

SEMINAR NASIONAL TEKNIK KIMIA "KEJUANGAN"

ISSN: 1693-4393

PROSIDING

Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia

2013

5 Maret 2013

PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UPN "VETERAN" YOGYAKARTA

Daftar Isi

Kata Pengantar	iii
Sambutan Ketua Pelaksana	iv
Sambutan Rektor	v
Sambutan Dekan	vi
Reviewer	vii
Susunan Panitia	viii
Daftar Isi	ix

Makalah Pembicara Utama

Kode Judul, Penulis dan Alamat

MU1 Nilai Tambah Sumber Daya Alam tak Terbarukan bagi Pembangunan Ekonomi Nasional

Ir. Farida Zed, ME, MA

Kepala Biro Kebijakan Energi dan Persidangan, Sekretariat Jenderal Dewan Energi Naional

MU2 Pemanfaatan Gas Bumi Dalam Perspektif Pengembangan Industri Kimia

Surya Madya

Sekretaris Perusahaan PT Pupuk Kaltim, Bontang Kaltim, Indonesia

Alumni Teknik Kimia UPN Veteran Yogyakarta tahun 1981

E-mail: smadya@pupukkaltim.com

Makalah Slot

Kode Judul, Penulis dan Alamat

MS Disain Tata Kelola Migas Paska Putusan MK dan Kecenderungan Industri Migas Global

Benny Lubiantara dan Didi Setiarto

SKK Migas

Makalah Bidang Kajian

A. Perpindahan Massa dan Panas

Kode Judul, Penulis dan Alamat

A1 The Performance of Controlled Freeze Out Area Double Pipe Heat Exchanger in Removing CO₂ From CH₄-CO₂ Gas Mixture

Ibnu Eka Rahayu, Ardila Hayu Tiwikrama, Setiyo Gunawan, dan Gede Wibawa*

Department of Chemical Engineering, Faculty of Industrial Technology

Sepuluh Nopember Institute of Technology

Kampus ITS Sukolilo Surabaya, 6011. Tel/Fax :+62-31-5946240/+62-31-5999282

*E-mail: gwibawa@chem-eng.its.ac.id

A2 Evaluasi *Performance* Injeksi Air pada Lapangan Minyak "X" Didukung dengan Pelaksanaan *Surveillance* dan Perencanaan *Water Injection Plant* Sederhana

Hariyadi¹, Novian Aribowo²

Program Studi Teknik Perminyakan, Fakultas Teknologi Mineral, UPN "Veteran" Yogyakarta Jl. SWK 104 (Lingkar Utara), Condong Catur, Yogyakarta 55283

F2 Pengaruh Drying Agent pada Ekstraksi dan Inaktivasi Enzim Gaultherase Simultan dari Gandapura (Gaultheria fragantissima)

Priyono Kusumo¹⁾, Mega Kasmiyatun¹⁾ dan Mohamad Endy Yulianto ²⁾

Pusat Studi Lingkungan Hidup UNTAG Semarang

1).Program Studi Teknik Kimia S1 UNTAG, Jln.Pawiyatan Luhur Gedung G Semarang;

²⁾.Program Studi Teknik Kimia D3 UNDIP, Tembalang Semarang

Email: priyono@untag.ac.id; priyo330@yahoo.com

F3 Equilibrium in CO₂ Adsorption Using Strong Base Anion Exchange Resin Anies Mutiari^{1*}, Wiratni², dan Aswati Mindaryani²

¹ Center for Material and Technical Product Ministry of Industry

Jl. Sangkuriang No.14, Bandung, 40135, Indonesia

² Department of Chemical Engineering

Gadjah Mada University, Jl. Grafika No.2, Yogyakarta, 55281, Indonesia

*E-mail: anies.mutiari@yahoo.com

F4 Penambahan Oksidator NaOCl untuk Peningkatan Efisiensi Pemisahan ^{99m}Tc dari Kolom Generator ⁹⁹Mo/^{99m}Tc Berbasis PBZ-TEOS

Kadarisman, Herlina, Abidin, Hambali dan Umi Nur Sholikha

Pusat Radioisotop dan Radiofarmaka – BATAN

Kawasan PUSPIPTEK, Gedung 11, Serpong, Tangerang Selatan, Banten,

Telp./Faks: 021-7563141,

E-mail: kadarisman_w@yahoo.com

F5 Simulasi Model Jaringan dan Fasilitas Permukaan Injeksi CO₂ Sistem Terpusat pada Lapisan F Lapangan J

Wibowo^{1*}, Yulius Deddy Hermawan²

¹Program Studi Teknik Perminyakan, Fakultas Teknologi Mineral, UPN "Veteran" Yogyakarta

Jl. SWK 104 (Lingkar Utara) Condongcatur Yogyakarta

²Program Studi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Jl. SWK 104 (Lingkar Utara) Condongcatur Yogyakarta

*E-mail: wibowo_ms@yahoo.com

F6 Peningkatan Rendemen Minyak Nilam (Pogostemon cablin Benth) dengan Destilasi Solvent - Microwave

Kusyanto dan Mahfud*

Laboratorium Proses Kimia, Jurusan Teknik Kimia, ITS, Surabaya

*E-mail: mahfud@chem-eng.its.ac.id

F7 Kinerja Membran Ultrafiltrasi Pada Pemisahan Emulsi Minyak-Air

Indah Prihatiningtyas D.S^{1*}, *Nita Aryanti*², *dan Diyoo Ikhsan*³
^{1,2,3}Magister Teknik Kimia, Universitas Diponegoro

Jl. H. Prof. Sudarto, SH, Tembalang Semarang 50239

*E-mail: indulpds@yahoo.com

F8 **Development Downflow Jet Loop-Fixed Bed Gas-Liquid Contactor** *Hendriyana*

Department of Chemical Engineering Jenderal Achmad Yani University *E-mail*: hendriyana2001@gmail.com

G. Teknologi Partikel

Kode Judul, Penulis dan Alamat

Simulasi Model Jaringan dan Fasilitas Permukaan Injeksi CO₂ Sistem Terpusat pada Lapisan F Lapangan J

Wibowo^{1*}, Yulius Deddy Hermawan²

¹Program Studi Teknik Perminyakan, Fakultas Teknologi Mineral, UPN "Veteran" Yogyakarta Jl. SWK 104 (Lingkar Utara) Condongcatur Yogyakarta ²Program Studi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta Jl. SWK 104 (Lingkar Utara) Condongcatur Yogyakarta

*E-mail: wibowo ms@yahoo.com

Abstract

The Study of CO_2 injection to enhance oil recovery through several stages before implementation on the pilot and full scale projects in the field had been done succesfully. The final stage of this study has been made by modeling of network and CO_2 injection surface facilities that can be implemented in J Field. The developed model which is run by production simulator gave significant results both on the re-pressurized stage and CO_2 flooding stage. This study showed that the implementation of CO_2 injection could be run well. With the model validation through static and dynamic run, this study also reavealed that the network model and surface facilities could work properly.

Keywords: CO₂ injection, enhance oil recovery, network model, surface facilities, simulation

Pendahuluan

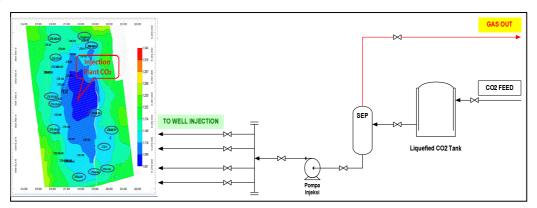
Secara umum, dalam industri migas dikenal metode pengurasan cadangan reservoir yang dibagi dalam beberapa tahap, yaitu :

- 1. Tahap Primer (*Primary Recovery*), merupakan tahap pengurasan awal setelah penemuan reservoir dimana pengurasan hanya memanfaatkan tenaga alamiah sebagai pendorong fluida reservoir menuju sumur produksi.
- 2. Tahap Sekunder (*Secundary Recovery*), merupakan tahap pengurasan reservoir dimana tenaga dari luar diintroduksikan ke dalam reservoir, pada tahap pengurasan ini tenaga dari luar reservoir yang dimanfaatkan berupa pendorongan oleh air (*water flooding*).
- 3. Tahap Tersier (*Tertiary Recovery*), seperti pada tahap sekunder, namun tenaga pengurasan yang dimanfaatkan bersifat kimiawi (biasa disebut sebagai *enhanced oil recovery*-EOR).

Injeksi CO₂ merupakan metode pengurasan tahap tersier (EOR) untuk meningkatkan perolehan minyak bumi (*crude oil*). Metode ini memerlukan persiapan matang yang dilakukan melalui beberapa tahap studi sebelum implementasi *pilot project* dan *full scale* di Lapangan dapat dilaksanakan. Tahapan studi yang telah dilakukan meliputi tahap identifikasi sumber CO₂, tahap *screening criteria* dan uji laboratorium, serta tahap studi simulasi reservoir yang menunjukkan bahwa Lapisan F pada Lapangan J memenuhi syarat untuk dilakukan injeksi CO₂ (Kristanto dkk., 2012). Tahap akhir sebelum pelaksanan injeksi CO₂, adalah melakukan perancangan model dan simulasi jaringan dan fasilitas permukaan injeksi CO₂ untuk memastikan pelaksanaan injeksi CO₂ dapat berjalan sesuai rencana.

Lapisan F pada Lapangan J memiliki cadangan mula (OOIP) sebesar 55,24 MMSTB equivalen dengan kumulatif produksi sebesar 12,573 MMSTB (Recovery Faktor 22,76 %) yang diproduksi menggunakan metode peningkatan produksi pendesakan air (*water flooding*) dari 10 (sepuluh) sumur produksi dan 2 (dua) sumur injeksi air dengan total produksi sebesar 462 stb/d dengan water cut 49%. Hasil simulasi reservoir menginformasikan bahwa untuk peningkatan produksi menggunakan metode injeksi CO₂ memerlukan tambahan 10 sumur injeksi CO₂ memanfaatkan sumur-sumur *suspended* (Kristanto dkk., 2012).

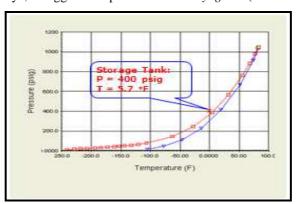
Untuk mempercepat pelaksanaan perancangan model jaringan dan fasilitas permukaan, dan pengamatan kinerja injeksi CO₂, dilakukan menggunakan bantuan simulator produksi yang telah terbukti dan umum digunakan di lingkungan industri migas. Dari hasil pemodelan dan simulasi ini diharapkan diperoleh informasi tentang kemampuan peralatan pada perancangan jaringan dan fasilitas permukaan injeksi CO₂, yang dicerminkan sebagai kinerja injeksi CO₂.


Metodologi

Untuk mengetahui fasilitas permukaan yang diperlukan maka perlu dilakukan perancangan model fasilitas injeksi CO₂ (*injection plant*) yang terdiri dari jaringan pipa dan fasilitas permukaan menggunakan simulator produksi yang terdiri dari perancangan tangki penyimpan CO₂ cair, perancangan jaringan pipa di dalam dan di luar area fasilitas injeksi CO₂ dari *injection plant* ke sumur injeksi yang meliputi kebutuhan panjang, diameter, jenis dan grade pipa; perancangan bejana pemisah (*separator/scrubber*) yang meliputi tekanan kerja, volume dan dimensi bejana; dan perancangan pompa injeksi (*transfer pump*) yang berupa besarnya tenaga (hp) yang diperlukan.

Pada proses injeksi CO₂ agar mendapatkan peningkatan perolehan pada tahap lanjut (EOR), dilaksanakan melalui 2 (dua) tahap yaitu Tahap *Re-pressureized* dan Tahap Pendesakan. Tahap *Re-pressurized* bertujuan agar kondisi tekanan reservoir yang selama ini telah turun menjadi 410 psi dapat dikembalikan pada kondisi tekanan reservoir awal yaitu sebesar 1750 psi, sedangkan Tahap Pendesakan bertujuan agar cadangan tersisa (*remaining reserve*) yang diperkirakan sebesar 16,57 MMSTB (Kristanto dkk., 2012) dapat didesak menuju sumur-sumur produksi yang ada melalui proses pendesakan *immiscible* antara *liquefied* CO₂ terhadap fluida reservoir.

Perancangan Peralatan


Gambar 1 merupakan gambaran skema model perancangan jaringan dan fasilitas injeksi CO₂, dimana *injection* plant ditempatkan di tengah area sumur injeksi, yang kondisi lapangannya dapat dilihat pada sisi kiri Gambar 1 tersebut.

Gambar 1. Skema Perancangan Model Jaringan dan Fasilitas Permukaan Injeksi CO₂

Perancangan Tanki Penyimpan CO₂ Cair

Secara umum penyimpanan CO₂ dapat dilakukan dalam fasa gas, cair, dan padat. Pemilihan model penyimpanan sangat dipengaruhi oleh kondisi operasi yang diperlukan pada penggunaan CO₂ lebih lanjut. Pada studi sebelumnya, perancangan tanki penyimpan telah dilakukan berdasarkan optimasi pemisahan CO₂ yang berasal dari gas produksi Lapangan J dan Lapangan sekitarnya, menggunakan proses distilasi *cryogenic* (Hermawan dkk., 2012).

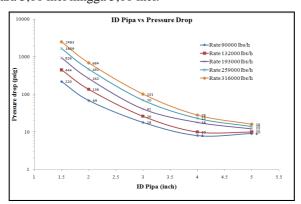
Gambar 2. Diagram Fasa Hubungan Temperatur dan Tekanan Produk CO₂

Memperhatikan sifat kelakuan fasa CO_2 yang ditunjukan dalam **Gambar 2**, maka penyimpanan dalam fasa cair hanya dapat dilakukan pada kondisi di bawah titik kritisnya yaitu $P_c = 1050$ psig dan $T_c = 78$ °F. Dengan

mempertimbangkan kondisi CO₂ di Lapangan J untuk perancangan tangki penyimpanan diambil waktu tinggal selama 4 jam. Pengambilan waktu tinggal ini dengan asumsi tangki ini bukan semata-mata sebagai tangki penyimpanan, namun difungsikan sebagai akumulator dengan harapan dapat menstabilkan kerja pompa injeksi yang akan mentransfer CO₂ ke reservoir sebagai fluida pendesak untuk meningkatkan perolehan hidrokarbon.

Atas pertimbangan kondisi CO_2 di Lapangan J sudah dalam fasa cair dan mempunyai tekanan sekitar 400 psig dengan suhu sekitar 5,7 °F, sehingga dipilih perancangan tangki silinder horizontal yang mampu menahan tekanan 400 psig. Dimensi tanki yang diperlukan, dihitung agar mampu menyimpan CO_2 dengan laju alir total antara 44 sampai 46 MMSCFD. Dengan menggunakan waktu tinggal selama 4 jam dan debit CO_2 yang akan disimpan maka hasilnya dapat dilihat pada **Tabel 1**.

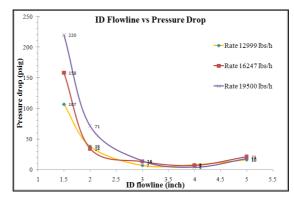
_	• •
Process	Distilasi
Trocess	Cryogenic
Stream name	CO2
Vapor fraction	0
Temperature (F)	5,7
Pressure (psig)	400
Molar flow (lbmole/hour)	4793,9
Mass flow (lb/hour)	207280,1
Density (lb/cuft)	60,2
Volume rate (cuft/hour)	3444,3
Res. Time (hour)	4
Liq. Volume(cuft)	13777,1
Safety factor	0,2
Tank Volume (cuft)	16532,5
Tank Volume (cum)	468,1
L/D	2,7
Tank Diameter (m)	6,1
Tank Length (m)	16.2


Tabel 1. Dimensi Tangki Penyimpan CO₂

Perancangan Pipa

Terdapat 2 (dua) jenis pipa yaitu pipa di dalam area *injection plant* yang biasa disebut *pipeline* yang relatif berdiameter besar karena harus mentransfer laju CO₂ lebih besar dan pipa diluar area *injection plant* yang biasa disebut *flowline* berdiameter relatif lebih kecil karena mentransfer CO₂ dengan laju alir lebih kecil dari *injection plant* ke setiap sumur injeksi.

Flowline dan pipeline dirancang untuk dapat menyalurkan fluida injeksi tetap dalam fasa cair. Pemilihan flowline dan pipeline didasarkan pada diameter pipa yang paling optimum untuk mengurangi perubahan tekanan yang terlalu besar tetapi tetap dapat mengkondisikan fluida injeksi CO₂ dalam fasa cair.


Untuk pipa di dalam area *injection plant*, perancangan didasarkan pada kebutuhan transfer laju alir CO₂ dari tanki penyimpan menuju bejana pemisah (separator/scrubber), kemudian dari pompa menuju header, seperti digambarkan pada **Gambar 3**. Dari **Gambar 3** tersebut terlihat bahwa kebutuhan pipa yang direkomendasikan adalah pada selang diameter antara 3,00 inci hingga 5,00 inci.

Gambar 3. Hubungan *Pressure Drop* Terhadap Diameter *Pipeline* di Dalam Area *Injection Plant* Sebagai Fungsi Laju Alir

Untuk mentransfer CO₂ dari *injection plant* ke setiap sumur injeksi, diperlukan *flowline* dengan diameter tertentu yang dapat menampung laju injeksi dan tekanan kepala sumur yang diperlukan di setiap sumur dan dapat tetap menjaga kondisi CO₂ tetap dalam fasa cair. Oleh karena itu, pemilihan *flowline* didasarkan pada diameter yang optimum sebagai fungsi kehilangan tekanan minimum pada laju alir CO₂ yang diperlukan. **Gambar 4** memperlihatkan hasil optimasi perancangan pipa untuk *flowline*, dimana hasil optimum berada pada selang antara 2,00 inci sampai dengan 3,50 inci.

Gambar 4. Hubungan *Pressure Drop* Terhadap Diameter *Flowline* di Dalam Area *Injection Plant* Sebagai Fungsi Laju Alir

Tipe	I	II	III	
Jenis	Vertikal	Vertikal	Vertikal	
Mass Rate (lbs/h)	316000	316000	316000	
P operasi (psig)	300	300	300	
T operasi (F)	5	5	5	
Retention (s)	600	300	30	
Diameter (m)	3,8	2,28	1,98	
Tinggi (m)	13	8	6,93	
Volume (m ³⁾	147.5	32.8	21.4	

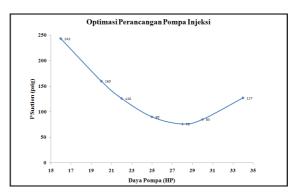
Tabel 2. Dimensi Bejana Pemisah

Perancangan Bejana Pemisah

Bejana pemisah diperlukan untuk memastikan agar CO₂ yang masuk ke dalam pompa adalah CO₂ cair, sehingga efisiensi pompa dapat dijaga tetap tinggi. Seperti halnya pada perancangan tanki penyimpan, perancangan volume dan dimensi bejana pemisah (separator/scrubber) dipengaruhi oleh besarnya laju alir dan waktu tinggal.

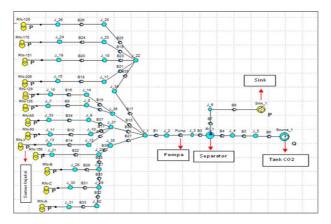
Mengingat laju alir CO₂ yang akan dialirkan dari tanki penimbun menuju separator adalah sebesar 316.000 lbs/jam, dengan memvariasikan waktu tinggal, dapat diketahui volume dan dimensi bejana pemisah, seperti diilustrasikan pada **Tabel 2**.

Tabel 2 memperlihatkan bahwa waktu tinggal yang cukup realistis adalah selama 30 detik sesuai prinsip proses *differential liberation* pada bejana pemisah sehingga diperlukan bejana pemisah dengan volume 21,4 m³ dengan diameter 1,98 m tinggi 6,93 m.

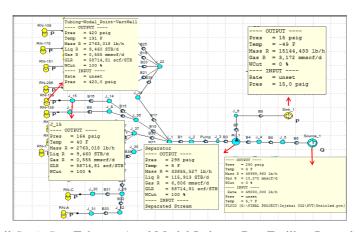

Perancangan Pompa Injeksi

Penggunaan pompa dimaksudkan untuk mengalirkan fluida injeksi keluaran dari separator menuju sumur-sumur injeksi. Beragamnya jarak sumur-sumur injeksi ke stasiun injeksi menjadi tolak ukur untuk perancangan tekanan keluar dari pompa injeksi, sehingga nantinya fluida injeksi dapat didisitribusikan secara optimal. Pengaruh *suction pressure* terhadap besar daya pompa yang diperlukan untuk mencapai *discharge pressure* yang diinginkan dapat dilihat pada **Gambar 5.**

Batasan dari pemilihan pompa injeksi ini terletak pada tekanan *discharge* pompa yang dapat menyalurkan CO₂ hingga kepala sumur sesuai besarnya tekanan kepala sumur injeksi yang di perlukan pada proses injeksi.

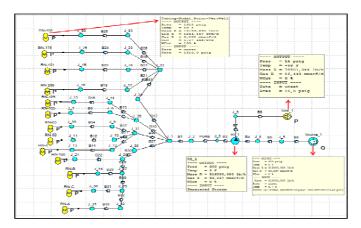


Gambar 5. Kurva Optimasi Perancangan Power Pompa Injeksi


Pemodelan Simulasi Jaringan Dan Fasilitas Permukaan

Hasil simulasi reservoir yang telah dilakukan menginformasikan bahwa, diperlukan proses *re-pressurized* untuk mencapai tekanan reservoir sebesar 1750 psi selama 3 tahun dengan target injeksi CO₂ maksimum sebesar 1,20 Pore Volume atau setara dengan total injeksi CO₂ cair sebesar 1250 STB/D (Kristanto dkk., 2012). Selanjutnya, proses injeksi CO₂ dimaksudkan untuk melakukan pendesakan fluida reservoir oleh CO₂.

Untuk mencapai target agar hasil simulasi reservoir dapat diimplementasikan maka pelaksanaan simulasi injeksi CO₂ untuk model jaringan dan fasilitas permukaan harus diuji menggunakan dua cara, yaitu melalui *static run* dan *dynamic run* dengan beberapa Tahapan injeksi agar target dapat dicapai.



Gambar 6. Model Jaringan Dan Fasilitas Permukaan Injeksi CO₂

Gambar 7. Hasil Static Run Tahapan Awal Model Jaringan Dan Fasilitas Permukaan Injeksi CO₂

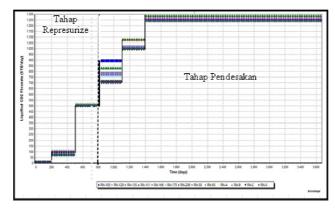
Gambar 8. Hasil Static Run Tahapan Akhir Model Jaringan Dan Fasilitas Permukaan Injeksi CO₂

NO	Sumur Injeksi	NPS (inci)	ID (inci)	Panjang (meter)	Wall Thickness (inci)
1	RN-A	2	1,939	2000	0,218
2	RN-B	2	1,939	1850	0,218
3	RN-C	2	1,939	1950	0,218
4	RN-X	2	1,939	1400	0,218
5	RN-50	2	1,939	1100	0,218
6	RN-65	2	1,939	600	0,218
7	RN-105	2	1,939	2450	0,218
8	RN-129	2	1,939	1400	0,218
9	RN-135	2	1,939	1900	0,218
10	RN-151	2	1,939	1800	0,218
11	RN-166	2	1,939	1800	0,218
12	RN-175	2	1,939	1950	0,218
13	RN-206	2	1,939	1800	0,218

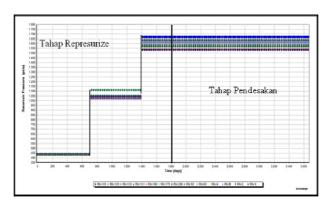
Tabel 3. Rincian Flowline

Berdasarkan skema model dan perancangan peralatan yang telah dibuat, maka diperlukan perancangan untuk total sistem agar mendapatkan model yang sesuai kebutuhan sesuai hasil simulasi reservoir yang telah dibuat. Pemodelan dilakukan menggunakan simulator produksi, seperti diilustrasikan pada **Gambar 6**. Sedangkan hasil static run dapat dilihat pada **Gambar 7** dan **Gambar 8**.

Dari beberapa kali *static run* simulasi, pada akhirnya didapatkan model jaringan dan fasilitas permukaan injeksi CO₂ yang paling optimal seperti terlihat pada **Gambar 7** sebagai Tahapan awal injeksi CO₂ dan **Gambar 8** yang merupakan Tahapan akhir injeksi CO₂, dengan rincian kebutuhan alat sebagai berikut:


- 1. Diperlukan 2 (dua) buah tanki penyimpan CO_2 masing-masing dengan diameter 6,10 m panjang atau tinggi 16, 20 m untuk dapat memasok CO_2 cair dengan laju sebesar 316.000 lbs/jam (maksimum rate).
- 2. Diperlukan 1 (satu) buah separator dengan volume 21,38 m³, berdiameter 1,981 m tinggi 6,934 m dengan tekanan kerja 300 psig.
- 3. Diperlukan *pipeline* dengan diameter 3-4 inci untuk instalasi di dalam *injection plant* dan *flowline* berdiameter 2 inci dengan rincian seperti ditunjukkan pada **Tabel 3**.
- 4. Diperlukan pompa injeksi dengan daya 22 hp. Penggunaan daya pompa lebih kecil dari nilai optimum sebesar 28 hp dikarenakan adanya batasan besarnya tekanan kepala sumur maksimum sebesar 295 psig pada laju injeksi CO₂ sebesar 10 stb/d, sedangkan dengan daya 22 hp masih mampu mentransfer CO₂ cair pada laju injeksi sebesar 1300 stb/d dengan tekanan kepala sumur 200 psig untuk menghasilkan tekanan reservoir sebesar 1750 psig (target re-pressurized), sedangkan penggunaan daya 28 hp justru akan melebihi target tekanan reservoir.

Kinerja Model Jaringan dan Fasilitas Permukaan


Static run dari model jaringan dan fasilitas permukaan injeksi CO₂ membuktikan bahwa model simulasi dapat berjalan sesuai target yang diinginkan. Namun untuk membuktikan bahwa model jaringan dan fasilitas permukaan injeksi CO₂ dapat memberikan kinerja secara utuh untuk tahap re-pressurized dan tahap pendesakan maka uji secara

dinamis harus dilakukan. Hasil simulasi secara dynamic run untuk tahap re-pressurized dan pendesakan dapat dilihat pada **Gambar 9** dan **Gambar 10**.

Gambar 9. Hubungan Laju Alir Injeksi CO2 vs Waktu Sebagai Hasil *Dynamic Run* Tahap Re-pressurized dan Pendesakan Injeksi CO₂

Gambar 10. Hubungan Tekanan Reservoir vs Waktu Sebagai Hasil *Dynamic Run* Tahap Re-pressurized dan Pendesakan Injeksi ${\rm CO_2}$

Kesimpulan dan Rekomendasi

Kesimpulan

- 1. Diperlukan 2 (dua) buah tanki penyimpan CO₂ masing-masing dengan diameter 6,10 m panjang atau tinggi 16, 20 m untuk dapat memasok CO₂ cair dengan laju sebesar 316.000 lbs/jam (maksimum rate).
- 2. Diperlukan 1 (satu) buah separator dengan volume 21,38 m³, berdiameter 1,98 m tinggi 6,93 m dengan tekanan kerja 300 psig.
- 3. Diperlukan *pipeline* dengan diameter 3-4 inci untuk instalasi di dalam injection plant dan *flowline* berdiameter 2 inci sepanjang 22.000 meter.
- 4. Diperlukan pompa injeksi dengan daya 22 hp.
- 5. Pemodelan Jaringan dan Fasilitas Permukaan injeksi CO₂ untuk Lapisan F pada Lapangan J baik secara *static run* maupun *dynamic run* telah memberikan hasil sesuai target.

Rekomendasi

- 1. Mengingat pelaksanaan injeksi CO₂ cair memerlukan temperatur yang cukup rendah, maka perlu dilakukan studi lebih lanjut mengenai teknik insolasi untuk dapat menjaga temperature operasi lapangan tetap rendah.
- 2. Mengingat CO₂ dapat memicu terjadinya korosi bila terdapat air, maka perlu dilakukan studi lanjut mengenai material pipa dan peralatan operasi lain untuk implementasi lapangan agar korosi dapat dihindari.
- 3. Perlu dilakukan studi penggunaan CO₂ gas untuk injeksi reservoir dalam rangka peningkatan perolehan migas (EOR)

Daftar Pustaka

- Green.W.D. dan Willhite. Paul G., 2003, *Enhanced Oil Recovery*, Chemical and Petroleum Engineering University of Kansas.
- Kristanto, D., 1998, *Injeksi Air*, Jurusan Teknik Perminyakan, Fakultas Teknologi Mineral, UPN "Veteran", Yogyakarta.
- Kristanto, D., dkk., 2012, Penyusunan Plan of Further Development Full Scale CO2, LPPM UPN "Veteran" Yogyakarta
- Lake, L.W., 1989, Enhanced Oil Recovery, Englewood Cliffs, Prentice Hall, New Jersey.
- Latil, Marcel, 1980, Enhanced Oil Recovery, Graham Trotman Ltd, London.
- Thakur, C.G., Satter, A., 1998, *Integrated Waterflood Asset Management*, PennWell Publishing Company., Tulsa, Oklahoma,
- Hermawan, Y. D., dkk., 2012, Preliminary Feasibility Studi Untuk Penerapan CO₂ Flooding, LPPM UPN "Veteran" Yogyakarta

Lembar Tanya Jawab Moderator: Andri Cahyo Kumoro

Penanya : Hendriyana

Pertanyaan : Bagaimana standar validasi bahwa model dianggap layak?

Jawaban

Hasil studi sebelumnya yaitu studi simulasi reservoir menyatakan bahwa recovery dapat meningkat sebesar 4,5 – 5 % bila tekanan reservoir dapat dikembalikan pada kondisi tekanan reservoir awal. Oleh karena itu dalam studi ini perancangan model harus diuji mampu menginjeksi CO₂ hingga tekanan reservoir awal sebesar 1700 psig.

- Dari uji statis membuktikan dengan perancangan alat mampu bekerja pada tekanan 1780 psig.
- Dari uji dinamis, tekanan reservoir sebesar 1700 psig dapat dicapai dengan 6 tahapan kurang lebih selama 3 tahun.
- Injeksi CO₂ ke dalam reservoir tidak dapat langsung dilakukan hanya 1 tahap dengan tekanan langsung besar, karena terjadi *back pressure*.