ANALISIS PENGARUH GETARAN AKIBAT PELEDAKAN TERHADAP STABILITAS LERENG HIGHWALL DI TAMBANG BATUBARA, PIT 3000 BLOCK 05 SB 1 PT. TRUBAINDO COAL MINING, KABUPATEN KUTAI BARAT, PROVINSI KALIMANTAN TIMUR

PUTRO, GUNTUR SURYO (2016) ANALISIS PENGARUH GETARAN AKIBAT PELEDAKAN TERHADAP STABILITAS LERENG HIGHWALL DI TAMBANG BATUBARA, PIT 3000 BLOCK 05 SB 1 PT. TRUBAINDO COAL MINING, KABUPATEN KUTAI BARAT, PROVINSI KALIMANTAN TIMUR. Other thesis, UPN "Veteran" Yogyakarta.

[img]
Preview
Text
ABSTRACT.pdf

Download (215kB) | Preview

Abstract

RINGKASAN PT. Trubaindo Coal Mining (PT. TCM) merupakan perusahaan tambang batubara yang terletak di Kutai Barat, Kalimantan Timur. Pembongkaran lapisan overburden dilakukan dengan metode pengeboran dan peledakan yang dapat menimbulkan efek hasil peledakan terutama getaran tanah terhadap kestabilan lereng highwall. Kegiatan peledakan terkontrol yang dilakukan di Pit 3000 Block 05 menggunakan metode linedrill. Data hasil pengukuran getaran yang didapat dari pembacaan alat tidak serta merta menjadi faktor getaran yang mempengaruhi stabilitas lereng highwall, tetapi getaran dengan arah rambatan horizontal yang menjadi penyebab menurunnya stabilitas lereng highwall. Percepatan horizontal maksimum yang muncul dari kegiatan peledakan sebagai parameter yang berperan dalam stabilitas lereng didapatkan dengan menghubungan pada PPA dengan persamaan amax = 0.5167 x PPA. Oleh karena itu, untuk mengetahui pengaruh getaran tanah akibat peledakan terhadap stabilitas lereng highwall perlu dilakukan permodelan penampang A-A’, B-B’, C-C’, D-D’ dan E-E’. Hasil prediksi persamaan nilai faktor keamanan tiap penampang sebagai berikut :  Penampang A-A’, FK = 5,1489 amax 6 – 32,719 amax 5 + 79,933 amax 4 – 93,928 amax 3 + 54,189 amax 2 – 13,898 amax + 1,30852  Penampang B-B’, FK = 0,4838 amax 6 – 3,0058 amax 5 + 7,0149 amax 4 – 7,6767 amax 3 + 4,4953 amax 2 – 2,4997 amax + 1,44549  Penampang C-C’, FK = 1,2021 amax 6 – 7,4203 amax 5 + 16,907 amax 4 – 17,239 amax 3 + 8,0429 amax 2 – 2,8212 amax + 1,3628  Penampang D-D’, FK = 5,279a amax 6 – 33,941 amax 5 + 84,105 amax 4 – 100,68 amax 3 + 59,648 amax 2 – 15,946 amax + 1,57907  Penampang E-E’, FK = -1,9442 amax 6 + 11,453 amax 5 – 24,289 amax 4 + 20,677 amax 3 – 2,7313 amax 2 – 4,8741 amax + 1,65573 Hasil perhitungan percepatan horizontal maksimum kritis untuk setiap penampang bervariasi seperti pada berikut :  Penampang A-A’, amax-kritis = 0,007 g  Penampang B-B’, amax-kritis = 0,118 g  Penampang C-C’, amax-kritis = 0,062 g  Penampang D-D’, amax-kritis = 0,025 g  Penampang E-E’, amax-kritis = 0,09 g Variasi nilai tersebut dipengaruhi oleh ketebalan lapisan tanah pucuk (topsoil) dan geometri lereng highwall setiap penampang. ABSTRACT PT. Trubaindo Coal Mining (PT. TCM) is the coal mines company located in West Kutai, East Kalimantan. The loosening of a overburden layer done with drilling and blasting methods which can cause effects mainly result blasting ground vibration for highwall slope stability. Controlled blasting activities undertaken in 3000 Pit Block 05 using linedrill. Vibration measurements data obtained from the tools is not necessarily a factor affecting vibration highwall slope stability, but with the direction of propagation horizontal vibrations that cause the decrease highwall slope stability. The maximum horizontal acceleration arising from blasting activities as parameters that effecting in the stability of the slope obtained by collerating to the PPA by the equation amax = 0.5327 x PPA. Therefore, to determine the effect of ground vibration due to blasting of the highwall slope stability modeling needs to be done cross-section A-A ', B-B', C-C ', D-D' and E-E '. Results of prediction equations safety factor value of each cross-section as follows:  Cross-section A-A’, FK = 5.1489 amax 6 - 32.719 amax 5 + 79.933 amax 4 - 93.928 amax 3 + 54.189 amax 2 - 13.898 amax + 1.30852  Cross-section B-B’, FK = 0.4838 amax 6 - 3.0058 amax 5 + 7.0149 amax 4 - 7.6767 amax 3 + 4.4953 amax 2 - 2.4997 amax + 1.44549  Cross-section C-C’, FK = 1.2021 amax 6 - 7.4203 amax 5 + 16.907 amax 4 - 17.239 amax 3 + 8.0429 amax 2 - 2.8212 amax + 1.3628  Cross-section D-D’, FK = 5.279a amax 6 - 33.941 amax 5 + 84.105 amax 4 - 100.68 amax 3 + 59.648 amax 2 - 15.946 amax + 1.57907  Cross-section E-E’, FK = -1.9442 amax 6 + 11.453 amax 5 - 24.289 amax 4 + 20.677 amax 3 - 2.7313 amax 2 - 4.8741 amax + 1.65573 The maximum horizontal acceleration calculation results critical for every cross-section varies as follows :  Cross-section A-A’, amax-critical = 0,007 g  Cross-section B-B’, amax- critical = 0,118 g  Cross-section C-C’, amax- critical = 0,062 g  Cross-section D-D’, amax- critical = 0,025 g  Cross-section E-E’, amax- critical = 0,09 g The variation of value was influenced by the thickness of the layer by top soil and any cross-sectional geometry highwall slope.

Item Type: Thesis (Other)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering, Science and Mathematics > School of Engineering Sciences
Depositing User: Mrs Sri Lestari
Date Deposited: 09 May 2016 07:45
Last Modified: 09 May 2016 07:45
URI: http://eprints.upnyk.ac.id/id/eprint/418

Actions (login required)

View Item View Item