimonitor dan dipercepat waktunya sehingga tidak mengganggu lingkungan. Pengelolaan limbah organik dapat dilakukan dengan penambahan bioaktivator untuk mempercepat proses dekomposisi bahan organik. Buku ini tidak hanya untuk kalangan akademik saja, tetapi untuk kepentingan pemerintah, bisnis dan masyarakat khususnya petani, umumnya para peminat pembaca buku.

Penulis menyadari masih banyak kekurangan dalam penulisan buku ini. Kekurangan yang ada akan menjadi cambuk untuk melaksanakan perbaikan dalam penulisan buku kegiatan yang lebih baik di masa yang akan datang. Semoga buku ini dapat memberikan manfaat bagi civitas akademika, dosen, mahasiswa dan masyarakat di masa sekarang maupun yang akan datang.

Hormat Kami

Penulis

DAFTAR ISI

	FTAR ISI	iii V
BAI		·
	NDAHULUAN	1
BAI		_
	NGENAL BUBUR SAMPAH	5
A.	Bubur Sampah sebagai Bahan Baku Pupuk Organik	5
B.	Bubur Sampah sebagai Pakan Maggot	7
BAI		
	NGENAL LIMBAH ORGANIK	11
A.	Pengertian Limbah Organik	11
В.	Jenis Limbah Pasar	12
C.	Peluang Limbah Organik untuk Pupuk	13
D.	Sumber dan Komposisi	14
E.	Faktor-Faktor yang Memengaruhi Proses	
	Pengomposan	15
BAE	3 IV	
	MPAH ORGANIK, BERBAGAI MASALAH DAN	
KEN	MANFAATANNYA	17
A.	Apa itu Sampah Organik	17
B.	Jenis–Jenis Sampah Organik	17
BAE		
ME	NGENAL LIMBAH TERNAK	21
A.	Pengertian Limbah Ternak	21
В.	Jenis Limbah Ternak	21
BAE	3 VI	
PFF	RMASALAH SAMPAH DI INDONESIA	23

	3 VII MPAK SAMPAH YANG TIDAK DIKELOLA DENGAN BAIK	31
A.	Pencemaran Lingkungan yang Berdampak Buruk bagi Kita dan Makhluk Hidup Lainnya	31
В.	Menjadi Penyebab Berbagai Bencana dari Banjir hingga Longsor	32
C.	Masalah yang Ditimbulkan Sampah Plastik	33
	3 VIII	
CAI	RA MENGELOLA SAMPAH ORGANIK	37
A.	Mengelola Sampah Organik	37
B.	Bagaimana Sampah Organik Memengaruhi Lingkungan	39
BAF		
	NFAAT SAMPAH ORGANIK	41
A.	Manfaat Sampah Organik	41
В.	Apa itu Limbah Padat	42
C.	Bagaimana Limbah Padat Diklasifikasikan	44
D.	Di mana Limbah Padat Dibuang dan Didaur Ulang	45
E.	Apa itu Sampah Organik	47
F.	Jenis Sampah Organik	48
G.	Bagaimana Sampah Organik Memengaruhi	
	Lingkungan	48
BAE		
PEL	UANG SAMPAH ORGANIK	51
A.	Daur Ulang Sampah Organik	51
BAE		
	UANG PASAR PRODUK DARI RECYCLING SAMPAH	53
A.	Pengertian dan Manfaat Daur Ulang Sampah	53
В.	Material yang Dapat Didaur Ulang	54
C.	Potensi Produk Daur Ulang Sampah Plastik	56
D.	Potensi Produk Daur Ulang Sampah Elektronik	57
E.	Potensi Produk Daur Ulang Sampah Logam	57
F.	Potensi Produk Daur Ulang Sampah Kertas	58

G.	Potensi Produk Daur Ulang Sampah Kaca	59
Н.	Potensi Daur Ulang Limbah Berbahaya dan Beracun	60
BAE	3 XII	
PUF	PUK ORGANIK SEBAGAI SOLUSI MASALAH SAMPAH	61
A.	Keunggulan Pemanfaatan Limbah Kompos/Organik	62
B.	Mengapa Sampah Organik Perlu Dikelola dengan	
	Baik	64
C.	Solusi Pengelolaan Sampah Organik di Pertanian	66
D.	Hambatan yang Dihadapi dalam Proses Pengolahan	
	Sampah Organik di Dunia Pertanian	67
BAE	3 XIII	
AN	ALISIS STUDI KELAYAKAN USAHA PUPUK ORGANIK	
PAD	DAT DI DESA SUMBERAGUNG MOYUDAN	71
A.	Hubungan dengan Mitra	72
B.	Aspek Pasar	73
C.	Target Market	73
D.	Aspek Teknik	74
E.	Aspek Keuangan	74
DAI	FTAR PUSTAKA	78

BAB I PENDAHULUAN

Undang-Undang Republik Indonesia Nomor 18 Tahun 2008 tentang Pengelolaan Sampah, bahwa sampah merupakan sisa kegiatan sehari-hari manusia dan atau proses alam yang berbentuk padat. Pasal 2 menyatakan bahwa sampah terdiri atas: sampah rumah tangga (sampah yang berasal dari kegiatan sehari-hari dalam rumah tangga, tidak termasuk tinja dan sampah spesifik), sampah sejenis sampah rumah tangga (sampah dari kawasan komersial, kawasan industri, kawasan fasilitas sosial, fasilitas umum, fasilitas lainnya), sampah spesifik (limbah berbahaya dan beracun, sampah akibat bencana, puing bongkah bangunan, sampah yang belum dapat diolah secara teknologi. Menurut pasal 4, pengelolaan sampah harus bertujuan untuk meningkatkan kesehatan masyarakat dan kualitas lingkungan serta menjadikan sampah sebagai sumberdaya. Proses dekomposisi limbah organik dengan bioaktivator menjadi kompos/pupuk organik yang berkualitas memerlukan waktu yang lama, jika tidak segera dikelola sampah akan menumpuk, kompos yang dihasilkan dapat langsung diberikan ke dalam tanah untuk pertumbuhan tanaman

Pengelolaan sampah diperlukan kepastian hukum, kejelasan tanggung jawab dan kewenangan pemerintah, peran serta masyarakat dan dunia usaha sehingga pengolahan sampah dapat berjalan secara proporsional, efektif, dan efisien. Limbah organik dari sampah telah menjadi permasalahan nasional sehingga pengelolaannya perlu dilakukan secara komprehensif dan terpadu dari hulu ke hilir agar memberikan manfaat secara ekonomi, sehat bagi masyarakat dan aman bagi lingkungan, serta dapat mengubah perilaku masyarakat.

Keberhasilan kualitas kompos ditentukan oleh kadar C-organik dan kadar N kompos. Untuk mengetahui status kualitas kompos yang siap digunakan sebagai pupuk yang sesuai standar SNI, maka perlu dilakukan pengkayaan dengan berbagai limbah organik terutama limbah dari kotoran ternak sapi, kambing dan ayam. Disamping itu proses dekomposisi bahan organik memerlukan waktu yang lama, sehingga perlu adanya Bioaktivator.

Pasal 12, menyatakan bahwa Setiap orang dalam pengelolaan sampah rumah tangga dan sampah sejenis sampah rumah tangga wajib mengurangi dan menangani sampah dengan cara yang berwawasan lingkungan. Pasal 19, Pengelolaan sampah rumah tangga dan sampah sejenis sampah rumah tangga terdiri atas: pengurangan sampah meliputi: pembatasan timbulan sampah pendaur ulangan sampah, pemanfaatan kembali sampah.

Penanganan sampah meliputi: pemilahan dan pemisahan bentuk sampah, pengumpulan dan pemindahan dari sumber ke tempat penampungan sementara atau tempat pengolahan sampah terpadu, pengangkutan, pengolahan dalam bentuk mengubah karakteristik, komposisi dan jumlah, pemrosesan akhir sampah dalam bentuk pengembangan sampah dan/atau residu hasil pengolahan ke media lingkungan secara aman.

Permasalahan limbah organik dari sampah pasar dan sampah rumah tangga adalah kurangnya partisipasi masyarakat dalam memelihara dan membuang sampah pada tempat yang sudah disediakan dan sampah terus bertambah sehingga berserakan, terjadi akumulasi, menumpuk menyebabkan lingkungan kotor, pencemaran, bau, hal ini disebabkan karena penguraian limbah organik sampah lebih kecil dari penambahan limbah organik sampah pasar maupun sampah rumah tangga.

Permasalahan sampah, bagi rumah tangga Indonesia diketahui bahwa setiap jiwa mengeluarkan sampah sekira 2,6 liter per hari atau 15 liter per keluarga rumah tangga Indonesia dengan 5 jiwa/ keluarga. Sampah rumah tangga merupakan sumber pencemar

terbesar di Indonesia. Penanganan sampah jenis ini pun lebih sulit dibanding sampah industri atau pabrik. Sebagian besar masyarakat sampai saat ini masih memandang sampah sebagai barang sisa yang tidak berguna, bukan sebagai sumber daya yang perlu dimanfaatkan. Masyarakat dalam mengelola sampah masih bertumpu pada pendekatan akhir yaitu sampah dikumpulkan, diangkut, dan dibuang ke tempat pemrosesan akhir sampah. Padahal timbunan sampah dengan volume besar di lokasi tempat pemrosesan akhir berpotensi melepaskan gas metana (CH4) tinggi yang dapat meningkatkan emisi gas rumah kaca dan memberikan kontribusi terhadap pemanasan global. Pengolahan sampah secara alami memerlukan waktu yang lama dan diperlukan biaya yang mahal.

Permasalahan dari limbah organik peternakan disebabkan karena belum adanya pengelolaan limbah ternak, mulai dari tempat pengolahan, jumlah limbah yang semakin bertambah, kandang ternak yang kotor, lingkungan yang bau. Penguraian limbah organik peternakan akan terhambat karena limbah organik yang dihasilkan dari ternak masih mengandung lignin, dan tercampur dengan pakan berupa jerami, rumput yang mengandung lignin yang sulit terdekomposisi, penguraian lebih lambat dari penambahan limbah organik.

Paradigma pengelolaan sampah yang bertumpu pada pendekatan akhir sudah saatnya ditinggalkan dan diganti dengan paradigma baru pengelolaan sampah. Paradigma baru memandang sampah sebagai sumberdaya yang mempunyai nilai ekonomi dan dapat dimanfaatkan, misalnya untuk energi, kompos, pupuk dan lain-lain. Daur ulang sampah menjadi kompos merupakan cara paling ramah lingkungan dibanding pembakaran sampah, membuang sampah di belakang rumah, dan membuang sampah di sembarang tempat, termasuk sungai.

Tanah sebagai tempat tumbuhnya tanaman harus memiliki kualitas yang efektif dan efisien baik dari segi fisik ketersediaan airnya atau kelembabannya, maupun sifat kimia unsur hara atau

nutrisi yang tersedia bagi tanaman. Jenis tanah yang ada di sekitar wilayah Yogyakarta didominasi oleh Jenis Tanah Regosol yang sangat dipengaruhi oleh bahan induk abu vulkanik berasal dari letusan gunung Merapi, karakteristik tanah Regosol ukuran fraksinya didominasi oleh pasiran, sehingga memiliki permasalahan tingkat kesuburan nya yang rendah, hal ini disebabkan karena unsur hara dan ketersediaan air rendah akibat dari mudahnya air dan unsur hara terlindi, air dan unsur hara tidak dapat tersimpan dalam tanah regosol karena porositas tanahnya besar. Untuk mengatasi permasalahan tersebut di atas perlu adanya teknologi pemanfaatan air yang efektif dan efisien yaitu dengan irigasi kapiler, sedangkan untuk meningkatkan kesuburan fisik, kimia dan biologinya perlu adanya penambahan bahan organik dalam hal ini dengan kompos cair. Kesuburan fisik contohnya struktur tanah dengan kompos cair akan meningkat dari butir tunggal menjadi struktur yang remah, diharapkan dapat meningkatkan ketersediaan air (kelembaban meningkat). Kesuburan kimia dengan penambahan kompos cair dari unsur hara N, P dan Kalium dapat meningkat dari sumber kompos cairnya. Kesuburan biologi juga diharapkan meningkat karena adanya unsur karbon sebagai sumber energi bagi mikroorganisme tanah.

Untuk meningkatkan pemanfaatan limbah organik sebagai sumberdaya yang bernilai ekonomi, lingkungan dan kesehatan masyarakat, diperlukan penelitian tentang monitoring proses dekomposisi limbah organik tersebut sehingga dihasilkan produk kompos yang berkualitas bernilai ekonomi, lingkungan yang ramah, dan terjaminnya kesehatan masyarakat. Kualitas kompos yang dihasilkan akan dilakukan pengujian pada kesuburan tanah regosol terhadap pertumbuhan tanaman Jagung manis.

BAB II MENGENAL BUBUR SAMPAH

A. Bubur Sampah sebagai Bahan Baku Pupuk Organik

Bubur sampah adalah produk dari penggilingan sampah-sampah organik yang telah mengalami tahap pemilahan sampah. Setelah itu, sampah organik tersebut dihancurkan menjadi kepingan-kepingan kecil dan kemudian diolah menjadi kompos. Dalam upaya untuk meminimalkan dampak negatif limbah dan mendukung praktik pertanian yang berkelanjutan, bubur sampah telah muncul sebagai komponen penting dalam produksi pupuk organik.

Bubur sampah adalah istilah yang digunakan untuk menggambarkan hasil dari proses penggilingan atau pencacahan sampah organik yang kemudian diolah menjadi bahan baku untuk pembuatan kompos atau pupuk organik. Dalam konteks pengelolaan limbah, bubur sampah mengacu pada campuran berbagai jenis sampah organik yang telah dipecahkan menjadi potongan-potongan kecil agar dapat dengan mudah terurai menjadi kompos. Kompos ini dapat digunakan untuk meningkatkan kesuburan tanah dan mengurangi limbah organik yang dibuang ke tempat pembuangan sampah.

Tahapan pembuatan bubur sampah dimulai dari proses pemilahan sampah. Proses ini dimulai dengan mengumpulkan sampah dari berbagai sumber, seperti rumah tangga, industri, dan tempat-tempat lainnya. Kemudian, di tempat sampah atau fasilitas daur ulang, dilakukan pemisahan antara sampah organik dan non-organik. Sampah organik, seperti sisa makanan, potonganpotongan daun, dan bahan-bahan organik lainnya, diidentifikasi dan dipisahkan dari komponen non-organik, seperti plastik, logam, dan kaca. Ini adalah langkah penting karena memastikan bahwa hanya bahan organik yang akan diproses lebih lanjut, sementara sampah non-organik diarahkan ke jalur daur ulang yang sesuai.

Setelah pemilahan sampah organik, tahap selanjutnya adalah pencacahan. Pada tahap ini, sampah organik yang telah terpilah dihancurkan atau digiling menjadi potongan-potongan kecil. Pencacahan adalah langkah kunci dalam persiapan bubur sampah, karena mengubah sampah organik menjadi bentuk yang lebih mudah diurai. Dengan memecah sampah organik menjadi kepingan-kepingan kecil, proses dekomposisi yang selanjutnya akan terjadi menjadi lebih efisien. Potongan-potongan kecil ini memberikan lebih banyak permukaan yang dapat dijangkau oleh mikroorganisme, seperti bakteri dan jamur, yang akan membantu dalam mengurai sampah menjadi bahan organik yang berguna untuk pupuk.

Manfaat bubur sampah dalam pembuatan pupuk organik yaitu:

1. Pengurangan Limbah

Menggunakan bubur sampah sebagai bahan baku pupuk organik membantu mengurangi volume limbah organik yang dibuang ke tempat pembuangan sampah. Hal ini mendukung upaya pengelolaan limbah yang lebih efisien dan ramah lingkungan.

2. Pupuk Organik Berkualitas

Bubur sampah mengandung berbagai jenis materi organik, seperti sisa-sisa makanan, daun-daun, potongan-potongan kayu, dan lainnya. Ketika bahan ini didekomposisi, mereka melepaskan nutrisi penting seperti nitrogen, fosfor, dan kalium, yang diperlukan untuk pertumbuhan tanaman.

3. Tanah yang Lebih Subur

Penggunaan pupuk organik yang berasal dari bubur sampah dapat meningkatkan kesuburan tanah, meningkatkan kapasitas tanah untuk menahan air, dan merangsang aktivitas mikroba tanah yang menguntungkan.

Praktik Pertanian Berkelanjutan

Pupuk organik yang dihasilkan dari bubur sampah mendukung praktik pertanian yang berkelanjutan dan lebih ramah lingkungan daripada pupuk kimia yang lebih berpotensi merusak lingkungan.

Penggunaan bubur sampah sebagai bahan baku pupuk organik adalah langkah positif dalam upaya untuk mengurangi dampak limbah dan mendukung pertanian yang lebih berkelanjutan. Dengan pemahaman yang lebih baik tentang manfaatnya, kegiatan ini dapat berkontribusi pada pelestarian lingkungan dan peningkatan produktivitas pertanian.

B. Bubur Sampah sebagai Pakan Maggot

Berdasarkan data Kementerian Lingkungan Hidup dan Kehutanan (KLHK), komposisi sampah di Indonesia didominasi oleh sampah organik, yakni mencapai sekitar 57% dari total timbulan sampah. Untuk mengolah sampah organik ini, selain dengan pengomposan ada upaya lain yang bisa dilakukan yaitu dengan budidaya BSF (Black Soldier Fly) atau lalat tentara hitam.

Laporan buku saku budaya lalat yang ditulis oleh Pakar Lalat Tentara Hitam (Black Soldier Flies) Prof. Dr. Ir Agus Pakpahan, APU, pemula bisa beternak belatung dengan mudah. Untuk mulai beternak belatung, tentunya Anda memerlukan beberapa peternak lalat BSF terlebih dahulu. Telur BSF bisa Anda beli dengan harga pasar mulai dari Rp5.000 hingga Rp8.000 per gram. Saat ini banyak pemain di sektor BSF yang menjual telur secara online.

Telur BSF sebanyak butir tersebut kemudian ditetaskan dalam media inkubasi yang menyediakan lingkungan pakan lunak yang rentan terhadap belatung kecil seperti buah, ampas tahu, atau ampas kelapa. Resepnya adalah 3 gram telur atau setara dengan sekitar 5 kg makanan basah per kotak. Berikan pakan hanya satu kali tanpa pemberian pakan tambahan, kecuali di daerah yang terik dan terik di mana Anda harus memberikan lebih banyak air setelah beberapa hari jika makanan mulai mengering.

Pada tahap ini, lalat lain, terutama lalat rumah dan kutu busuk, akan berusaha bertelur dan memakan larva BSF. Perkembangan belatung dari lalat hijau dan lalat rumah lebih cepat dibandingkan dari lalat rumah. Oleh karena itu perlu adanya perlindungan agar lingkungan pakan hatchery tidak dipenuhi lalat lain.

Paling penting adalah telur tidak boleh diletakkan langsung diatas media organik karena kelembaban media bisa membuat telur rusak dan mati. Untuk itu diperlukan penampang untuk telur yang terbuat dari bahan kawat dan kasa nyamuk atau kain atau kain lain dengan pori-pori lain dengan pori-pori ukuran.

Anakan maggot akan hidup dalam wadah hatchery selama 5 s/d 7 hari, dihitung setelah telur menetas. Setelah ukuran mencapai ukuran 3-4cm, maka maggot sudah siap untuk dipindah ke dalam reactor/biopon.

Reaktor, atau biopond, adalah tempat larva maggot akan menghabiskan sampah organik. Saat menangani sampah organik rumah tangga, perlu Anda ketahui bahwa sampah organik mengandung 70 hingga 80% air. Oleh karena itu, pengolahan limbah harus mempertimbangkan teknik pengelolaan air, termasuk pengelolaan air reaktor.

Biopon dapat berupa lantai yang mempunyai sistem drainase dengan cara mengarahkan cairan yang dihasilkan lalat ke tempat lain untuk dimanfaatkan cairan tersebut. Aktivitas reaktor hanya menyediakan makanan bagi belatung setiap harinya. Belatung tidak menyukai cahaya, jadi tambahkan penutup jika reaktor terlalu terang.

Belatung juga sangat sensitif terhadap suhu, apalagi jika suhu lebih dingin dari 24 derajat celcius maka kemampuan makan belatung akan berkurang, jika suhu lebih dari 34 derajat celcius belatung akan terus berjalan mencari tempat yang lebih sejuk.

Limbah tidak boleh dihancurkan dan dilunakkan seperti pasta untuk pakan belatung karena akan menyulitkan belatung untuk bergerak dan bernapas di lingkungan. Kesalahan ini cukup sering terjadi di kalangan peternak maggot, terkait penyediaan makanan yang terlalu enak.

Maggot yang sudah menjadi pupa dan bangkai lalat BSF masih dapat dimanfaatkan sebagai pakan ternak karena kaya akan protein. Kepompong juga dapat digunakan sebagai pupuk agar proses penanamannya tidak menimbulkan limbah baru.

Cara beternak belatung juga cukup sederhana. Kandang lalat BSF harus berfungsi sebagai tempat BSF kawin dan menghasilkan telur hingga menetas. Kandang ditutup dengan kawat atau kain kasa dan diletakkan di tempat yang terkena sinar matahari.

Untuk bertelur lalat betina perlu menyiapkan karton, kayu atau papan yang ada celahnya. Tempatkan telur pada lingkungan inkubasi yang berbentuk kotak atau kotak kecil. Telur menetas setelah 3 hingga 4 hari. Terakhir, siapkan nampan atau kolam biologis untuk tempat berkembang biaknya belatung.

Ada dua cara pemanenan yang dibedakan berdasarkan umur belatung, yaitu pemanenan dalam keadaan maggot atau dalam keadaan prapupa. Pemanenan pupa akan dilakukan secara otomatis dan saat ini sudah tersedia pasar lalat kering sehingga maggot harus dipanen pada umur 15-20 hari.

Belatung dapat dikumpulkan dengan cangkul dan ditempatkan dalam keranjang industri untuk diangkut ke saringan. Belatung mungkin terlihat rapuh, namun sangat awet jika dimasukkan ke dalam mesin pengayak dan tidak akan mati selama proses pengayakan.

Untuk pengangkutan belatung jarak pendek dengan waktu tempuh 2-3 jam, belatung dapat dikemas dalam kantong jaring. Jaring berukuran 60 cm x 60 cm x 60 cm dapat memuat belatung hidup dengan berat lebih dari 40 kg.

Jangan mengirimkan dalam jumlah besar dan waktu tempuh lebih dari 3 jam untuk belatung hidup. Untuk jarak jauh sebaiknya belatung dikeringkan atau dibekukan terlebih dahulu.

BAB III MENGENAL LIMBAH ORGANIK

A. Pengertian Limbah Organik

Limbah adalah bahan sisa yang timbul sebagai hasil dari berbagai kegiatan dan proses produksi, termasuk dalam konteks rumah tangga, industri, pertambangan, dan lain sebagainya. Limbah dibagi menjadi dua kategori berdasarkan sifatnya, yakni limbah organik dan limbah anorganik.

Limbah organik adalah jenis limbah yang dapat sepenuhnya didekomposisi melalui proses biologi, baik dalam kondisi aerobik atau anaerobik. Limbah organik adalah jenis limbah yang memiliki definisi yang bervariasi dan dapat disesuaikan sesuai dengan tujuan pengelompokannya. Secara kimia, limbah organik merujuk kepada limbah yang mengandung unsur karbon (C), seperti kotoran hewan dan manusia, sisa makanan, serta sisa-sisa tumbuhan mati, kertas, plastik, dan karet. Jenis limbah organik yang mudah terurai secara biologis mencakup sisa makanan, sayuran, potongan kayu, daun kering, dan sebagainya. Limbah organik bisa mengalami dekomposisi dan terpecah menjadi zat-zat yang lebih kecil serta mengeluarkan aroma (Latifah, 2011). Namun, secara umum, limbah organik sering didefinisikan sebagai limbah yang berasal dari makhluk hidup alami dan mudah membusuk. Ini berarti bahwa bahan-bahan organik alami yang sulit membusuk, seperti kertas, serta bahan organik buatan (seperti plastik dan karet) yang juga sulit terurai, tidak dianggap sebagai limbah organik. Terutama, hal ini berlaku ketika orang memisahkan sampah padat di tempat pembuangan sampah untuk keperluan pengolahan limbah.

Limbah organik yang berasal dari makhluk hidup mudah mengalami pelapukan karena unsur karbon (C) dalam bentuk gula (karbohidrat) memiliki rantai kimia yang relatif sederhana, sehingga menjadi sumber makanan bagi mikroorganisme seperti bakteri dan jamur. Akibat dari proses pelapukan limbah organik oleh mikroorganisme adalah terbentuknya sebagian besar gas metana (CH4), yang juga dapat menimbulkan isu-isu lingkungan.

Sedangkan dalam konteks definisi kimia, limbah anorganik mencakup jenis limbah yang tidak mengandung unsur karbon, seperti logam (contohnya besi dari mobil bekas atau perkakas, serta aluminium dari kaleng bekas atau peralatan rumah tangga), kaca, dan pupuk anorganik (seperti yang mengandung unsur nitrogen dan fosfor). Karena mereka tidak mengandung unsur karbon, limbah-limbah ini tidak dapat didekomposisi oleh mikroorganisme.

B. Jenis Limbah Pasar

Limbah pasar sayur adalah limbah padat organik terdiri dari kumpulan berbagai macam sayuran setelah disortir karena sudah tidak layak jual. Limbah pasar sayur pada umumnya didominasi oleh kubis dan sawi. Limbah pasar sayur mulai menjadi perhatian mengingat limbah tersebut selain bertambah setiap harinya semakin sulit mencari tempat pembuangan dan mengurangi estetika keindahan kota. Menurut Badan Pusat Statistik, di Jawa Tengah ada 1976 unit pasar yang menghasilkan limbah pasar sebanyak 1.300.000 ton per hari dalam bentuk segar, dan sebagian besar (60%) merupakan limbah sampah organik sehingga berpotensi untuk dijadikan sebagai starter fermentasi.

Limbah pasar sayur merupakan kumpulan dari berbagai macam sayuran setelah disortir karena tidak layak jual dan biasanya didominasi oleh sawi dan kubis. Daur ulang dengan cara yang ramah lingkungan, mudah dan murah memerlukan upaya yang tepat untuk mengatasi persoalan limbah tersebut. Limbah pasar sayur berpotensi sebagai pengawet maupun sebagai starter fermentasi karena memiliki kandungan asam tinggi dan mikroba yang menguntungkan. Asam pada limbah pasar sayur diduga berupa asam laktat sebagai hasil metabolisme bakteri asam laktat. Pemanfaatan ekstrak limbah pasar sayur hasil fermentasi yaitu

berupa asam organik, dapat digunakan sebagai pengawetan secara biologi maupun sebagai starter untuk fermentasi pakan.

C. Peluang Limbah Organik untuk Pupuk

Pertanian berkelanjutan menjadi perhatian utama saat ini, ketika permintaan pangan global meningkat sementara lahan pertanian terbatas. Pupuk organik mendapat perhatian besar sebagai solusi untuk menjaga kesuburan tanah, meningkatkan produktivitas pertanian, dan mengurangi dampak negatif pertanian tradisional terhadap lingkungan. Hal ini merupakan peluang besar bagi industri pupuk organik. Pupuk organik yang terbuat dari bahan-bahan alami seperti kompos, limbah pertanian, dan sisa makanan memberikan banyak manfaat bagi tanaman dan lingkungan.

Meningkatkan kandungan bahan organik tanah, memperbaiki struktur dan meningkatkan kapasitas penyimpanan air adalah beberapa manfaat utama dari pupuk organik. Selain itu, produk pertanian berbahan dasar pupuk organik cenderung lebih sehat dan memiliki nilai gizi lebih tinggi sehingga memiliki potensi pemasaran yang menarik. Salah satu peluang usaha di bidang pupuk organik adalah produksi dan distribusi pupuk organik. Dengan semakin meningkatnya kesadaran masyarakat akan pentingnya pertanian berkelanjutan, kebutuhan terhadap pupuk organik terus meningkat. Produsen pupuk organik dapat melakukan inovasi dengan menciptakan formulasi pupuk yang disesuaikan dengan kebutuhan tanaman tertentu, seperti pupuk untuk sayuran, buah-buahan atau tanaman hias

Selain itu, pengembangan produk pupuk organik yang berbahan dasar limbah organik domestik atau industri juga dapat menjadi strategi yang menarik. Selain produksi pupuk, layanan konsultasi dan edukasi penggunaan pupuk organik juga memiliki potensi bisnis yang menjanjikan. Banyak petani yang belum memahami sepenuhnya manfaat dan cara penggunaan pupuk organik. Membantu petani memilih pupuk organik yang tepat untuk tanamannya, memberikan saran mengenai dosis dan jadwal penggunaan, serta memberikan informasi tentang teknik pengomposan yang tepat, yang mungkin mencakup layanan berharga yang mendukung keberhasilan pertanian mereka. Tidak hanya untuk pertanian skala besar, peluang bisnis pupuk organik juga cocok untuk pertanian perkotaan atau hidroponik.

Tanaman ini juga memerlukan asupan nutrisi yang seimbang dan penggunaan pupuk organik dapat membantu mencapai hal tersebut dengan cara yang ramah lingkungan. Dalam memanfaatkan peluang bisnis pupuk organik, penting untuk memperhatikan kualitas produk, kelestarian bahan baku, dan cara pemasaran yang tepat. Berkolaborasi dengan petani lokal, menerapkan teknologi produksi yang efisien, dan mengedukasi pasar tentang manfaat pupuk organik akan menjadi langkah penting menuju kesuksesan di sektor ini. Dengan mengikuti tren pertanian berkelanjutan, industri pupuk organik berpotensi memberikan dampak positif pada pertanian dan lingkungan secara umum.

D. Sumber dan Komposisi

Limbah organik dapat dijadikan sebagai bahan untuk membuat pupuk kompos. Berikut adalah sumber dan komposisi limbah organik yang dapat digunakan untuk membuat pupuk kompos:

Sumber limbah organik; Limbah organik dapat berasal dari sisa sayur, sisa buah-buahan, kotoran hewan seperti kotoran ayam, kotoran sapi, ataupun kotoran kambing, dan sampah organik rumah tangga.

Komposisi limbah organik; Limbah organik terbagi menjadi dua jenis, yaitu limbah organik basah dan limbah organik kering. Limbah organik basah biasanya berasal dari makhluk hidup seperti kotoran hewan, sisa sayur, sisa buah-buahan, sisa makanan, dan sebagainya. Sedangkan limbah organik kering biasanya berasal dari daun kering, ranting, kayu, dan sebagainya.

Untuk membuat pupuk kompos, limbah organik harus diolah terlebih dahulu. Proses pengomposan adalah proses penguraian

bahan organik secara biologis secara alami, terutama oleh mikroba yang memanfaatkan bahan organik sebagai sumber energi. Proses pengomposan dibagi menjadi dua tahap, yaitu tahap aktif dan tahap pematangan. Berikut adalah tahapan pembuatan pupuk kompos dari limbah organik:

- Mengumpulkan limbah organik dan memisahkan antara limbah organik basah dan limbah organik kering.
- Menyiapkan komposter untuk mengolah limbah organik 2. menjadi pupuk kompos.
- 3. Memasukkan limbah organik ke dalam komposter dan menambahkan bahan-bahan lain seperti EM4 (Effective Microorganism 4), gula, dan sebagainya.
- Memantau dan mengatur kelembaban dan suhu dalam komposter.
- Setelah sekitar 3 minggu, pupuk kompos siap digunakan. 5.

Pupuk kompos yang dihasilkan dari limbah organik dapat digunakan sebagai pupuk untuk tanaman. Selain itu, limbah organik juga dapat dimanfaatkan sebagai penyubur tanah.

Faktor-Faktor yang Memengaruhi Proses Pengomposan

Sutanto (2002) mengatakan bahwa dalam proses pengomposan, faktor-faktor yang perlu diperhatikan adalah:

- Kelembaban tumpukan kompos memengaruhi kehidupan mikroba sehingga tidak boleh terlalu kering atau terlalu kering. lembab dan stagnan.
- Aerasi tanggul, berkaitan erat dengan kelembaban. 2.
- 3. Suhu tidak boleh dijaga terlalu tinggi (maksimum 60), sambil dibalik untuk menurunkan suhu.
- Udara selama pengomposan menghasilkan asam organik sehingga tingkat pH turun, oleh karena itu diperlukan inversi.
- 5. Netralisasi keasaman dapat dilakukan dengan menambahkan kapur seperti dolomit atau abu. Kompos yang berkualitas dapat

dipupuk dengan pupuk seperti P untuk meningkatkan kualitas kompos.

Rosmarkam dan Yuwono (2002) menyimpulkan bahwa pengomposan pada hakikatnya merupakan upaya mengaktifkan aktivitas mikroba untuk mempercepat penguraian bahan organik. Mikroba tersebut adalah bakteri, jamur dan mikroorganisme lainnya. Suriawiria (2003) mengemukakan bahwa kunci pupuk organik yang baik antara lain: rasio karbon/nitrogen, keberadaan mikroorganisme, kelembaban, kadar oksigen dan ukuran partikel. Dalam 3 pendapat tersebut, faktor-faktor yang memengaruhi proses pengomposan hampir sama.

BAB IV SAMPAH ORGANIK, BERBAGAI MASALAH DAN KEMANFAATANNYA

A. Apa itu Sampah Organik?

Sampah organik terdiri dari bahan-bahan yang dapat terbiodegradasi yang pernah menjadi bagian dari organisme hidup dan mengalami dekomposisi dengan cepat. Sampah organik meliputi sisa makanan, sisa-sisa pekarangan, dan bahan alami lainnya yang mudah terurai dan berfungsi sebagai bahan pembenah tanah yang kaya unsur hara. Mengelola sampah organik dengan benar sangat penting untuk mengurangi jumlah gas rumah kaca, seperti metana, yang dihasilkan selama penguraian sampah. Mendaur ulang sampah organik melalui pengomposan dan pencernaan anaerobik merupakan cara efektif untuk mengubahnya menjadi produk bermanfaat dan mengurangi dampaknya terhadap lingkungan (Portilo, 2023).

B. Jenis-Jenis Sampah Organik

Dalam pemilahan sampah untuk dimanfaatkan, ada dua kelompok besar yang berbeda baik dalam karakteristik dan komposisi maupun dalam pembuangan atau transformasinya. Yang paling umum disebut Fraksi Organik Sampah Kota (OFMSW), yang berasal dari makanan dan barang-barang rumah tangga dan komersial lainnya.

Kelompok kedua disebut sampah hijau, yang dihasilkan di kawasan hijau dan tempat-tempat yang memiliki vegetasi, baik milik pemerintah maupun swasta. Pada gilirannya klasifikasi sampah organik ini dibagi menjadi beberapa jenis sebagai berikut:

- Sisa makanan: Termasuk kulit telur, buah, biji-bijian, minyak, tulang, dan tumbuhan. Selain itu juga terdiri dari sisa-sisa penyiapan pangan atau penanganan dan pengolahan pangan, sisa pangan, pangan yang kondisinya tidak baik, dan sisa pangan yang belum dipasarkan atau dikonsumsi (terpisah dari wadahnya).
- Sisa tanaman: Merupakan sisa pemangkasan tanaman (daun atau dahan). Limbah ini memerlukan pengelolaan khusus karena masalah logistik pengumpulan, pengolahan, dan waktu timbulan (frekuensi dan musiman).
- Sisa-sisa bahan dan alam: Termasuk kapas dan pakaian yang terbuat dari bahan ini dan kain kasa, pakaian yang dibuat dari kulit binatang, dan sisa-sisa binatang yang mati.
- Limbah kertas: Ini termasuk kertas dan karton, serbet, dan handuk kertas.
- Sisa makanan: termasuk sisa makanan, makanan busuk atau kadaluarsa, dan sisa makanan seperti kulit sayur, lubang buah, dan tulang.
- Sampah pekarangan: termasuk dedaunan, potongan rumput, dahan pohon, dan sisa tanaman lainnya.
- Kotoran hewan: termasuk bangkai hewan, kotoran hewan, dan bahan alas tidur seperti jerami atau serutan kayu.
- Limbah pertanian: termasuk sisa tanaman seperti batang, sekam, dan tongkol.
- Limbah kayu: termasuk serbuk gergaji, serpihan kayu, dan serutan kayu.
- Sampah yang dapat terurai secara hayati: ini mencakup barangbarang seperti produk kertas, kapas, dan bahan lain yang dapat terurai secara alami seiring berjalannya waktu.
- Lumpur organik: termasuk lumpur limbah dan limbah organik lainnya yang dihasilkan oleh instalasi pengolahan air limbah.
- Kotoran hewan: termasuk kotoran hewan dan limbah lain yang dihasilkan oleh hewan di lingkungan pertanian dan lainnya.

- Limbah kehutanan: termasuk limbah yang dihasilkan selama kegiatan kehutanan, seperti ranting, daun, dan produk sampingan lainnya.
- Sampah laut: mencakup sampah yang dihasilkan oleh organisme laut, seperti sampah ikan dan kerang, serta bahan organik lainnya yang ditemukan di laut.

Berdasarkan jenisnya sampah organik dapat digolongkan menjadi 2, antara lain sampah organik basah dan kering:

Sampah Organik Basah

Sampah organik basah adalah sampah organik yang banyak mengandung air. Sampah organik basah contohnya adalah sisa sayur, kulit pisang, buah yang busuk, kulit bawang dan sejenisnya. Inilah yang saya katakan bahwa sampah organik dapat menimbulkan bau tidak sedap sebab kandungan air tinggi yang menyebabkan sampah jenis ini cepat membusuk.

Sampah Organik Kering

Sampah organik kering adalah sampah organik yang sedikit mengandung air. Contoh sampah organik misalnya kayu, ranting pohon, kayu dan daun-daun kering. Kebanyakan sampah organik sulit diolah kembali jadi lebih sering dibakar untuk memusnahkannya.

Sampah organik mengacu pada bahan biodegradable yang terurai secara alami, seperti sisa makanan dan sisa halaman. Ketika bahan-bahan ini dikirim ke tempat pembuangan sampah, bahan-bahan tersebut terkubur dan tidak dapat terurai dengan baik karena kondisi ventilasi, suhu, dan kelembaban yang buruk.

Sampah organik dapat berasal dari berbagai sumber, mulai dari rumah tangga hingga lembaga publik. Pada artikel kali ini kita akan membahas berbagai sumber sampah organik secara detail: Sampah rumah tangga: termasuk sisa makanan, sampah pekarangan, dan sampah biodegradable lainnya yang dihasilkan oleh rumah tangga. Limbah pertanian: termasuk sisa tanaman, kotoran hewan,

dan limbah lain yang dihasilkan oleh praktik pertanian. Limbah pengolahan makanan: termasuk limbah yang dihasilkan selama pengolahan makanan, seperti kulit buah dan sayuran, potongan daging, dan produk sampingan lainnya. Limbah industri: termasuk limbah yang dihasilkan oleh industri seperti pulp dan kertas, tekstil, dan pengolahan makanan. Sampah kota: termasuk sampah yang dihasilkan oleh perkotaan, seperti sampah hijau dari taman dan kebun, serta sampah makanan dari sekolah dan rumah sakit. Air limbah: ini termasuk bahan organik dan polutan lain yang dibuang dari air limbah selama pengolahan.

Saat membahas sampah organik, penting untuk membedakan jenis sampah dan sumber asalnya. Meskipun semua sampah organik memiliki karakteristik umum yaitu dapat terurai secara hayati, terdapat perbedaan yang signifikan dalam bahan spesifik yang menyusun sampah tersebut dan cara menghasilkannya. Pengelolaan sampah organik yang tepat sangat penting untuk mengurangi dampak lingkungan dan mendorong ekonomi sirkular. Dengan memahami berbagai sumber sampah organik dan menerapkan praktik pengelolaan sampah berkelanjutan, kita dapat berkontribusi untuk masa depan yang lebih berkelanjutan.

BAB V MENGENAL LIMBAH TERNAK

A. Pengertian Limbah Ternak

Limbah peternakan adalah limbah sisa dari kegiatan peternakan komersial seperti pembibitan, pemotongan, pengolahan hasil peternakan, dan lain-lain. Limbah tersebut meliputi limbah padat dan limbah cair seperti pupuk kandang, urin, sisa makanan, embrio, kulit telur, lemak, darah, bulu, kuku, tulang, tanduk, isi rumen, dan lain-lain (Sihombing, 2000). Semakin berkembangnya usaha peternakan maka limbah yang dihasilkan akan semakin meningkat.

Jumlah total limbah peternakan tergantung pada spesies hewan, ukuran perusahaan, jenis perusahaan dan lantai kandang. Kotoran sapi, yang meliputi kotoran dan urin, merupakan sebagian besar kotoran hewan, dan sebagian besar kotoran dihasilkan oleh hewan ruminansia seperti sapi, kerbau, kambing, dan domba. Biasanya setiap kg susu sapi menghasilkan 2 kg limbah padat (feses) dan setiap kg daging sapi menghasilkan 25 kg pupuk kandang (Sihombing, 2000).

B. Jenis Limbah Ternak

Menurut Soehadji (1992), limbah peternakan mencakup semua limbah yang dihasilkan dari operasi peternakan komersial dalam bentuk limbah padat dan cair, sisa gas atau pakan ternak. Sampah padat adalah segala sampah yang berbentuk padat atau padat (kotoran ternak, bangkai ternak, atau isi perut ternak yang disembelih). Limbah cair adalah semua limbah yang berbentuk cair atau cair (urin, air cucian).

Untuk limbah gas, yang dimaksud adalah semua limbah yang berbentuk gas atau fasa gas. Pencemaran yang disebabkan oleh

gas metana menimbulkan bau yang tidak sedap pada lingkungan sekitar. Gas metana (CH4) dihasilkan dari proses pencernaan hewan ruminansia. Metana merupakan salah satu gas penyebab pemanasan global dan merusak lapisan ozon, dengan laju 1% per tahun dan terus meningkat. Selain itu, di Indonesia, emisi metana per unit pakan atau tingkat konversi metana lebih tinggi karena rendahnya kualitas pakan yang diberikan. Semakin tinggi jumlah pangan berkualitas buruk maka semakin tinggi jumlah metana yang dihasilkan (Suryahadi et al., 2002).

BAB VI PERMASALAH SAMPAH DI INDONESIA

Data Sistem Informasi Pengelolaan Sampah Nasional (SIPSN) Kementerian Lingkungan Hidup dan Kehutanan (KLHK) tahun 2022 hasil input dari 202 kabupaten/kota se Indonesia menyebut jumlah timbunan sampah nasional mencapai angka 21.1 juta ton. Dari total produksi sampah nasional tersebut, 65.71% (13.9 juta ton) dapat terkelola, sedangkan sisanya 34,29% (7,2 juta ton) belum terkelola dengan baik.

Pemerintah baik pusat dan daerah akan terus mengupayakan dan melaksanakan kebijakan dan program kolaboratif dan persuasif antar pemangku kepentingan untuk pengelolaan sampah yang tepat dengan mengedepankan prinsip sirkuler ekonomi dimana ada peningkatan manfaat ekonomi dari sampah. Kesadaran kolektif dan keterlibatan masyarakat dalam pengelolaan sampah merupakan salah satu bentuk modal sosial untuk menciptakan budaya bersih sebagai bagian dari identitas dan karakter masyarakat Indonesia.

Gerakan Indonesia Bersih, sebagai salah satu pilar dari 5 Gerakan Nasional Revolusi Mental (GNRM) diharapkan menjadi gerakan sosial kolaboratif yang turut berkontribusi membina mental masyarakat untuk sadar dan paham akan permasalahan sampah dan bergerak untuk mengambil bagian dalam pengelolaan sampah. Pola tradisional pengelolaan sampah: kumpul-buang-angkut harus ditinggalkan dan mulai mengubah perilaku dimulai dengan upaya pilah pilih sampah di rumah hingga gaya hidup 3R (reduce, reuse, recycle). Di Indonesia, WCD Indonesia telah mendapat respons baik dari masyarakat terbukti dengan semakin meningkatnya jumlah relawan setiap tahun. Para local heroes seperti relawan WCD di seluruh Indonesia harus terus diapresiasi, dikuatkan, dan dibantu untuk diperluas jaringannya. Selain aksi bersih-bersih,

upaya membudayakan dan menggerakkan program-program di tingkat masyarakat seperti program Bank Sampah juga patut terus disebarkan untuk penyadaran dan peningkatan kemampuan pemilahan sampah yang dihasilkan dari tingkat rumah tangga.

Gerakan *World Cleanup Day* (WCD) menekankan pentingnya kerja sama untuk membudayakan sistem manajemen sampah secara terintegrasi, holistik dan terpadu. (KemenkoPMK, 2023)

Permasalahan sampah terus terjadi karena minimnya penegakan hukum dan anggaran pengelolaan, serta tidak adanya panduan kemitraan. Oleh karena itu, pajak sampah plastik bernilai rendah perlu diberlakukan untuk mengurangi timbulan sampah yang tidak terkelola. Tiga problem mendasar penanganan sampah tersebut merupakan hasil kajian dari Program Lingkungan Perserikatan Bangsa-Bangsa (UNEP) dan Asosiasi Sampah Padat Internasional (ISWA). Bahaya utama dari sampah plastik terhadap lingkungan adalah karena bahan ini membutuhkan waktu bertahun-tahun untuk terurai. Selain itu, terdapat zat beracun yang dilepaskan ke dalam tanah ketika kantong plastik rusak di bawah sinar matahari dan, jika kantong plastik dibakar, mereka melepaskan zat beracun ke udara yang menyebabkan polusi udara.

Sampah plastik tidak hanya menjadi ancaman bagi kehidupan laut, tetapi juga bagi lahan pertanian. Sampah plastik bertanggung jawab atas kerusakan atmosfer dan lahan pertanian, yang secara tidak sengaja telah menghabiskan sumber daya bumi yang berharga, khususnya minyak. Tidak adanya konsekuensi terhadap perilaku membuang sampah sembarangan mencerminkan lemahnya penegakan hukum mengenai pengelolaan sampah. Padahal, Undang-Undang Nomor 18 Tahun 2008 tentang Pengelolaan Sampah telah diterbitkan. Masyarakat akan menjalankan peraturan tersebut apabila penegakan hukumnya berjalan dan ada konsekuensi jika tidak melaksanakannya.

Permasalahan sampah masih menjadi momok di tengah masyarakat, data juga menunjukkan tidak semua sampah dapat

dikelola kembali dengan baik, padahal pengelolaan sampah sangat bergantung pada kesehatan manusia dan lingkungan. Maka pengelolaan sampah tengah menjadi perhatian dari berbagai pihak dan perlunya partisipasi dari semua elemen termasuk masyarakat, salah satunya pengelolaan sampah pada sampah plastik.

Data dari laman Sistem Informasi Pengelolaan Sampah Nasional (SIPSN) Kementerian Lingkungan Hidup dan Kehutanan tercatat, data tahun 2021 terdapat timbulan sampah sebanyak 25.899.384,60 ton yang dihasilkan per tahunnya dan sekitar 15,4% adalah sampah plastik. Melihat data ini, dapat diketahui kondisi Indonesia saat ini memiliki banyak sampah plastik, sedangkan sekitar 33% sampah atau setara 8.546.623,02 ton per tahun tidak terkelola baik. Oleh karena itu, marilah mengenali bahaya sampah plastik bagi kesehatan manusia dan kemungkinan yang akan terjadi dari kondisi ini.

Sampah plastik membutuhkan waktu 1000 tahun untuk terdekomposisi atau terurai dengan sempurna oleh tanah, di mana partikel-partikel hasil dari penguraian juga akan mencemari tanah dan air tanah (Nathania, 2022).

Data Sistem Informasi Pengelolaan Sampah Nasional (SIPSN) Kementerian Lingkungan Hidup dan Kehutanan (KLHK) di 2022 hasil input dari 202 kabupaten/kota se-Indonesia menyebut jumlah timbunan sampah nasional mencapai angka 21.1 juta ton. Dari total produksi sampah nasional tersebut, demikian dilansir situs resmi Kementerian LHK (http://ppid.menlhk.go.id) sebanyak 65.71% (13.9 juta ton) dapat terkelola, sedangkan sisanya 34,29% (7,2 juta ton) belum terkelola dengan baik. Selanjutnya lembaga Sustainable Waste Indonesia (SWI) menyebutkan, dari total sampah nasional per tahun. Sampah plastik menguasai lima persen atau 3,2 juta ton dari total sampah. Dari jumlah tersebut, produk air minum dalam kemasan (AMDK) bermerek menyumbang 226 ribu ton atau 7,06 persen dan sebanyak 46 ribu ton atau 20,3 persen dari total timbulan sampah produk AMDK bermerek merupakan sampah AMDK kemasan gelas plastik.

Besaran sampah di tanah air yang cenderung terus bertambah tiap tahun, merupakan problem laten. Bukan semata angkanya yang terus membesar, melainkan cara penanganannya. Sampah yang tidak tertangani dengan benar menjadi sumber pencemaran, baik di darat maupun perairan seperti sungai dan laut. Kondisi itu harus diakui tidak terlepas dari semakin meningkatnya jumlah penduduk, sementara tempat pembuangan maupun pengelolaan sampah begitu terbatas. Belum lagi persoalan kesadaran masyarakat terhadap sampah yang belum merata. Sebelumnya, Bank Dunia juga pernah membuat laporan tentang sampah ini. Dalam laporan yang dirilis pada 2018 disebutkan bahwa setiap orang di dunia rata-rata menyumbang 0,74 kg sampah per hari. Pemerintah sadar akan persoalan tersebut. Agar sengkarut sampah di tanah air tidak berlarut, selayaknya pengelolaan sampah dilakukan secara terpadu. Langkah awal untuk ini dilakukan Kementerian LHK dengan cara melarang open dumping. Artinya, sampah yang semula hanya dibuang saja (tanpa diolah) sehingga membuat penumpukan, kini harus diolah terlebih dulu. Larangan itu berlaku seiring dengan terbitnya UU Pengelolaan Sampah tahun 2008. Sejak itu, pengelolaan sampah di tempat pembuangan sampah (TPS) terpadu, didorong untuk kreatif. Antara lain, mengubah sampah menjadi energi melalui insentilator atau Refuse-Derived Fuel. Bukan hanya energi, sampah juga dipilah dan diolah kembali menjadi bahan baku produk lain.

Pemerintah mempunyai target besar dalam mengatur pengelolaan sampah. Berdasarkan Kebijakan Strategi Nasional (Jakstranas), Indonesia didorong untuk mencapai target pengelolaan sampah sebesar 100% pada 2025, melalui 30 persen pengurangan sampah dan 70 persen penanganan sampah. Saat ini angkanya baru di kisaran 14,58 persen untuk pengurangan sampah, dan 47,64 persen buat penanganan. Langkah untuk mencapai target itu tidak mudah. Perlu ada sinergi dan kerja sama antara pemerintah pusat dan daerah. Termasuk, melibatkan lembaga kemasyarakatan untuk mendorong keberhasilan pengelolaan sampah dari mulai hulu hingga ke hilir.

Pengelolaan sampah dilakukan dari tapak terkecil pada skala rumah tangga. Kemudian dikumpulkan dan dipilah melalui bank sampah sekitar, dan diolah berdasarkan kategori hasil pemilahan sampah. Untuk jenis limbah rumah tangga organik diolah menjadi pupuk. Kemudian plastik didaur ulang. Sementara itu, limbah B3 dan Non B3 diolah kembali, dan sisanya diletakkan pada TPU atau dijadikan bahan bakar pada shelter pengolah sampah menjadi energi listrik (PSEL).

Pada 2022, pemerintah telah membangun 212 bank sampah secara nasional dengan total jumlah nasabah 44.656 orang. Berdasarkan data Ditjen Direktorat Jenderal Pengelolaan Sampah, Limbah dan B3, total omzet dari seluruh bank sampah yang dibangun sebesar Rp3.996.178.438. Omzet terbesar dari Pulau Jawa mencapai Rp2.731.508.547 atau 68,35% secara nasional. Pemerintah juga telah membuat Indeks Kinerja Pengelolaan Sampah (IKPS) yang merupakan instrumen standar penilaian kinerja pengelolaan sampah dari pusat hingga daerah. Penilaian pengelolaan sampah ini penting, mengingat dibutuhkan standar penilaian yang seragam baik untuk kota metropolitan, kota besar, maupun kecil. Satu hal lagi yang menjadi energi positif adalah kebijakan larangan penggunaan kantong plastik di sejumlah daerah. Gerakan larangan ini efektif untuk mendorong kesadaran masyarakat terhadap sampah anorganik. Terlihat, konsumen di minimarket atau pusat perbelanjaan mulai membawa tas belanjaan masing-masing. Hanya saja, untuk belanja online, masih banyak yang menggunakan plastik untuk pembungkus paket. Oleh sebab itu, perlu ada edukasi kepada penjual cara packaging atau pemaketan yang bagus dan ramah lingkungan.

Tantangan besar dan utama tentu adalah masalah habit manusia Indonesia. Sebab, perilaku masyarakat masyarakat kita masih suka membuang sampah sembarangan. Mengubah perilaku orang tentu tidak mudah. Perlu cara atau metode yang persuasif dimulai dari tingkat rukun tetangga (RT) agar tak ada lagi yang membuang sampah sembarangan. (Waluyo, 2023)

Sampah kini menjadi salah satu polemik permasalahan yang terjadi di Indonesia. Hampir di setiap daerah di Indonesia memiliki tabungan berupa sampah dengan jumlah yang tidak sedikit bahkan hingga jutaan ton sampah yang beredar di mana-mana, hingga saat ini sampah di Indonesia semakin banyak dan semakin tinggi pula tingkat data yang diperoleh dari sampah. Sampah yang kita buang tidak pernah terbuang, ia hanya berpindah tempat saja dan menuju ke Tempat Pembuangan Akhir atau yang biasa kita sebut dengan TPA.

Indonesia merupakan salah satu negara penghasil sampah terbesar di dunia. Jutaan ton sampah dihasilkan setiap harinya. Saat Maritime Fairtrade mengunjungi Tempat Pengolahan Sampah Terpadu (TPST) Bantar Gebang, Bekasi. Sampah plastik mendominasi komposisi limbah di sana. Watim, salah satu pemulung di sana mengatakan setiap harinya ribuan ton sampah dibuang ke tempat pembuangan sampah terbesar di Indonesia ini. Bank Indonesia mencatat, setiap tahun ada 4,9 juta ton sampah plastik yang tidak dikelola dengan baik dan 83 persen sampah plastik bocor ke laut dan mengancam ekosistem laut. Indonesia sedang darurat sampah plastik karena setiap tahunnya bisa menghasilkan 7,8 juta ton sampah plastik dengan 4,9 juta ton di antaranya tidak dikelola dengan baik sampai berada di tempat pembuangan akhir (Country Manager Plastic Bank Indonesia).

Pemerintah Indonesia sendiri mempunyai target untuk menurunkan pencemaran sampah plastik di laut sebesar 70 persen pada 2021. Sementara dalam jangka panjang, pemerintah menargetkan nol persen polusi plastik di Indonesia yang ditargetkan tercapai 2040. Namun demikian, hingga kini masih banyak tantangan yang dihadapi untuk mengejar target tersebut. Misalnya, implementasi kebijakan yang mengatur mengenai responsibilitas produsen plastik di Indonesia masih sangat kurang. Masih banyak produsen yang belum aware dengan material kemasan plastik hingga bagaimana pengelolaan sampah plastiknya. Sementara itu, catatan Kementerian Lingkungan Hidup dan Kehutanan (KLHK) menyebut, volume sampah telah menembus angka 68,5 juta ton pada 2021. Jumlah ini meningkat dua kali lipat dibanding data 10 tahun sebelumnya. Dari total jumlah sampah tersebut 17 persennya merupakan sampah plastik atau sekitar 11,6 juta ton. Kalau dulu mayoritas organik hampir 60 persen, sekarang turun sekitar 50 persen. Bahkan, ironisnya sampah plastik ini sebagian berakhir di laut, sehingga dikhawatirkan polutan mencemari habitat lingkungan dan berujung pada kesehatan manusia. Dari sejumlah penelitian mikroplastik yang termakan ikan, yang kemudian ikan tersebut dikonsumsi manusia ditemukan berada dalam darah dan paru-paru manusia.

Salah satu cara pemerintah dalam mengatasi persoalan lingkungan ini dengan menerbitkan kebijakan Peraturan Menteri (Permen) melalui Kementerian Lingkungan Hidup dan Kehutanan (KLHK) Nomor 75 tahun 2019 tentang Peta Jalan Pengurangan Sampah oleh Produsen. Di mana aturan tersebut untuk mendorong dunia usaha agar lebih aktif dalam mengatasi persoalan lingkungan yang disebabkan oleh sampah plastik. Permen tersebut mengatur ketentuan bagi perusahaan, termasuk produsen air minum dalam kemasan (AMDK) dalam pengelolaan kemasan plastik.

Tujuan utamanya adalah mengurangi volume sampah plastik pada 2029 mendatang hingga 30 persen. Permen tersebut cukup positif untuk mengatasi persoalan lingkungan. Namun, di sisi lain penerapan permen tersebut tidak secara spesifik mengatur para produsen plastik. Di mana fokusnya mengatur tiga kegiatan usaha, yakni manufaktur, jasa makanan dan minuman, serta industri ritel (Ramdhani, 2022).

Kita tidak bisa terus-menerus membuang semua sampah yang kita hasilkan ke TPA (Tempat Pemrosesan Akhir) yang memiliki batas lahan dalam menampung. Berdasarkan data Kementerian Lingkungan Hidup dan Kehutanan (KLHK), pada tahun 2020 ada sekitar 180 ribu ton sampah yang dihasilkan setiap harinya dan sebagian besar sampah belum dikelola dengan baik. Bahkan, Lembaga Ilmu Pengetahuan Indonesia (LIPI) mengatakan bahwa

sampah plastik bertambah di tengah pembatasan sosial. Masalah sampah tersebut juga diperparah dengan fakta bahwa banyak TPA di Indonesia yang sudah hampir penuh dan tidak lagi mampu menampung sampah yang masuk.

BAR VII DAMPAK SAMPAH YANG TIDAK DIKELOLA **DENGAN BAIK**

Berbagai dampak yang saat ini bisa kita lihat dan bahkan rasakan akibat sampah yang tidak dikelola dengan baik.

A. Pencemaran Lingkungan yang Berdampak Buruk bagi Kita dan Makhluk Hidup Lainnya

Pembuangan sampah dan limbah yang sembarangan hingga pengelolaan sampah yang tidak tepat menjadi penyebab terjadinya pencemaran lingkungan mulai dari air, udara, dan tanah. Selain merusak lingkungan kita, pencemaran akibat sampah yang tidak dikelola dengan baik dapat memberikan dampak buruk bagi kesehatan kita dengan timbulnya berbagai penyakit. Timbunan sampah yang semakin menggunung di Tempat Pembuangan Akhir (TPA) dengan pengelolaan sampah yang belum maksimal memberikan banyak dampak buruk bagi kesehatan dan lingkungan. Penumpukan sampah dapat menjadi risiko timbulnya sarang penyakit dan masalah lingkungan. Sampah bisa menimbulkan masalah kesehatan dengan dua macam cara, yaitu secara langsung dan tidak langsung. Dampak secara langsung adalah dengan mencemari tanah, sumber air, dan udara sehingga sumber tersebut mengandung bakteri atau virus yang bisa membuat manusia sakit. Sedangkan dampak tidak langsung adalah sampah-sampah tersebut menjadi tempat tumbuhnya media penularan penyakit, seperti nyamuk, lalat, dan kecoa. Binatang tersebut bisa menimbulkan penyakit bagi manusia. Beberapa contoh penyakit yang bisa timbul akibat sampah yang tidak dikelola adalah diare, tifus, dan cacingan (Faradiba, 2022).

B. Menjadi Penyebab Berbagai Bencana dari Banjir hingga Longsor

Sampah menjadi penyebab banjir dengan adanya penumpukan sampah di dasar sungai yang mengakibatkan permukaan sungai meninggi sehingga luapannya akan memasuki pemukiman penduduk saat diguyur hujan. Selain itu, tumpukan sampah yang menutupi aliran air juga menjadikan sampah sebagai penyebab banjir. Berbagai dampak banjir pun kita rasakan baik dari kerugian material hingga munculnya berbagai penyakit. Dampak lingkungan ini bersinggungan juga dengan dampak kesehatan, namun dengan efek yang lebih luas. Sebelumnya telah disebutkan bahwa sampah bisa mencemari tanah, sumber air, dan udara. Selain dampak kesehatan, pencemaran tersebut juga berpengaruh pada lingkungan. Contohnya adalah sampah yang terkumpul di sungai berpotensi menyumbat saluran air dan menyebabkan meluapnya air sungai menjadi banjir, bahkan banjir bandang (Nadia Faradiba, 2022).

Sampah menjadi penyebab banjir dengan adanya penumpukan sampah di dasar sungai yang mengakibatkan permukaan sungai meninggi sehingga luapannya akan memasuki pemukiman penduduk saat diguyur hujan. Selain itu, tumpukan sampah yang menutupi aliran air juga menjadikan sampah sebagai penyebab banjir. Berbagai dampak banjir pun kita rasakan baik dari kerugian material hingga munculnya berbagai penyakit. Selain banjir, longsor sampah dapat terjadi akibat sampah yang tidak dikelola dengan baik. Longsor sampah bisa terjadi akibat timbunan sampah yang menggunung seperti tumpukan sampah yang terdapat pada lokasi Tempat Pemrosesan Sampah (TPA). Peristiwa longsor pernah terjadi di TPA Leuwigajah pada 2005, akumulasi gas metan dari tumpukan sampah meledak dengan keras diikuti longsor sampah yang menewaskan banyak korban jiwa dan menghapus dua desa dari peta. Itulah berbagai dampak yang saat ini bisa kita lihat dan bahkan rasakan akibat sampah yang tidak dikelola dengan baik. Melihat berbagai dampak buruk yang dihasilkan akibat sampah,

masihkah Kamu mau berperan dalam kerusakan lingkungan, kerusakan hidupmu dan makhluk hidup lainnya, bahkan kerusakan kehidupan generasi penerus kita? Mulai dari hal kecil, mulai dari kita. Mulai atasi masalah sampah ini dari langkah-langkah kecil dengan mengurangi produksi sampah hingga memilah sampah yang kita hasilkan untuk bisa didaur ulang (Paxel, 2023).

C. Masalah yang Ditimbulkan Sampah Plastik

Sampah plastik membawa dampak negatif yang luar biasa bagi kehidupan manusia dan lingkungan. Dampak atau bahaya dari sampah jenis plastik ini antara lain; pencemaran air laut yang dapat mengganggu rantai makanan dan membunuh hewan laut, pencemaran air tanah karena sampah plastik tidak mudah terurai, penyebab polusi udara yang dapat menimbulkan masalah bagi kesehatan manusia, menimbulkan racun karena memproduksi plastik menggunakan bahan kimia beracun, biaya penanggulangan dan pengelolaan sampah plastik sangat mahal dan dapat menurunkan pendapatan negara dari sektor pariwisata (Kusmanta, 2021).

Berbagai dampak dari sampah plastik tidak hanya untuk kesehatan tubuh, namun juga dampak lingkungan terlebih jika tidak dikelola dengan baik, dan berikut ini bahaya yang ditimbulkan dari banyaknya sampah plastik:

1. Beracun

Asap beracun yang ditimbulkan dari pembakaran sampah plastik, jika tidak dibakar sempurna maka plastik akan mengurai di udara sebagai dioksin, sebuah senyawa yang berbahaya jika terhirup manusia karena akan berisiko memicu penyakit seperti gangguan saraf, hepatitis, pembengkakan hati, hingga kanker.

2. Risiko penyakit serius

Bahan kimia yang terkandung dalam plastik dapat mengkontaminasi makanan dan minuman yang dibungkus, tanpa disadari bahan kimia ini masuk ke dalam tubuh hingga ditemukan dalam darah dan jaringan tubuh, dari sinilah risiko penyakit bermunculan.

3. Mengganggu rantai makanan

Makhluk terkecil seperti plankton pun dapat memakan sampah plastik yang berukuran mikro dan menyerap bahan kimia berbahaya, dan dari sini dimulai rantai makanan yang tidak sehat. Di mana plankton yang telah terkontaminasi sampah plastik dimakan oleh makhluk yang lebih besar dan begitu seterusnya hingga ke manusia.

4. Mengganggu lingkungan, yang berakibat

Sampah kantong plastik juga dapat menyebabkan banjir karena dapat menyumbat saluran-saluran air dan tanggul, bahkan yang terparah adalah dengan sampah plastik yang menghalangi bisa merusak turbin waduk. Perubahan iklim. Dari awal proses produksi plastik hingga proses pengolahan sampah plastik telah mengemisikan gas rumah kaca ke atmosfer, hal ini tentu mengancam kondisi bumi, ditambah dengan sekitar 12 juta barel minyak dan 14 juta pohon setiap tahun dibutuhkan untuk kegiatan produksi plastik ini. Dapat terlihat bahwa proses produksi pembuatan plastik sangat tidak hemat energi dan mengancam perubahan iklim.

5. Mengancam kelestarian satwa liar

Kondisi saat ini menunjukkan, kehidupan satwa liar khususnya di laut telah menyatu dengan sampah plastik, banyak kejadian di mana satwa liar mengira plastik adalah makanan, hingga berakibat pada dimakannya plastik oleh satwa liar dan berakibat pada gangguan makan dan pergerakan tubuh, reproduksi, luka pada kulit, bisul, hingga kematian. Bahkan sampah plastik di laut telah melebihi jumlah zooplankton dengan perbandingan 36:1.

6. Merusak air tanah bumi

Bahan kimia dari sampah plastik yang terkubur akan berbahaya dan mengalir keluar hingga diresap oleh tanah, maka air tanah pun tercemari, di mana air ini akan mengalir ke danau dan sungai, hingga mencemari alam secara berkesinambungan. Melihat fakta bahwa plastik bisa bertahan selamanya, mirisnya 33% bahan plastik hanya dianjurkan untuk dipakai satu kali saja dan lalu dibuang, seperti botol kemasan dan sedotan, hal ini tentu menimbulkan bahaya yang lebih buruk. Mulailah bijak dalam penggunaan plastik, agar jumlah sampah plastik dapat ditekan dan tidak berbahaya bagi kesehatan dan lingkungan bila tidak dikelola dengan baik (Nathania, 2022).

BAB VIII CARA MENGELOLA SAMPAH ORGANIK

A. Mengelola Sampah Organik

Mengelola sampah organik melibatkan serangkaian kegiatan yang bertujuan untuk mengurangi dampak negatifnya terhadap lingkungan sekaligus mengekstraksi nilai potensialnya. Berikut beberapa cara pengelolaan sampah organik:

- Pengomposan: pengomposan adalah proses alami yang mengubah sampah organik menjadi tanah yang kaya nutrisi.
 Prosesnya melibatkan penimbunan sampah organik dan membiarkannya terurai dalam kondisi terkendali. Pengomposan dapat dilakukan di rumah dengan menggunakan tempat sampah atau tumpukan kompos, atau dapat dilakukan dalam skala yang lebih besar di fasilitas pengomposan.
- Pencernaan anaerobik: Pencernaan anaerobik adalah proses yang memecah sampah organik tanpa adanya oksigen, menghasilkan biogas dan pupuk. Proses ini biasanya digunakan untuk mengolah lumpur limbah, limbah pertanian, dan sisa makanan.
- Vermicomposting: adalah jenis pengomposan yang menggunakan cacing untuk menguraikan sampah organik.
 Cacing tersebut memakan bahan organik dan menghasilkan pupuk kaya nutrisi yang disebut kascing.
- Teknologi bioreaktor: teknologi bioreaktor melibatkan penggunaan mikroorganisme untuk menguraikan sampah organik dalam lingkungan yang terkendali. Teknologi ini biasa digunakan untuk mengolah limbah organik industri dan perkotaan.
- Penerapan pada lahan: sampah organik juga dapat diaplikasikan pada lahan sebagai pupuk. Namun, penting untuk memastikan

- bahwa sampah organik diolah dengan benar untuk menghilangkan patogen dan zat berbahaya lainnya sebelum dibuang ke lahan.
- Daur ulang: sampah organik dapat didaur ulang menjadi produk seperti kertas, karton, dan bioplastik. Sampah menjadi energi: sampah organik juga dapat digunakan untuk menghasilkan energi melalui proses seperti insinerasi, gasifikasi, dan pirolisis. Namun, proses-proses ini dapat menimbulkan dampak negatif terhadap lingkungan dan harus dikelola secara hati-hati untuk meminimalkan dampaknya. Mengelola sampah organik melibatkan serangkaian pendekatan dan teknologi yang bertujuan untuk mengekstraksi nilai potensialnya sekaligus meminimalkan dampaknya terhadap lingkungan. Dalam pemilahan sampah untuk dimanfaatkan, ada dua kelompok besar yang berbeda baik dalam karakteristik dan komposisi maupun dalam pembuangan atau transformasinya. Yang paling umum disebut Fraksi Organik Sampah Kota (OFMSW), yang berasal dari makanan dan barang-barang rumah tangga dan komersial lainnya.

Kelompok kedua disebut sampah hijau, yang dihasilkan di kawasan hijau dan tempat-tempat yang memiliki vegetasi, baik milik pemerintah maupun swasta. Pada gilirannya klasifikasi sampah organik ini dibagi menjadi beberapa jenis sebagai berikut:

- Sisa makanan: Termasuk kulit telur, buah, biji-bijian, minyak, tulang, dan tumbuhan. Selain itu juga terdiri dari sisa-sisa penyiapan pangan atau penanganan dan pengolahan pangan, sisa pangan, pangan yang kondisinya tidak baik, dan sisa pangan yang belum dipasarkan atau dikonsumsi (terpisah dari wadahnya).
- Sisa tanaman: Merupakan sisa pemangkasan tanaman (daun atau dahan). Limbah ini memerlukan pengelolaan khusus karena masalah logistik pengumpulan, pengolahan, dan waktu timbulan (frekuensi dan musiman). Sisa-sisa bahan dan alam: Termasuk kapas dan pakaian yang terbuat dari bahan ini dan

kain kasa, pakaian yang dibuat dari kulit binatang, dan sisa-sisa binatang yang mati. Limbah kertas: Ini termasuk kertas dan karton, serbet, dan handuk kertas.

B. Bagaimana Sampah Organik Memengaruhi Lingkungan?

Lebih dari separuh populasi tinggal di perkotaan, yang kini bertanggung jawab atas 70% sampah global dan hampir 80% energi global dikonsumsi di perkotaan. Pengelolaan sampah organik yang buruk, di satu sisi, menghambat penggunaannya (seperti dalam kasus bahan bakar terbarukan) dan, di sisi lain, dapat berdampak pada lingkungan dalam beberapa cara:

- Pembentukan gas rumah kaca: Ketika sampah organik terakumulasi dan terurai di tempat pembuangan sampah atau dalam kondisi anaerobik, sampah tersebut menghasilkan metana, gas rumah kaca yang, karena strukturnya, memerangkap lebih banyak panas per molekul di atmosfer dibandingkan karbon dioksida. Metana telah bertanggung jawab atas sekitar 30% pemanasan global sejak era pra-industri.
- Kontaminasi air dan tanah: Jika sampah organik tidak dikelola dengan baik, sampah tersebut dapat tersaring ke badan air, mencemari sungai, danau, dan akuifer bawah tanah. Selain itu, akumulasinya yang tidak terkendali di dalam tanah merusak unsur hara alami dan berdampak negatif terhadap kualitas lahan pertanian.
- Timbulnya bau tak sedap dan serangan hama: Sampah organik yang membusuk menghasilkan bau tidak sedap yang kemudian menarik serangan serangga dan hewan seperti tikus, mencit, atau lebah. Hal ini dapat menimbulkan kuman di area tersebut dan menjadi fokus penyakit menular.
- Hilangnya sumber daya: Sampah organik mengandung nutrisi berharga yang dapat digunakan sebagai pupuk alami atau sebagai dasar untuk menghasilkan sumber energi berkelanjutan. Jika tidak digunakan dengan benar, kesempatan

untuk memulihkan dan menggunakan kembali sumber daya tersebut akan hilang.

Dampak terhadap keanekaragaman hayati: Pengelolaan sampah organik yang buruk mempunyai konsekuensi negatif terhadap keanekaragaman hayati. Misalnya, pencemaran air berdampak langsung pada ekosistem perairan yang menyebabkan hilangnya beberapa spesies endemik.

BARIX MANFAAT SAMPAH ORGANIK

A. Manfaat Sampah Organik

Sampah organik memiliki banyak manfaat ini bisa menjadi sumber pemasukkan bila diolah yang bermanfaat. Bahkan dapat meminimalisir banyak sampah di tempat pembuangan akhir. Berikut manfaat sampah organik:

- Sampah Organik untuk Kompos/Pupuk Organik Sampah organik seperti buah-buah busuk dan sayuran dapat dibuat menjadi suatu berguna antara lain kompos. Pengolahan sampah organik untuk kompos tidaklah terlalu sulit.
- Untuk Tambahan Pakan Ternak Mungkin yang anda tahu sampah organik hanya dibuat untuk tambahan pakan kambing, sapi dan kerbau. Tapi sekarang ini sampah organik dapat diolah menjadi pelet untuk makanan ayam dan ikan
- Sampah organik dapat Diubah Menjadi Biogas dan Listrik Gak percaya? Bahwa sampah organik dapat digunakan sebagai sumber listrik. Sampah organik yang berasal dari kotoran hewan maupun manusia, limbah tempe dan tahu digunakan sebagai hahan utama

Mengelola sampah organik dapat memberikan banyak manfaat baik bagi lingkungan maupun masyarakat secara keseluruhan. Berikut beberapa manfaat utamanya. Pengurangan emisi gas rumah kaca: jika sampah organik tidak dikelola dengan baik, sampah organik dapat terurai dan melepaskan gas rumah kaca yang berbahaya, seperti metana, ke atmosfer. Dengan mengelola sampah organik dengan baik melalui pengomposan atau penguraian anaerobik, emisi ini dapat dikurangi secara signifikan.

- Kesehatan tanah: pengomposan sampah organik dapat menghasilkan perbaikan tanah yang kaya nutrisi yang dapat digunakan untuk meningkatkan kesehatan dan kesuburan tanah. Hal ini dapat menghasilkan pertumbuhan tanaman yang lebih sehat, yang pada gilirannya dapat mendukung ekosistem yang lebih beragam dan berlimpah.
- Pengurangan limbah TPA: TPA merupakan sumber utama pencemaran lingkungan, mengeluarkan gas dan cairan berbahaya ke lingkungan. Dengan mengalihkan sampah organik dari TPA, jumlah sampah di TPA dapat dikurangi sehingga mengurangi dampak negatif terhadap lingkungan.
- Penghematan biaya: mengelola sampah organik dengan benar juga dapat menghemat biaya bagi pemerintah kota, dunia usaha, dan individu. Pengomposan dan pencernaan anaerobik dapat mengurangi kebutuhan akan ruang TPA, yang pemeliharaannya mungkin mahal. Selain itu, kompos dapat digunakan sebagai pupuk alami sehingga mengurangi kebutuhan akan pupuk sintetis yang mahal.
- Penciptaan lapangan kerja: pengelolaan sampah organik juga dapat memberikan peluang kerja di berbagai bidang seperti pembuatan kompos, pencernaan anaerobik, dan pengumpulan sampah. Hal ini dapat mendukung perekonomian lokal dan memberikan kesempatan kerja bagi individu. Mengelola sampah organik dengan benar dapat memberikan manfaat yang signifikan bagi lingkungan dan masyarakat, menjadikannya area fokus yang penting bagi individu, dunia usaha, dan pemerintah.

B. Apa itu Limbah Padat?

Limbah adalah istilah yang berlaku untuk berbagai bahan yang dianggap tidak diinginkan atau tidak dapat digunakan. Banyak produk yang dulunya kita anggap sampah kini dianggap dapat digunakan kembali, terutama jika produk tersebut terbuat dari

bahan yang dapat didaur ulang. Misalnya, kita mungkin pernah menganggap botol plastik sebagai bahan limbah, namun kini botol plastik sering kali mudah didaur ulang. Berbagai jenis limbah dapat dikategorikan ke dalam berbagai klasifikasi, namun umumnya semuanya berbentuk cair, gas, atau padat. Dalam konteks ini, yang dimaksud dengan limbah padat adalah setiap bahan yang tidak diinginkan atau tidak dapat digunakan lagi yang berwujud padat. Istilah limbah padat perkotaan digunakan untuk merujuk pada jenis limbah padat yang dihasilkan di pusat kota atau wilayah pengaruhnya. Banyak limbah industri dihasilkan di daerah di luar pengaruh perkotaan. Misalnya, kami tidak menemukan banyak pabrik produksi atau pembangkit listrik yang berlokasi di dalam batas kota. Meskipun hal ini tidak selalu terjadi, sebagian besar produksi industri dunia terjadi di luar lingkungan perkotaan. Hal ini tidak berarti bahwa lingkungan perkotaan tidak menghasilkan limbah padat, namun limbah tersebut sebagian besar berasal dari perkantoran, pengecer, dan bahkan pemukiman.

Karena limbah padat berasal dari beragam sumber, terdapat banyak sekali contoh yang dapat Anda temukan di situs. Kita memang sangat prihatin terhadap limbah cair dan gas karena merupakan salah satu limbah yang paling berbahaya bagi lingkungan. Hal ini dapat dilihat dari bahaya yang ditimbulkan oleh gas rumah kaca atau tumpahan limbah cair beracun dari pembangkit listrik. Limbah padat juga sangat berbahaya, terutama karena memakan banyak ruang.

Contoh limbah padat antara lain:

- Botol-botol plastik
- Ban bekas
- Kotak kardus
- Kemasan produk
- Peralatan rumah tangga
- Mebel
- Kaleng makanan atau aerosol kosong

- Peralatan medis bekas
- Pakaian kotor
- Wadah bahan kimia
- Perangkat elektronik rusak
- Mainan

Salah satu masalah terbesar dengan sampah padat adalah sampah tersebut dibuang ke tempat pembuangan sampah. Ini adalah area dimana limbah padat dibuang dan menyebabkan bahaya serius seiring pertumbuhannya. Sebagian besar material yang berada di TPA dianggap sampah, namun sebenarnya dapat digunakan kembali atau didaur ulang.

C. Bagaimana Limbah Padat Diklasifikasikan

Limbah padat dapat diklasifikasikan menjadi dua kelompok besar, limbah padat berbahaya dan tidak berbahaya. Sesuai dengan namanya, limbah berbahaya merupakan kategori yang mencakup jenis limbah padat yang dapat membahayakan manusia atau lingkungan. Hal ini sering kali disebabkan oleh sifat korosif, mudah meledak, atau beracun. Limbah tidak berbahaya tidak menimbulkan bahaya langsung bagi manusia atau lingkungan, namun tetap dapat menimbulkan masalah. Jenis limbah padat ini selanjutnya dapat dikategorikan ke dalam kelompok berikut:

- Biasa: limbah ini dihasilkan dalam rutinitas sehari-hari di rumah, sekolah, kantor atau rumah sakit. Dapat terurai secara hayati: residu ini dicirikan oleh kemampuannya yang dapat terurai atau terurai dengan cepat, menjadi jenis bahan organik lainnya. Contoh sampah jenis ini adalah sisa makanan, buah-buahan, dan sayur-sayuran.
- Inert: bahan-bahan ini mempunyai sifat tidak mudah terurai di alam, tetapi memerlukan waktu yang lama untuk terurai. Di antara sisa-sisa ini kami menemukan karton atau sejenis kertas.

- Dapat didaur ulang: residu ini dapat melalui proses yang memungkinkannya digunakan kembali. Di antaranya kita temukan kaca, kain, jenis plastik atau kertas tertentu. Selain penggolongan tersebut, sampah juga dapat dikelompokkan menjadi organik dan anorganik:
- Organik: limbah biodegradable akan dikelompokkan dalam klasifikasi ini.
- Non-organik atau anorganik: karena sifat kimianya, bahanbahan ini mengalami disintegrasi alami yang sangat lambat. Sebagian besar sampah ini dapat didaur ulang dengan metode yang rumit seperti kaleng, beberapa jenis plastik, kaca atau karet. Dalam kasus lain, daur ulang atau transformasinya tidak mungkin dilakukan, seperti halnya baterai, yang berbahaya dan menimbulkan polusi.

D. Di mana Limbah Padat Dibuang dan Didaur Ulang?

Setelah dikumpulkan, tujuan pembuangan limbah padat dapat meliputi:

- Pembuangan di tempat pembuangan sampah
- Sanitary landfill merupakan salah satu cara pembuangan sampah padat dengan cara diendapkan di atas tanah, disebar dan dipadatkan. Hal ini paling sering dilakukan pada limbah berbahaya.
- Pembakaran. Insinerator sampah adalah suatu sistem untuk mengolah sampah yang terdiri dari pembakaran sampah tersebut pada suhu tinggi. Proses ini berhasil mengurangi volumenya hingga 90% dan beratnya hingga 75%. Kerugian dari sistem ini adalah dihasilkannya abu, residu lembam, dan gas yang dapat menjadi racun bagi manusia dan ekosistem.
- Pemisahan dan penggunaan. Sistem ini mengklasifikasikan limbah padat berdasarkan tempat produksinya untuk kemudian dimanfaatkan kembali. Untuk memulihkannya, proses, teknik, dan operasi diterapkan yang berhasil mengembalikan bahan-

bahan ini kemungkinan untuk digunakan kembali dalam fungsi aslinya atau serupa.

Konsekuensi dari pengelolaan limbah padat yang buruk. Pengelolaan limbah padat yang buruk dapat menimbulkan berbagai konsekuensi terhadap ekosistem dunia. Ini termasuk yang dihuni oleh manusia. Beberapa dampak paling serius dari pengelolaan limbah padat yang buruk meliputi:

- Risiko kesehatan: berupa penyakit, baik langsung maupun tidak langsung. Banyak dari efek ini sedang diselidiki seiring dengan semakin banyaknya kita mengetahui asal mula berbagai masalah kesehatan bawaan dan didapat. Dampak buruk terhadap lingkungan: seperti rusaknya estetika kota dan bentang alam, yang dapat dianggap sebagai bentuk transformasi alam yang dilakukan manusia.
- Pencemaran air: sebagai air lindi atau dibuang ke sungai dan sungai. Hal ini menyebabkan eutrofikasi yang berdampak buruk terhadap flora dan fauna.
- Pencemaran tanah: seperti terbengkalainya tanah atau tumpahan di tanah. Hal ini dapat memengaruhi habitat alami berbagai tumbuhan dan hewan, serta ruang pertanian dan tempat tinggal manusia.
- Polusi udara: emisi asap dan gas menyebabkan penurunan kualitas udara yang kita hirup.

Karena sampah kita sendiri merupakan faktor yang berkontribusi besar terhadap jumlah limbah padat yang dihasilkan di seluruh dunia, akan sangat membantu jika kita mengetahui lebih banyak tentang dampaknya terhadap ekosistem. Pengelolaan sampah perkotaan dilakukan dalam beberapa tahap. Tahap pertama terjadi sebelum pengumpulan (termasuk pemisahan dan penyimpanan), kemudian pengumpulan itu sendiri, dilanjutkan dengan pengangkutan dari tempat pengumpulan dan, terakhir, eliminasi atau transformasi.

Bagaimana cara mengelola sampah secara efisien

Sampah organik mewakili sebagian besar sampah yang dihasilkan di rumah, industri, dan kegiatan pertanian. Akumulasinya di tempat pembuangan sampah atau insinerator menyebabkan kontaminasi tanah, serta emisi gas rumah kaca. Namun, pengelolaan yang efisien atas bahan organik ini dan penggunaan kembali berkontribusi dalam mendorong keberlanjutan planet ini dengan mendorong ekonomi sirkular. Temukan apa itu, jenisnya, dan bagaimana mengubahnya menjadi sumber daya berharga untuk menghentikan perubahan iklim.

E. Apa itu Sampah Organik?

Sampah organik adalah sampah asal tumbuhan atau hewan yang dapat terurai secara hayati yang dapat terurai di alam tanpa banyak kesulitan dan diubah menjadi bahan organik jenis lain. Tahukah Anda bahwa Anda bisa membuat pupuk organik kelas satu di rumah Anda sendiri? Anda hanya membutuhkan wadah, tempat terlindung dari sinar matahari, dan sampah organik yang dihasilkan sehari-hari, seperti sisa buah dan sayur, ampas kopi, atau daun kering. Setelah itu, Anda hanya perlu membiarkan mikroorganisme bekerja, dan dalam beberapa bulan, Anda akan mendapatkan kompos berwarna gelap dan tanah yang bagus untuk menyuburkan pot rumah. Selama berabad-abad, para petani menggunakan sisasisa organik ini untuk menjaga kesuburan ladang mereka. Praktik ini didasarkan pada meniru proses alami penguraian dan daur ulang bahan organik di dalam tanah, di mana unsur hara dilepaskan dan diserap kembali oleh tanaman. Saat ini, dampak limbah terhadap iklim lebih penting dari yang kita sadari. Sektor limbah merupakan salah satu dari tiga penghasil emisi metana terbesar, menyumbang sekitar 20% emisi buatan manusia di seluruh dunia. Mengurangi polusi metana secara cepat dan signifikan adalah salah satu peluang terpenting yang kita miliki untuk memperlambat laju pemanasan global selama dua dekade mendatang. Untungnya, solusi hemat biaya kini tersedia untuk mengurangi emisi dari sektor sampah, khususnya sampah organik, seperti konsumsi yang bertanggung jawab atau daur ulang untuk pengolahan dan transformasi menjadi bahan yang dapat terbiodegradasi.

F. Jenis Sampah Organik

Dalam pemilahan sampah untuk dimanfaatkan, ada dua kelompok besar yang berbeda baik dalam karakteristik dan komposisi maupun dalam pembuangan atau transformasinya. Yang paling umum disebut Fraksi Organik Sampah Kota (OFMSW), yang berasal dari makanan dan barang-barang rumah tangga dan komersial lainnya. Kelompok kedua disebut sampah hijau, yang dihasilkan di kawasan hijau dan tempat-tempat yang memiliki vegetasi, baik milik pemerintah maupun swasta. Pada gilirannya klasifikasi sampah organik ini dibagi menjadi beberapa jenis sebagai berikut:

- Sisa makanan: Termasuk kulit telur, buah, biji-bijian, minyak, tulang, dan tumbuhan. Selain itu juga terdiri dari sisa-sisa penyiapan pangan atau penanganan dan pengolahan pangan, sisa pangan, pangan yang kondisinya tidak baik, dan sisa pangan yang belum dipasarkan atau dikonsumsi (terpisah dari wadahnya).
- Sisa tanaman: Merupakan sisa pemangkasan tanaman (daun atau dahan). Limbah ini memerlukan pengelolaan khusus karena masalah logistik pengumpulan, pengolahan, dan waktu timbulan (frekuensi dan musiman).
- Sisa-sisa bahan dan alam: Termasuk kapas dan pakaian yang terbuat dari bahan ini dan kain kasa, pakaian yang dibuat dari kulit binatang, dan sisa-sisa binatang yang mati.
- Limbah kertas: Ini termasuk kertas dan karton, serbet, dan handuk kertas.

G. Bagaimana Sampah Organik Memengaruhi Lingkungan?

Lebih dari separuh populasi tinggal di perkotaan, yang kini bertanggung jawab atas 70% sampah global dan hampir 80% energi

global dikonsumsi di perkotaan. Pengelolaan sampah organik yang buruk, di satu sisi, menghambat penggunaannya (seperti dalam kasus bahan bakar terbarukan) dan, di sisi lain, dapat berdampak pada lingkungan dalam beberapa cara:

- Pembentukan gas rumah kaca: Ketika sampah organik terakumulasi dan terurai di tempat pembuangan sampah atau dalam kondisi anaerobik, sampah tersebut menghasilkan metana, gas rumah kaca yang, karena strukturnya, memerangkap lebih banyak panas per molekul di atmosfer dibandingkan karbon dioksida. Metana telah bertanggung jawab atas sekitar 30% pemanasan global sejak era pra-industri.
- Kontaminasi air dan tanah: Jika sampah organik tidak dikelola dengan baik, sampah tersebut dapat tersaring ke badan air, mencemari sungai, danau, dan akuifer bawah tanah. Selain itu, akumulasinya yang tidak terkendali di dalam tanah merusak unsur hara alami dan berdampak negatif terhadap kualitas lahan pertanian.
- Timbulnya bau tak sedap dan serangan hama: Sampah organik yang membusuk menghasilkan bau tidak sedap yang kemudian menarik serangan serangga dan hewan seperti tikus, mencit, atau lebah. Hal ini dapat menimbulkan kuman di area tersebut dan menjadi fokus penyakit menular.
- Hilangnya sumber daya: Sampah organik mengandung nutrisi berharga yang dapat digunakan sebagai pupuk alami atau sebagai dasar untuk menghasilkan sumber energi berkelanjutan. Jika tidak digunakan dengan benar, kesempatan untuk memulihkan dan menggunakan kembali sumber daya tersebut akan hilang.
- Dampak terhadap keanekaragaman hayati: Pengelolaan sampah organik yang buruk mempunyai konsekuensi negatif terhadap keanekaragaman hayati. Misalnya, pencemaran air berdampak langsung pada ekosistem perairan yang menyebabkan hilangnya beberapa spesies endemik.

BABX PELUANG SAMPAH ORGANIK

A. Daur Ulang Sampah Organik

Daur ulang sampah organik menawarkan peluang bagus untuk memanfaatkan produk sampingan ini sebaik-baiknya dan mengubahnya menjadi sumber daya yang berguna. Ada dua metode utama pengolahan sampah organik: pengomposan dan pencernaan anaerobik. Pengomposan adalah proses anaerobik yang melibatkan penguraian sampah organik dengan adanya oksigen. Mikroorganisme (jamur dan bakteri) menguraikan bahan organik dan mengubahnya menjadi kompos, bahan kaya nutrisi yang digunakan sebagai pupuk organik. Pencernaan anaerobik, atau bio metanisasi, adalah proses dimana sampah organik terurai tanpa adanya oksigen. Melalui aksi mikroorganisme, limbah diubah menjadi biogas, campuran metana, CO2, dan gas lainnya. Gas ini dapat digunakan untuk menghasilkan panas dan listrik. Transformasi sampah menjadi gas rendah karbon mengurangi volume sampah yang disimpan di tempat pembuangan sampah, sehingga menimbulkan dampak positif terhadap lingkungan, yang merupakan bagian dari proses ekonomi sirkular dan berperan penting dalam dekarbonisasi. Daur ulang sampah organik menawarkan peluang bagus untuk memanfaatkan produk sampingan ini sebaik-baiknya dan mengubahnya menjadi sumber daya yang berguna. Ada dua metode utama pengolahan sampah organik: pengomposan dan pencernaan anaerobic.

Pengomposan adalah proses anaerobik yang melibatkan penguraian sampah organik dengan adanya oksigen. Mikroorganisme (jamur dan bakteri) menguraikan bahan organik dan mengubahnya menjadi kompos, bahan kaya nutrisi yang digunakan sebagai pupuk organik.

Pencernaan anaerobik, atau bio metanisasi, adalah proses dimana sampah organik terurai tanpa adanya oksigen. Melalui aksi mikroorganisme, limbah diubah menjadi biogas, campuran metana, CO2, dan gas lainnya. Gas ini dapat digunakan untuk menghasilkan panas dan listrik. Transformasi sampah menjadi gas rendah karbon mengurangi volume sampah yang disimpan di tempat pembuangan sampah, sehingga menimbulkan dampak positif terhadap lingkungan, yang merupakan bagian dari proses ekonomi sirkular dan berperan penting dalam dekarbonisasi.

BAR XI PELUANG PASAR: PRODUK DARI RECYCLING SAMPAH

Sampah merupakan permasalahan yang serius pada sebagian besar negara di dunia. Permasalahan sampah akan menjadi efek domino yang menciptakan permasalahan lain yang menyangkut kebersihan, kesehatan, dan lingkungan. Setiap negara memiliki cara masing-masing dalam mengatasi permasalahan sampah di negara mereka. Permasalahan sampah ini membutuhkan partisipasi di setiap masyarakat dalam berbagai sektor sehingga dapat tercipta sebuah solusi yang tepat bagi masyarakat dan lingkungan. Sebagian dari kita masih menilai bahwa sampah tidak memiliki nilai, oleh karena itu tidak banyak orang yang mau mengelola sampahnya apalagi menjadikan pengelolaan sampah sebagai bisnis. Namun hal tersebut tidaklah tepat. Melalui proses recycling (daur ulang), sampah akan memiliki nilai tambah dan berguna tidak hanya mengurangi sampah di lingkungan namun juga akan dijadikan bahan baku produk baru berbahan plastik yang lebih memiliki nilai jual. Menteri Perindustrian Agus Gumiwang Kartasasmita menyebut industri daur ulang plastik dapat menghasilkan berbagai produk bernilai tambah dengan potensi ekonomi mencapai lebih dari Rp10 triliun per tahun dan potensi ekspor produk turunan daur ulang plastik US\$141,9 juta.

Kali ini kita akan membahas tentang peluang sampah daur ulang untuk memahami secara rinci besarnya potensi yang bisa diciptakan dari adanya kegiatan daur ulang sampah. Mari kita mulai dari dasar

A. Pengertian dan Manfaat Daur Ulang Sampah

Daur ulang adalah proses pengolahan sampah dengan mengumpulkan, memilah jenis sampah sesuai kategorinya, dan menetapkan langkah untuk menjadikan sampah lebih memiliki nilai jual. Pada dasarnya daur ulang menjadikan suatu bahan bekas menjadikan produk baru yang lebih memiliki nilai. Berbagai macam material dapat didaur ulang, baik dengan manfaat seperti semula atau dengan manfaat dari produk sebelumnya. Proses daur ulang sangat bermanfaat di sisi ekonomi dan lingkungan, sebab bukan hanya meningkatkan nilainya namun juga dapat mengurangi sampah yang menyebar di daratan dan lingkungan. Dengan semakin banyak sampah yang dapat didaur ulang maka lingkungan akan semakin bersih, kesehatan meningkatkan, dan ekonomi masyarakat yang memanfaatkannya akan meningkat.

B. Material yang Dapat Didaur Ulang

Pada dasarnya, berbagai macam material dapat didaur ulang. Material tersebut memiliki nilai jual tersendiri dalam proses daur ulang. Material yang dapat didaur ulang adalah material anorganik atau material yang cukup sulit didegradasi oleh alam. Penggolongan sampah berdasarkan material ini juga berguna untuk memudahkan dalam proses daur ulang, mulai dari teknik yang akan digunakan hingga produk yang ingin dihasilkan. Adapun material tersebut adalah sebagai berikut:

Sampah Plastik

Sampah plastik merupakan hal yang sering dijumpai dalam proses daur ulang sampah, sebab plastik merupakan sebuah material yang fleksibel dan dapat didaur ulang kembali menjadi produk baru. Sampah yang dapat didaur ulang adalah sampah yang berjenis, PET (*Polyethylene Terephthalate*), HDPE (*High Density Polyethylene*), PVC (*polivinil klorida*), LDPE (*Low Density Polyethylene*), PP (polipropilena), PS (polistirena).

Barang Elektronik

Barang elektronik juga dapat didaur ulang, namun prosesnya sedikit lebih rumit. Sebab harus melewati proses pembongkaran dan penggolongan material yang dapat didaur ulang dan tidak. Namun tujuan utama dari proses daur ulang, yaitu kelestarian lingkungan, sebab barang elektronik terlalu beragam dari masing-masing perusahan produsen barang elektronik sehingga tidak ada standar ekonomi yang menjadi acuan tentang besarnya potensi daur ulang produk elektronik.

Logam

Baja dan besi merupakan bahan yang paling banyak didaur ulang sebab dapat dipisahkan dengan lebih mudah menggunakan magnet, penyortir akan meningkatkan nilai material logam dengan cara memisahkan jenis logam bersih dengan material yang kotor. Logam yang telah disortir akan dihancurkan menjadi bentuk yang lebih kecil, setelah itu melalui proses peleburan dengan titik leleh yang telah disesuaikan dengan jenis logamnya.

Kertas

Kita mungkin beranggapan bahwa kertas tidak perlu melewati proses daur ulang sebab termasuk barang ramah lingkungan. Namun kertas yang melalui proses daur ulang akan digunakan menjadi kertas yang baru dengan tujuan tertentu. Hal ini akan mengurangi pohon yang ditebang untuk bahan baku kertas yang baru. Sehingga kertas daur ulang mampu menyelamatkan pohon lebih banyak ditebang guna memenuhi kebutuhan kertas. Tentu saja kertas daur ulang memiliki nilai jual yang tak kalah dengan kertas dari pulp pohon.

Kaca

Kaca merupakan hal sering kita temui di kehidupan kita. Namun, faktanya kaca tidak dapat diurai secara alami oleh alam. Oleh karena itu, dibutuhkan langkah daur ulang untuk memanfaatkan sampah kaca menjadi produk baru yang lebih memiliki nilai jual dan nilai manfaat.

Limbah Bahan Berbahaya dan Beracun (Limbah B3) Terdapat banyak limbah yang dihasilkan dari proses produksi, baik skala industri rumah tangga maupun industri besar. Apabila limbah ini tidak ditangani secara baik maka akan menimbulkan banyak permasalahan, terutama masalah lingkungan. Hasil dari proses daur ulang limbah tersebut bukanlah sebuah produksi yang siap dikonsumsi atau digunakan, namun lebih berfokus pada penanganan limbah yang lebih ramah dan baik terhadap lingkungan.

C. Potensi Produk Daur Ulang Sampah Plastik

Sampah plastik adalah material yang paling fleksibel dalam proses daur ulang sampah. Banyak produk turunan yang bisa dihasilkan dari proses daur ulang sampah plastik. Berdasarkan studi yang dilakukan oleh Sustainable Waste Indonesia (SWI) dan Indonesian Plastic Recyclers (IPR) pada Oktober 2019 sampai Februari 2020 menyebutkan masyarakat di perkotaan Pulau Jawa menghasilkan sekitar 189.000 ton/bulan atau 6.300 ton/hari sampah plastik, dan hanya sekitar 11,83 persen atau kurang lebih 22.000 ton/bulan yang dikumpulkan kemudian didaur ulang. Ini merupakan kekuatan besar bagi siapapun yang ingin menjadikan bisnis daur ulang plastik, sebab keberlimpahan bahan baku yang dapat dikumpulkan. Indra Novint Noviansyah, Pria 26 tahun ini mengatakan, Indra sudah mendirikan pabrik biji plastik sejak 2008 di Pontianak, Kalimantan Barat. Kapasitas produksi pabriknya mencapai 10 ton per bulan. Meski tak menyebutkan omzet, Indra bilang, margin dari usaha berkisar 40%-60%. Selain itu, cerita lain juga menyebutkan Kapasitas produksi bijih plastik milik Saut sekarang mencapai 150 ton per bulan. Harga jualnya beragam, mulai Rp 10.000–Rp 15.000 per kg. Saut mengatakan, dari usaha ini ia dapat mengantongi omzet sekitar Rp 2 miliar per bulan. "Laba bersih setelah bayar pajak sekitar 5%," ujarnya. Selain itu, berdasarkan data yang dihimpun dari Kata Data, sampah plastik tidak hanya dapat didaur ulang menjadi biji plastik namun dapat berguna untuk menciptakan produk seperti diatas. Sangat besar potensi yang dapat digali dari pengolahan sampah plastik ini bukan? Apakah Anda tertarik untuk membangun bisnis daur ulang sampah plastik?

D. Potensi Produk Daur Ulang Sampah Elektronik

Sampah elektronik memiliki penanganan tersendiri, sebab terdapat banyak jenis elektronik dan komponen didalamnya. Anda perlu memahami komponen mana yang dapat didaur ulang atau dijual kembali. Material yang dapat didaur ulang dari barang elektronik misalnya adalah logam yang terdapat pada barang elektronik tersebut (emas, besi, baja, silikon,dan lain-lain) ataupun bagian-bagian yang masih dapat dipakai (microchip, processor, kabel, resistor, plastik, dan lain-lain). Hingga saat ini belum ada standar pasti yang menjelaskan seberapa besar potensi daur ulang sampah elektronik sebab masih terlalu beragamnya elektronik di dunia beserta komponen yang digunakan di dalamnya. Namun jika dikelola dengan baik dan profesional diperkirakan akan menghasilkan keuntungan yang besar. Hasil riset dari The Conversation pada tahun 2020, mengungkapkan perkiraan limbah elektronik pada tahun 2021 di Indonesia mencapai sekitar 2 juta ton, yang merupakan sampah elektronik terbanyak di Asia Tenggara. Jika bisa dimanfaatkan dengan didaur ulang, maka pada 2040, potensi ekonomi limbah elektronik di Indonesia diperkirakan mencapai US\$ 14 miliar atau setara dengan Rp 200 triliun. Tentu saja ini adalah potensi bisnis yang menarik bukan? Selain itu sangat minim kompetitor. Yang harus Anda lakukan apabila tertarik mulai membangun bisnis daur ulang elektronik adalah menemukan ilmu tentang dasar material yang dapat didaur ulang serta bekerjasama dengan pabrik peleburan di seluruh Indonesia.

E. Potensi Produk Daur Ulang Sampah Logam

Sampah logam termasuk material yang paling banyak didaur ulang. Logam dan baja yang didaur ulang didapat dari berbagai sumber, mulai dari limbah pabrik hingga daur ulang elektronik. Logam dari benda terkecil seperti komponen besi pada handphone hingga kapal atau pesawat dapat didaur ulang. Besi dan baja yang didapat dari proses daur ulang memiliki kualitas yang sama dengan logam yang berasal dari hasil ekstraksi bijih logam dari alam. Berdasarkan hasil riset dari Nana Jedy Darpawanto, mengemukakan komposisi sampah logam di Kota Semarang adalah sebagai berikut:

Jenis Sampah	Timbulan SampahTiap Jenis Sampah (Kg/hari)	Persentase (%)
Tembaga	940,49	1,29
Kuningan	428,17	0,59
Besi	40.848,74	56,08
Baja Stainless	5.247,73	7,20
Kaleng	8.769,33	12,04
Aluminium Kaleng	7.216,10	9,91
Aluminium Panci	2.758,19	3,79
Seng	6.634,97	9,11

Sumber: Nana Jedy Darpawanto | Scribd.com

Hal ini menunjukan bahwa terdapat banyak sumber daya berupa bahan baku yang dapat dimanfaatkan dalam bisnis daur ulang sampah. Penjualan logam dapat dilakukan setelah melalui proses penyortiran sesuai dengan jenis logamnya, dan dijual kepada pabrik peleburan. Pabrik peleburan akan menghancurkan logam tersebut menjadi bentuk yang lebih kecil, setelah itu melalui proses peleburan dengan titik leleh yang telah disesuaikan dengan jenis logamnya, lalu dicetak sesuai dengan kebutuhan industri. Pada dasarnya harga jual logam sangat bervariasi tergantung jenis logamnya. Harga tersebut juga fluktuatif yang didasari oleh harga logam dunia. Namun jika dilihat dari tingkat produksi sampah logam tersebut, apabila berhasil dimanfaatkan dan dimaksimalkan akan dapat menghasilkan keuntungan yang besar loh.

F. Potensi Produk Daur Ulang Sampah Kertas

Kertas merupakan produk yang paling sering di daur ulang. Hampir semua jenis kertas dapat didaur ulang, mulai dari kertas printer, koran, majalah, berbagai karton, hingga kertas kemasan. Hal tersebut dikarenakan proses yang mudah dalam memproduksi

kertas daur ulang, diperkirakan 200 juta ton kertas dan karton diproduksi setiap tahun dari kertas daur ulang. Menurut Good News From Indonesia (GNFI), konsumsi kertas di Indonesia per kapita adalah sebesar 27 kg/orang/tahun dengan jumlah sampah kertas di Indonesia per hari mencapai 17 ribu ton. Dengan tingginya konsumsi kertas di Indonesia ini, harus dibarengi dengan kemampuan kita dalam mendaur ulang sampah. Sebab kertas yang diproduksi membutuhkan banyak energi dan air. Sebagai contoh, untuk memproduksi satu kilogram kertas dibutuhkan air sebanyak 324 liter. Dengan meningkatnya kemampuan Indonesia dalam mendaur ulang sampah kertas maka akan menyelamatkan lebih banyak pohon yang digunakan sebagai bahan baku kertas, menurunkan penggunaan air dan energi yang berlebihan dalam proses produksi kertas. Kertas dapat didaur ulang sehingga maksimal tujuh kali, setiap proses daur ulang maka kekuatan kertas akan berkurang. Oleh karena itu, kertas daur ulang memiliki banyak jenis tergantung kebutuhan. Kertas bergelombang (Corrugate Paper) merupakan salah satu jenis kertas yang digunakan sebagai kardus dan kemasan yang sering digunakan saat kita berbelanja online. Ada pula kertas craft yang sering digunakan untuk paper bag dan kertas surat. Selain itu terdapat pula kertas koran dan kertas buram lainnya yang dijadikan media cetak. Serta terdapat banyak jenis kertas daur ulang yang dijadikan media seni. Serta masih banyak lagi kegunaan kertas daur ulang. Dengan proses produksi fleksibel inilah yang akan membantu Anda menghasilkan sebuah produk sesuai dengan kebutuhan dengan bahan baku yang sama, yaitu kertas. Anda dapat menghasilkan keuntungan dan berperan besar terhadap pelestarian alam dan hutan.

G. Potensi Produk Daur Ulang Sampah Kaca

Kaca memiliki nilai ekonomis yang sangat tinggi sebab memiliki karakteristik yang lebih kuat dan memiliki durabilitas yang tinggi jika digunakan sebagai produk tertentu. Produk daur ulang kaca memiliki kualitas yang sama dengan kaca pada umumnya. Wadah kaca untuk makanan dan minuman 100% dapat didaur ulang, tapi tidak dengan jenis kaca lainnya. Jenis kaca lainnya, seperti jendela, peralatan oven, pyrex, kristal, dan lain-lain, diproduksi melalui proses yang berbeda. Kaca dapat didaur ulang menjadi produk apapun dengan bentuk apapun, sebab karakter yang elastis selama proses pemanasan pada suhu tertentu. Anda dapat membuat produk mulai dari kemasan makanan dan minuman, gelas, piring, guci, jendela, serta produk seni lainnya yang lebih memiliki nilai jual dan nilai manfaat yang lebih tinggi saat ketika hanya menjadi sampah kaca. Kaca memiliki berbagai jenis mulai dari kaca bening, kaca rayben yang memiliki karakteristik sedikit gelap yang berguna mengurangi intensitas cahaya matahari, dan kaca tempered (tempered glass) yang memiliki kekuatan yang sangat tinggi mencapai 3 hingga 5 kali lipat dari kekuatan kaca biasa.

Terdapat pula kaca yang digunakan sebagai hiasan pada ornamen rumah hingga tempat ibadah seperti kaca patri, kaca inlay, dan kaca grafir. Harga ketiga kaca ini ditentukan oleh kemahiran perajin kaca dalam membuat bentuk yang estetik.

H. Potensi Daur Ulang Limbah Berbahaya dan Beracun

Dari potensi produk hasil proses daur ulang yang telah dijelaskan sebelumnya, potensi daur ulang limbah berbahaya dan beracun inilah yang memiliki perbedaan dan karakteristik unik. Hal ini dikarenakan hasil akhir dari proses daur ulang bukanlah sebuah produk yang dapat dikonsumsi atau digunakan kembali melainkan jasa, yaitu jasa penanganan limbah yang ditujukan bagi korporasi penghasil limbah. Sebagai contoh, Anda menawarkan jasa pengolahan limbah air kepada para perajin batik dan industri batik untuk memurnikan kembali limbah cair berupa pewarna sebelum dibuang ke lingkungan. Maka anda akan mendapatkan insentif atau komisi atas proses pemurnian air menjadi lebih ramah lingkungan tersebut dari para perajin batik. Terdapat banyak sektor industri yang menghasilkan limbah, terutama pada sektor pertambangan, perminyakan, dan kesehatan yang dapat dijadikan klien dalam mengelola limbah yang mereka hasilkan agar lebih aman dan lebih ramah lingkungan.

BAB XII PUPUK ORGANIK SEBAGAI SOLUSI **MASALAH SAMPAH**

Sampah hingga saat ini menjadi masalah besar yang belum dapat terselesaikan dengan tuntas. Sampah terbagi atas sampah anorganik atau sampah yang tidak dapat diuraikan secara alami serta sampah organik atau sampah yang dapat diuraikan secara alami. Salah satu pemanfaatan sampah organik yang tepat adalah mengolahnya menjadi pupuk kompos. Pupuk kompos adalah pupuk organik yang dibuat dengan cara menguraikan bahan berupa tumbuhan atau hewan yang merupakan hasil samping dari aktivitas manusia. Cara pembuatan pupuk kompos sangat mudah. Bahan yang dibutuhkan berupa sisa sayuran, sampah kering, tanah, kotoran kambing atau sapi dan air cucian beras.

Pertama, beri lapisan awal pada dasar ember dengan tanah, kemudian pada lapisan kedua beri sisa sayuran, lapisan ketiga kotoran kambing, kemudian disiram dengan air leri. Bahan-bahan tersebut kemudian ditutup selama 4 minggu. Setiap seminggu sekali kompos harus diaduk untuk sirkulasi oksigen. Setelah kompos jadi, pupuk kompos dapat digunakan. Unsur hara yang terkandung dari pupuk kompos ini adalah Nitrogen, Phospor dan Kalium yang dapat bermanfaat untuk menyuburkan tanaman. Pembuatan pupuk kompos yang sangat mudah dapat diterapkan secara mudah di rumah oleh ibu rumah tangga. Harapan kedepannya, akan ada sistem terintegrasi dimana pembuatan pupuk kompos dapat dibuat dengan skala besar sehingga pupuk kompos tersebut tidak hanya dapat digunakan sendiri melainkan dapat dijual.

Teknologi Pertanian ramah lingkungan adalah teknologi yang tidak merusak lingkungan dan tetap menghasilkan produktivitas tinggi yang mengedepankan keamanan pangan bagi masyarakat. Emisi Gas Rumah Kaca yang menyebabkan terjadinya pemanasan global dan berdampak langsung dan tidak langsung terhadap sistem pertanian. Pemanasan global akan menyebabkan perubahan iklim, perubahan pola curah hujan, banjir dan kekeringan bergeser polanya yang pada gilirannya merugikan usahatani. Secara teoritis pemanasan global terjadi akibat terakumulasinya emisi Gas Rumah Kaca (GRK) seperti karbondioksida (CO2) dan metana (NH4) di langit yang dihasilkan oleh berbagai aktivitas manusia termasuk aktivitas pertanian sehingga Gas Rumah Kaca (GRK) yang naik ke langit terhalang dan terpantul kembali ke bumi menyebabkan panas yang dirasakan seluruh makhluk di permukaan bumi semakin tinggi. Untuk menghindari tersebut maka teknologi yang mengurangi produksi CO2 dan NH4 harus terus dikembangkan oleh seluruh petani.

Beberapa teknologi yang sudah terbukti mengurangi emisi Gas Rumah Kaca (GRK) adalah dengan pemanfaatan limbah kotoran ternak sapi menjadi pupuk organik. Penggunaan pupuk kompos/organik pada lahan pertanian mampu menjaga kesuburan tanah dan bermanfaat bagi peningkatan produksi pertanian baik kualitas maupun kuantitas, mengurangi pencemaran lingkungan, dan meningkatkan kualitas lahan secara berkelanjutan.

A. Keunggulan Pemanfaatan Limbah Kompos/Organik

- Hasil panen lebih tahan disimpan, lebih berat, lebih segar, dan lebih enak.
- Mengandung hormon dan vitamin bagi tanaman
- Menghemat biaya kelola limbah,
- Mengurangi volume/ukuran limbah,
- Memiliki nilai jual yang lebih tinggi dari pada bahan asalnya
- Mengurangi polusi udara
- Tahapan dalam Pembuatan Limbah Kotoran Ternak Sapi Menjadi Pupuk Kompos/Organik

Bahan

- Kotoran ternak sapi 80–83 %
- Serbuk gergaji (sekam, jerami padi dan lain-lain) 5%
- Stardec 0.25%
- Abu sekam 10 %
- Kapur 2 %

Kotoran sapi (feses dan urin) dikumpulkan dan ditiriskan selama satu minggu untuk mengurangi kadar airnya (± 60%). Kotoran sapi yang sudah ditiriskan tersebut kemudian dipindahkan ke petak pertama. Di tempat tersebut dilakukan pencampuran bahan-bahan organik seperti ampas gergaji, abu sekam, kapur dan dekomposer. Sebelum bahan-bahan organik dan dekomposer dicampurkan pada kotoran sapi, sebaiknya keempat bahan organik tersebut (ampas gergaji, abu sekam, kapur dan stardec) dicampur terlebih dahulu, agar merata, dan dicampur merata pada kotoran sapi yang telah disiapkan pada tempat pertama. Untuk setiap 1 ton (1000 kg) kotoran ternak bahan organik yang dicampurkan adalah 50 kg serbuk gergaji, 100 kg abu sekam, 20 kg kapur dan 2,5 kg stardec. Setelah seminggu dilakukan pembalikan dan dipindahkan ke lokasi kedua, dibiarkan selama seminggu. Setelah seminggu dipindahkan ke lokasi ke 3 dan seterusnya sampai berada di petak keempat dan diperam selama satu minggu. Pada minggu keempat kompos sudah jadi dan untuk mendapatkan bentuk yang seragam dilakukan penyaringan atau diayak untuk memisahkannya dari kerikil atau potongan kayu dan lainnya. Selanjutnya kompos siap untuk diaplikasikan pada lahan atau tanaman.

Ciri Kompos Matang

- Berwarna coklat kehitam-hitaman.
- Tidak berbau busuk.
- Tekstur kompos, sedikit berserat halus.
- Kandungan air apabila dikepal kuat tidak menjadi bergumpal keras ketika kepala nya dibuka juga tidak terurai terlepas seperti pasir kering.

- Mengandung hara yang tersedia bagi tanaman;
- Kemampuan mengikat air tinggi.

Pertanian adalah salah satu sektor penting dalam perekonomian global, yang tidak hanya menyediakan makanan untuk populasi dunia tetapi juga memiliki dampak besar terhadap lingkungan. Dalam upaya menuju pertanian yang lebih berkelanjutan, pengelolaan sampah organik menjadi salah satu aspek krusial yang perlu diperhatikan.

Sampah organik merupakan salah satu masalah lingkungan yang semakin mendesak untuk diselesaikan di seluruh dunia. Di sektor pertanian, pengelolaan sampah organik menjadi kunci untuk mencapai pertanian yang berkelanjutan. Sampah organik dalam dunia pertanian melibatkan material seperti sisa tanaman, pupuk kompos, dan bahan organik lainnya yang dapat diubah menjadi sumber daya yang berharga jika dikelola dengan baik. Artikel Mertani kali ini akan menjelaskan pentingnya pengelolaan sampah organik dalam dunia pertanian serta beberapa strategi yang dapat diterapkan.

B. Mengapa Sampah Organik Perlu Dikelola dengan Baik?

Sampah organik adalah bahan-bahan yang mudah terurai yang berasal dari makhluk hidup, seperti sisa makanan, daun, ranting, dan kotoran hewan. Di dunia pertanian, sampah organik sangat umum ditemukan dalam bentuk jerami, sisa tanaman, dan pupuk kandang. Meskipun tampak sepele, pengelolaan sampah organik sangat penting karena alasan berikut:

• Meningkatkan Kesuburan Tanah Sampah organik yang diurai oleh mikroorganisme di dalam tanah menjadi humus, yang merupakan sumber nutrisi penting bagi tanaman. Dengan mengintegrasikan sampah organik ke dalam tanah, petani dapat meningkatkan kesuburan tanah mereka secara alami, mengurangi ketergantungan pada pupuk kimia, dan menghasilkan hasil pertanian yang lebih sehat.

Mengurangi Pencemaran Lingkungan

Pembakaran sampah organik atau pembuangan tidak terkendali dapat menghasilkan gas rumah kaca berbahaya seperti metana. Metana adalah salah satu penyebab utama perubahan iklim. Dengan mengelola sampah organik secara efektif, kita dapat mengurangi emisi metana dan dampak negatifnya terhadap lingkungan.

Membantu Penghematan Energi

Dalam proses pengomposan, sampah organik menghasilkan panas. Panas ini dapat digunakan untuk menghasilkan energi atau bahkan listrik melalui teknologi biogas. Dengan memanfaatkan sampah organik untuk menghasilkan energi, pertanian dapat menjadi lebih mandiri secara energi dan mengurangi ketergantungan pada sumber energi fosil.

Siklus Nutrisi yang Lebih Seimbang

Sampah organik dari sisa tanaman dan ternak dapat diolah menjadi pupuk kompos yang kaya akan nutrisi. Dengan memanfaatkan sumber daya ini, petani dapat memberikan nutrisi yang seimbang kepada tanaman mereka tanpa tergantung sepenuhnya pada pupuk kimia yang dapat merusak tanah dan lingkungan sekitar.

Pencegahan Erosi Tanah

Menyisakan sisa tanaman di lahan pertanian setelah panen dapat membantu melindungi tanah dari erosi. Tanaman yang dibiarkan membusuk di tempat akan membantu menjaga kelembaban tanah, meningkatkan struktur tanah, dan mengurangi resiko erosi yang dapat merusak lahan pertanian.

C. Solusi Pengelolaan Sampah Organik di Pertanian

Untuk mengatasi masalah pengelolaan sampah organik di pertanian, ada beberapa solusi yang dapat diterapkan:

Pengomposan

Pengomposan adalah proses penguraian sampah organik oleh mikroorganisme menjadi humus yang kaya nutrisi. Petani dapat mengumpulkan sisa tanaman, jerami, dan pupuk kandang untuk menghasilkan kompos yang dapat digunakan sebagai pupuk alami. Pengomposan juga membantu mengurangi volume sampah organik yang masuk ke tempat pembuangan akhir.

Produksi Biogas

Teknologi biogas memungkinkan petani untuk menghasilkan biogas dari sampah organik seperti kotoran hewan. Biogas dapat digunakan sebagai sumber energi untuk memasak, penerangan, dan bahkan menggerakkan mesin-mesin pertanian. Hal ini tidak hanya mengurangi limbah organik tetapi juga membantu mengurangi penggunaan bahan bakar fosil.

· Pertanian Organik

Pertanian organik mendorong penggunaan pupuk alami dan teknik pengelolaan tanah yang berkelanjutan. Dengan meminimalkan penggunaan pupuk kimia dan pestisida sintetis, pertanian organik membantu menjaga kesuburan tanah dan mengurangi dampak negatif pertanian konvensional terhadap lingkungan.

Edukasi dan Kesadaran

Penting untuk meningkatkan kesadaran di kalangan petani dan masyarakat tentang pentingnya pengelolaan sampah organik. Melalui edukasi dan pelatihan, petani dapat memahami manfaat dari pengelolaan sampah organik dan cara melakukannya dengan benar.

Tanaman Penutup Tanah

Tanaman penutup tanah seperti kacang-kacangan atau rumput tertentu dapat ditanam setelah panen untuk melindungi tanah dari erosi, menghambat pertumbuhan gulma, dan memperbaiki kesuburan tanah. Setelah tanaman ini tumbuh, mereka dapat dibiarkan di tanah atau diolah menjadi pupuk hijau.

Pemanfaatan Teknologi

Beberapa petani telah mengadopsi teknologi modern dalam pengelolaan sampah organik, seperti penggunaan mesin penghancur untuk menggiling sisa tanaman menjadi serpihan yang lebih mudah diolah menjadi pupuk atau diintegrasikan kembali ke dalam tanah.

D. Hambatan yang Dihadapi dalam Proses Pengolahan Sampah Organik di Dunia Pertanian

Pengelolaan sampah organik merupakan tantangan besar yang dihadapi oleh dunia pertanian dalam menjalankan praktik berkelanjutan. Meskipun penting untuk lingkungan dan produktivitas, terdapat sejumlah hambatan yang perlu diatasi dalam upaya mengelola sampah organik dengan efektif. Berikut adalah beberapa hambatan yang sering dihadapi dalam proses pengelolaan sampah organik.

Kurangnya Kesadaran dan Pendidikan

Salah satu hambatan utama adalah kurangnya kesadaran dan pemahaman mengenai pentingnya pengolahan sampah organik. Banyak petani masih kurang tahu tentang manfaat humus bagi kesuburan tanah atau bahaya pembuangan sampah organik secara sembarangan. Solusinya adalah dengan meningkatkan kampanye edukasi dan pelatihan bagi petani tentang pentingnya pengelolaan sampah organik serta caracara melakukannya.

- Keterbatasan Teknologi dan Infrastruktur
 - Pengolahan sampah organik memerlukan teknologi dan infrastruktur yang memadai, seperti tempat kompos atau sistem biogas. Di daerah-daerah terpencil atau berkembang, ketersediaan teknologi ini mungkin terbatas. Solusinya adalah dengan mengembangkan teknologi yang sederhana, murah, dan mudah diakses oleh petani di berbagai tingkatan, termasuk di wilayah pedesaan.
- Kekhawatiran akan Gangguan Produksi
 - Beberapa petani khawatir bahwa pengelolaan sampah organik bisa mengganggu produktivitas pertanian mereka. Mereka khawatir bahwa pengomposan atau penggunaan pupuk organik akan memakan waktu ekstra atau bahkan merusak tanaman. Solusinya adalah dengan memberikan informasi yang jelas tentang cara-cara mengintegrasikan pengolahan sampah organik ke dalam rutinitas pertanian tanpa mengganggu produksi.
- Kesulitan dalam Pengumpulan dan Pemilahan Sampah Organik Proses pengumpulan dan pemilahan sampah organik kadangkadang bisa menjadi rumit. Petani mungkin perlu mengumpulkan sisa-sisa tanaman, kotoran hewan, dan bahan organik lainnya dari area yang luas, dan ini dapat menjadi pekerjaan yang melelahkan. Solusinya adalah dengan menyediakan fasilitas dan alat yang memudahkan proses pengumpulan serta memberikan panduan tentang cara memilah sampah organik dengan efektif.
- Kekurangan Waktu dan Tenaga
 - Petani sering memiliki jadwal yang padat dan pekerjaan yang beragam. Pengolahan sampah organik bisa membutuhkan waktu dan tenaga ekstra yang mungkin tidak selalu tersedia. Solusinya adalah dengan mengintegrasikan pengolahan sampah organik ke dalam praktik pertanian sehari-hari dan mempertimbangkan metode yang meminimalkan usaha tambahan.

Kesulitan dalam Pemasaran Produk Hasil Pengolahan Hasil dari pengolahan sampah organik, seperti kompos atau produk biogas, mungkin sulit dipasarkan. Pasar yang terbatas atau kurangnya permintaan bisa menjadi hambatan. Solusinya adalah dengan mengembangkan strategi pemasaran yang kreatif dan edukasi kepada masyarakat tentang manfaat produk-produk tersebut.

Pengelolaan sampah organik dalam dunia pertanian adalah langkah penting menuju pertanian yang lebih berkelanjutan. Dengan memanfaatkan sampah organik sebagai sumber daya berharga, kita dapat memperbaiki kualitas tanah, mengurangi dampak lingkungan negatif, dan menjaga siklus nutrisi yang seimbang. Melalui strategi seperti penggunaan pupuk kompos, tanaman penutup tanah, dan teknologi modern, pertanian dapat menjadi contoh nyata bagaimana praktik pertanian yang ramah lingkungan dapat diimplementasikan untuk keberlanjutan lingkungan dan pangan (mertani.co.id)

BAB XIII ANALISIS STUDI KELAYAKAN USAHA PUPUK ORGANIK PADAT DI DESA SUMBERAGUNG **MOYUDAN**

Sampah masih menjadi permasalahan utama yang dihadapi Indonesia. Merujuk data dari Sistem Informasi Pengelolaan Sampah Nasional Kementerian Lingkungan Hidup dan Kehutanan (KLHK), jumlah timbunan sampah mencapai 19,5 juta ton per tahun, dengan limbah terbanyak berupa limbah organik yang mencapai sekitar 12,7 juta ton per tahun dimana sekitar 23,45% sampah tersebut tidak terkelola. Sampah yang tidak terkelola akan tertimbun dengan tanah atau ikut mengalir melalui sungai sungai hingga ke laut serta menimbulkan berbagai dampak buruk seperti mengurangi nilai kebersihan dan keindahan, menyebabkan banjir, dan menurunkan kualitas lingkungan (pencemaran udara, pencemaran tanah dan sumber air). Di sisi lain, sebagian masyarakat desa Moyudan, Sleman, Daerah Istimewa Yogyakarta memiliki hewan ternak ayam dan sapi. Namun, manajemen limbah kotoran ternak masyarakat desa masih kurang baik. Limbah kotoran ternak hanya dibiarkan saja atau langsung dibuang ke sungai. Limbah kotoran tersebut memerlukan pengelolaan yang baik agar tidak mengganggu kenyamanan masyarakat desa yang lain. Selain itu, limbah kotoran ternak sebenarnya berpotensi dijadikan bahan campuran pembuatan pupuk kompos. Namun, pupuk kompos yang berasal dari kotoran hewan ternak saja cenderung membutuhkan waktu yang lama untuk proses pengomposannya dan memiliki kandungan unsur yang rendah. Padahal, kebutuhan pupuk dalam negeri sangat tinggi. Konsumsi pupuk di Indonesia mencapai 13,5 juta ton sedangkan jumlah pupuk yang baru terpenuhi sebanyak 3,5 juta ton. Badan Pusat Statistik (BPS) juga mencatat impor pupuk Indonesia meningkat sebanyak 30,01% menjadi 8,12 juta ton pada 2021 dibanding tahun sebelumnya yang hanya sebesar 6,25 juta ton. Mitra penelitian sudah menghasilkan bubur sampah dan memproduksi menjadi pupuk organik yang belum teruji kandungan unsur hara-nya. Sehingga perlu penyediaan pupuk bagi petani yang memadai dan usaha ini merupakan solusi untuk mengatasi kebutuhan pupuk masyarakat, melalui penelitian inovasi pupuk organik dengan campuran berbagai bahan kotoran hewan sehingga pupuk memiliki kandungan sesuai standar SNI.

A. Hubungan dengan Mitra

Terjalinnya program kemitraan antara perusahaan dengan PT Soldas akan membantu petani mengatasi masalah-masalah pengelolaan sampah dengan tersedianya mesin penghancur sampah menjadi bubur sampah yang berkualitas dan terjangkau harganya. Adanya bahan baku untuk pembuatan pupuk organik ber kandungan unsur hara yang berkualitas dengan harga terjangkau, secara tidak langsung dapat memberikan solusi bagi para petani di Indonesia.

Potensi pupuk di daerah Moyudan Sleman sangat banyak baik sampah rumah tangga dan juga kotoran hewan kambing, ayam, sapi yang merupakan bahan campuran dari pupuk yang akan peneliti hasilkan, sehingga kebutuhan bahan baku pupuk dapat terpenuhi setiap harinya. Bekerjasama dengan mitra PT Soldas yang akan memberikan mesin pengolah sampah maka program ini akan lebih mudah dilaksanakan.

Mitra lainnya adalah petani Dieng yang sudah bermitra beberapa tahun terakhir sebagai pihak pengguna pupuk organik sesuai standar industri. Berdasarkan wawancara pada saat hibah Kedaireka 2022, ditemukan masalah tentang kurangnya pupuk organik yang bisa memulihkan kondisi tanah yang rusak akibat pemakaian pupuk kimia sepanjang tahun.

B. Aspek Pasar

Pupuk organik memiliki sasaran para petani dan konsumen yang memiliki hobi bercocok tanam atau retail toko-toko tanaman yang akhir-akhir ini makin banyak penjualannya. Karena produk pupuk organik padat ini memiliki kandungan unsur hara berstandar SNI. Selain itu harganya pun cukup bersaing dengan harga jual Rp 2500,00/kg dirasa cukup terjangkau untuk para retail, sehingga mereka bisa menjual kembali pupuk tersebut dengan harga yang lebih tinggi. Berikut adalah tabel permintaan pupuk organik padat dari tahun ke tahun:

Nο Tahun Jumlah (kg) 1. 2024 430.500 2. 2025 473.550 3. 2026 486.465

Tabel 1. Permintaan pasar dari tahun 2024-2026

Dari tabel di atas dapat dilihat bahwa permintaan pupuk dari tahun ke tahun semakin meningkat. Maka ini dapat menjadi peluang usaha yang bagus untuk kedepannya.

C. Target Market

Petani yang menjadi sasaran penjualan pupuk organik ini adalah petani Dieng yang sudah bermitra dengan kelompok tani Perkasa dua Dieng. Hal ini karena kelompok tani ini sudah bermitra juga dengan LPPM UPN Veteran Yogyakarta pada saat peneliti mendapatkan hibah kedaireka tahun 2022. Oleh karena petani Dieng sangat membutuhkan pupuk organik untuk kondisi tanah yang sudah terpapar pupuk kimia, bahkan berapapun jumlah yang dihasilkan akan dibeli oleh petani di Dieng. Melihat potensi yang besar ini maka peneliti melanjutkan kedaireka 2023 tentang inovasi pupuk organik berstandar industri.

D. Aspek Teknik

Untuk aspek teknis dan teknologi, dalam memproduksi pupuk organik padat ini pemilik usaha membeli bahan baku kotoran hewan ayam, sapi dan kambing serta sampah organik dari warga sekitar. Karena bahan baku mudah di dapatkan di sekitar tempat usaha. Alat-alat yang digunakan meliputi seperti mesin pencacah, pengayak, granulator, rotary dryer, cangkul, sorok, sekop dan lainlain. Dan usaha ini tidak menghasilkan limbah, sehingga masyarakat sekitar tidak masalah dengan adanya produksi pupuk.

Proses produksi pupuk organik ini meliputi:

- 1. Tahap pemilahan sampah organik dan plastik kemudian dicacah oleh mesin pencacah kemudian menjadi bubur sampah
- Perlakuan terhadap bubur sampah dengan mencampur bubur sampah dengan kotoran ayam, sapi dan kambing sesuai proporsi yang sudah kita hasilkan melalui uji lab yaitu pupuk berstandar industri
- 3. Pupuk hasil campuran tadi kemudian disaring, digiling dan disaring lagi
- 4. Pupuk siap dijual/dipakai petani

E. Aspek Keuangan

1. Laba Rugi

Keterangan/ Tahun	1	2	3
Penjualan	1,076,250,000.00	1,420,650,000.00	1,702,627,500.00
HPP			
Bubur Sampah	129,150,000.00	189,420,000.00	194,586,000.00
Kotoran sapi	143,500,000.00	194,586,000.00	198,639,875.00
Kotoran ayam	143,500,000.00	194,586,000.00	198,639,875.00

Keterangan/ Tahun	1	2	3
Kotoran kambing	143,500,000.00	194,586,000.00	198,639,875.00
Trichoderma	8,610,000.00	9,471,000.00	9,729,300.00
Maggot	35,875,000.00	39,319,000.00	40,538,750.00
Uji Lab	8.900.000,00	8.900.000,00	8.900.000,00
Upah	137.760.000,00	172.200.000,00	180,810,000.00
Biaya Pembelian Plastik	2.500.000,00	2,750,000.00	3,107,500.00
Total	753,295,000.00	990,320,000.00	1,025,483,425.00
LABA Kotor	322,955,000.00	430,330,000.00	677,144,075.00
Biaya peralatan	1.500.000,00	1,650,000.00	1,864,500.00
Biaya pembelian plastik, terpal	1.875.000,00		
Biaya Transportasi	21,600,000.00	28,800,000.00	32,544,000.00
Biaya Bahan Bakar mesin	8,610,000.00	9,471,000.00	10,702,230.00
Biaya Listrik	36.000.000,00	39,600,000.00	40,680,000.00
Total biaya	69,585,000.00	79,521,000.00	83,926,230.00
Laba sebelum pajak	253,370,000.00	350,809,000.00	593,217,845.00
Pajak PPH	76,011,000.00	105,242,700.00	177,965,353.50
Laba Bersih	177,359,000.00	245,566,300.00	415,252,491.50

2. Arus Kas

Berikut proyeksi arus kas usaha pupuk organik padat selama 3 tahun:

Tahun	Arus Kas
2023 (0)	(248.350.000,00)
2024	177,359,000.00
2025	245,566,300.00
2026	415,252,491.50

3. Investasi Awal

Investasi awal yang dikeluarkan pihak perusahaan:

Investasi awal	
Keterangan	Jumlah
Greenhouse	66,000,000.00
Peneduh	50,000,000.00
Mesin pencacah	29,800,000.00
mesin pengayak	25,200,000.00
mesin granulator	35,000,000.00
Rotary	42,350,000.00
Total	248,350,000.00

4. Analisis Net Present Value

NPV = Cash Outflow + PVIFt,i

=(248.350.000,00) + PVIFt, 10%

Cashflow	Disc Factor 10%	Present Value
(248.350.000,00)		(248.350.000,00)
177,359,000.00	0.909	161.219.331,00
245,566,300.00	0.826	202.837.734,00
415,252,491.50	0.751	311.854.621,00
Net Present Value		=427.561.686,00

Berdasarkan perhitungan net present value diatas menunjukkan hasil yang positif sebesar Rp 427.561.686,00, hal ini menunjukkan bahwa penghasilan melebihi pengeluaran dan tanda positif artinya bisnis pupuk organik padat ini Layak secara ekonomis.

Analisis Payback Period 5. Analisis payback period adalah jangka waktu kembalinya modal yang diinvestasikan.

Keterangan	0	1	2	3
Investasi Awal	(248.350.000,00)			
Arus kas		177,359,000.00	245,566,300.00	415,252,491.50
Arus kas kumulatif		(70.991.000,00)	103.750.570,00	

Berdasarkan perhitungan diatas artinya, investasi usaha ini akan kembali modal pada 1 tahun 3 bulan. Apabila PP maksimum ditetapkan perusahaan adalah 2 tahun, maka karena PP 1,3 tahun lebih kecil dari PP maksimum dikatakan Layak secara ekonomis.

DAFTAR PUSTAKA

- Faradiba, N. (2022). Kenapa Sampah Harus Dikelola dengan Baik?. *Kompas.com*.https://www.kompas.com/sains/read/2022/07/12/103000723/kenapa-sampah-harus-dikelola-dengan-baik
- Kemenko PKM. (2023). 7,2 Juta Ton Sampah di Indonesia Belum Terkelola Dengan Baik. https://www.kemenkopmk.go.id/72-juta-ton-sampah-di-indonesia-belum-terkelola-dengan-baik
- Kusmanta, H. (2021). Sampah Plastik di Sekitar Kita: Antara Kebutuhan dan Masalah yang Ditimbulkan. *Kumparan*. https://kumparan.com/hericust/sampah-plastik-di-sekitar-kita-antara-kebutuhan-dan-masalah-yang-ditimbulkan-1wAJupNqFrX/full
- Latifah, N. (2011). Limbah Organik, Anorganik, dan B3. http://nurullatifah.wordpress.com
- Nathania, V. (2022). Inilah Bahaya Sampah Plastik Bagi Kesehatan Manusia Jika Tidak Dikelola Dengan Baik. *Gridhealth.id.* https://health.grid.id/read/353340462/inilah-bahaya-sampahplastik-bagi-kesehatan-manusia-jika-tidak-dikelola-dengan-baik?page=all
- Paxel. (2023). Dampak Sampah yang Tidak Dikelola dengan Baik. https://paxel.co/id/berita-dan-promo/dampak-sampah-yang-tidak-dikelola-dengan-baik
- Portilo, S. R. (2023). What Is Organic Waste. ?The Daily Eco. https://www.thedailyeco.com/what-is-organic-waste-206. html#anchor_0
- Ramdhani, I. (2022). Indonesia Memiliki Masalah Sampah Yang Serius. *Maritime Fairtrade*. https://maritimefairtrade.org/indonesia-memiliki-masalah-sampah-yang-serius/
- Rosmarkam, A., & Yuwono, N. W. (2002). Ilmu Kesuburan Tanah. Yogyakarta: Penerbit Kanisius.
- Sihombing, D. T. H. (2000). *Teknik Pengolahan Limbah Kegiatan Usaha Peternakan Pusat Penelitian Lingkungan Hidup*. Lembaga Penelitian. Institut Pertanian Bogor.

- Soehadji. (1992). Kebijakan Pemerintah dalam Industri Peternakan dan Penanganan Limbah Peternakan. Direktorat Jenderal Peternakan, Departemen Pertanian. Jakarta.
- Suriawiria, U. (2003). Mikrobiologi Air & Dasar-Dasar Pengolahan Buangan Secara Biologis. Bandung: PT Alami.
- Suryahadi, A., Sumarto, S., & Pritchett, L. (2002). The Evolution of Poverty During the Crisis in Indonesia. SMERU Research Institute.
- Sutanto, R. 2002. Penerapan Pertanian Organik. Cetakan 5. Kanisius. Yogyakarta. 219 hal.
- Waluyo, D. (2023). Masalah Kita adalah Sampah. Indonesia.go.id. https://indonesia.go.id/kategori/editorial/7714/masalah-kitaadalah-sampah?lang=1