Natalegawa, Bagas Petra (2025) IMPLEMENTASI VISI KOMPUTER UNTUK DETEKSI KECERDASAN ANAK BERDASARKAN BEERY-VISUAL MOTOR INTEGRATION TEST. Skripsi thesis, UPN Veteran Yogyakarta.
![]() |
Text
1_NASKAH TUGAS AKHIR_BAGAS PETRA NATALEGAWA_123210178.pdf Restricted to Repository staff only Download (3MB) |
![]() |
Text
2_Halaman Pengesahan Pembimbing_Bagas Petra Natalegawa_123210178.pdf Download (319kB) |
![]() |
Text
3_Halaman Pengesahan Penguji_Bagas Petra Natalegawa_123210178.pdf Download (338kB) |
![]() |
Text
4_Abstrak TA_Bagas Petra Natalegawa_123210178.pdf Download (232kB) |
![]() |
Text
5_Cover TA_Bagas Petra Natalegawa_123210178.pdf Download (212kB) |
![]() |
Text
6_Daftar Isi TA_Bagas Petra Natalegawa_123210178.pdf Download (265kB) |
![]() |
Text
7_Daftar Pustaka TA_Bagas Petra Natalegawa_123210178.pdf Download (192kB) |
Abstract
ABSTRAK
Penelitian ini bertujuan untuk mengatasi subjektivitas dan lamanya waktu penilaian
manual pada tes Beery-VMI dengan merancang, mengimplementasikan, dan mengevaluasi
sistem visi komputer berbasis aturan sebagai alat bantu skoring yang objektif, transparan,
dan efisien untuk mendukung deteksi dini gangguan perkembangan visual-motorik pada
anak. Dikembangkan menggunakan Python dan OpenCV, sistem ini menerapkan pendekatan
"white-box" yang menerjemahkan kriteria penilaian resmi ke dalam algoritma geometris
eksplisit, memproses citra statis melalui pra-pemrosesan adaptif, ekstraksi fitur, dan validasi
hierarkis untuk 12 simbol. Hasil validasi menunjukkan reliabilitas dan akurasi tinggi dengan
F1-Score agregat 95.79%, Recall sempurna 100%, dan Mean Absolute Error (MAE) sebesar
2.15 dibandingkan skor konsensus ahli, yang menunjukkan konsistensi kompetitif. Dengan
efisiensi pemrosesan satu set tes dalam rata-rata 8.35 detik, sistem ini menawarkan solusi
yang dapat diakses tanpa perangkat keras khusus. Berbeda dari pendekatan deep learning
"black-box", keunggulan utama penelitian ini adalah transparansi "white-box" di mana setiap
keputusan skoring dapat dilacak, menjadikannya alat yang praktis dan andal bagi pendidik,
terapis, dan psikolog.
Kata Kunci: Visi Komputer; Beery-VMI; Skoring Otomatis; Deteksi Bentuk; Integrasi
Visual-Motor
vii
ABSTRACT
This research aims to address the subjectivity and time-consuming nature of manual
scoring for the Beery-VMI test by designing, implementing, and evaluating a rule-based
computer vision system as an objective, transparent, and efficient scoring tool to support the
early detection of visual-motor developmental disorders in children. Developed using
Python and OpenCV, the system implements a "white-box" approach that translates official
scoring criteria into explicit geometric algorithms, processing static images through
adaptive preprocessing, feature extraction, and hierarchical validation for 12 symbols.
Validation results demonstrate high reliability and accuracy with an aggregate F1-Score of
95.79%, a perfect Recall of 100%, and a Mean Absolute Error (MAE) of 2.15 compared to
expert consensus scores, which indicates competitive consistency. With the efficiency of
processing a full test set in an average of 8.35 seconds, this system offers an accessible
solution without requiring specialized hardware. Unlike "black-box" deep learning
approaches, the primary advantage of this research is its "white-box" transparency, where
every scoring decision is traceable, making it a practical and reliable tool for educators,
therapists, and psychologists.
Keywords: Computer Vision; Beery-VMI; Automatic Scoring; Shape Detection; Visual
Motor Integration
viii
Item Type: | Tugas Akhir (Skripsi) |
---|---|
Uncontrolled Keywords: | Computer Vision; Beery-VMI; Automatic Scoring; Shape Detection; Visual Motor Integration |
Subjek: | T Technology > T Technology (General) |
Divisions: | Fakultas Teknik Industri > (S1) Informatika |
Depositing User: | Eko Yuli |
Date Deposited: | 15 Sep 2025 06:33 |
Last Modified: | 15 Sep 2025 06:34 |
URI: | http://eprints.upnyk.ac.id/id/eprint/43684 |
Actions (login required)
![]() |
View Item |