FAQs APC Submit a Manuscript

Search in Medwell

Search

Home About Us For Authors For Subscriber Publication Ethics

Journals

Contact

Home / Journals / Journal of Engineering and Applied Sciences / Archive / Volume 12 Issue 13, 2017

Journal of Engineering and Applied Sciences (2022 Volume 17)

Number of issues per year: 24

ISSN: 1816-949x (Print)

sub-like the substituted in the

In Press Current Issue Archive

Daniyar Abilzhanov, Tokhtar Abilzhanuly, Vladimir Golikov, Anuarbek Adilsheyev and Asem Alshurina

Fatty ACID Composition of Biological Active Additive

Gulmira Kenenbay, Urishbay Chomanov, Tamara Tultabaeva, Gulzhan Zhumalieva, Torgyn Zhumalieva and Aruzhan Shoman

Main Features of Freezing of Mare's Milk

Tamara Tultabayeva, Urishbay Chomanov, Bakhtiyar Tultabayev, Aruzhan Shoman, Mira Zhonyssova and Dana Aitimova

Justification of the Tractor Fleet Range for the Agricultural Complex of Kazakhstan

A. Usmanov, V. Golikov, V. Astafyev, J. Utemuratov, M. Ploxotenko and S. Bobkov

A New Text Encryption Technique on Elliptic Curve Cryptography

Wrya Karim Kadir, Omed Hassan Ahmed and Mohammed Rafiq Namiq

Editors Guide

Archive (Volume 12 Issue 13, 2017)

Media Introduction to Practical Tool using Android-Based Augmented Reality Technology

S.Si Hata Maulana

Face and Vein Identification Using LBP, LDiP and LDNP as Local-Feature Descriptors

Daniel Setiadikarunia, Riko Arlando Saragih and Bharma Benjamin

Development of Interactive Simulation Game Cleaning the Trash Using Leap Motion Controller

Iwan Sonjaya and Insan Kamalia Rahman

Development of Universal Pick-Up Chopper for Harvesting of Chopped Hay and Haylage

Non-Destructive Method of Electron Concentration De-Terminationin Discharge Tubes

V.K. Sveshnikov and A.V. Kurenshikov

Bandwidth Optimization in Tor Nodes through Frame Configuration in Hidden Services

P. Salcedo, Octavio J., Forero R. Julian A. and E. Vera-Parra Nelson

Application of Nanostructured $_{0.19}$ Ba(NO $_3$) $_{2^{-}0.81}$ KNO $_3$: CeO $_2$ for Solid Oxidefuel Cell

S. Shashi Devi

"Designing Impact Indicators of the Information and Communications Technology in the Higher Education Institutions"

Juan M. Sanchez C., Cesar Hernandez and Juan P. Rodriguez M.

Correlation between Type-A Personality and Risky Driving Behavior

Ari Widyanti and Frisca Sutanto

Profiling the Educational Development in Indonesia Using a Fuzzy Clustering Approach

Lizda Iswari

Psychological and Emotional Capacity Strengthening Program Development and Effectiveness Study for Independence of Single Mothers with Children

Ki-Jung Kang and Su-Sun Park

The Effects of Aqua Rehabilitation Exercise on Body Shape and Visual Analogue Scale in Elderly Women

Kim Do-Jin and Kim Jong-Hyuck

Street Image of Traditional Street: The Case of Pecinan Street, Magelang, Indonesia

Arif Budi Sholihah

Justification and Development of the Method for Differentiation of "Frozen-Thawed" Cycles of Fish Based on Differential Scanning Calorimetry

A. Mateyeva, R. Uazhanova, I. Saranov, S. Shakhov, B. Kutsova, I. Kuznetsova and I. Glotova

Nikolay V. Prodan, Pavel V. Bulat and Vladimir V. Upyrev

Experimental Analysis of Diamond Pentamaran Model with Symmetric and Asymmetric Hull Combinations

Yanuar, Ibadurrahman, M.H. Faiz and M.H. Adib

Architecture and its Impacts on Children's Happiness and Satisfaction in the Sport Spaces

Nima Deimary and Mohammadi Mohammadi

Experimental Analysis of Electrical Modes in a Residential Estate Electrical Power Supply System

Mikhail A. Averbukh, Evgeniy V. Zhilin and Petr V. Roschubkin

Proposals for the Establishment or Improvement of the Existing Regional Structures to Support Small and Midsize Business in the Russian Federation

P.K. Konstantinovich

Obstacles Use e-Learning Faced by Faculty Members in Saudi Arabia

Walid Oassim Owaider

Efficient Virtual Machine Migration Using Open Source Hypervisor

Garima Rastogi and Rama Sushil

Optimization of City Passenger Transport Routes in the Regional Centers of Russia

A.N. Novikov, A.A. Katunin, M.V. Kulev and A.V. Kulev

New Method of Choosing Ground Motion Prediction Equations in Probabilistic Seismic Hazard Analysis

Mostafa Mahmoudi, Mohsenali Shayanfar, Mohammad Ali Barkhordari and Ehsan Jahani

Anthropomorphous Type Robot Control System Research Tests Results

A.A. Bogdanov, A.A. Shponko, N.V. Novoseltsev, M.V. Krasnobaev and O.V. Tolstel

The Interaction of Oncoming Compression Shocks

Mechanical Properties Investigation of Glass/Fiber Reinforced Vinyl Ester/Clay Nanocomposites Fabricated by Vacuum Baq Molding

A.R. Setoodeh and N. Sokhandani

Good Governance in Disaster Preparedness in Emergency Cases

Ratih Puspitaningtyas Faeni

Implementation of the Ethics and Independence in the Production Process of Program Television 'Journalism Invetigation'

Umaimah Wahid and Suwadi

Teacher Trainee's Apprehension Towards Teaching Practice in Schools

Azizah Rajab, Faizah Mohd Nor, Wan Zarina Wan Zakaria, Roziana Shaari, Hamidah Abdul Rahman and Intan Farhanan Che Mansor

The Understanding among Students Toward the Importance of Restraining the Tongue in Accordance with the Quran

Mohamed Akhiruddin Ibrahim, Zulkifli Mohd Yusoff, Azizah Abdul Majid and Fatin Wahidah Safiai

The Student's Perception on Science of Qur'an Course: A Comparative Study between Islamic Public Universities

Mohamed Akhiruddin Ibrahim, Zulkifli Mohd Yusoff, Adnan Mohamed Yusoff, Abdul Qadir Usman Alhamidy, Mohammad Hikmat Shaker, Shahirah Sulaiman and Nur Sakina Razli

Algebraic Problem Solving: Teacher's Practices Towards Teaching and Learning

Nor`ain Mohd Tajudin, Marzita Puteh, Mazlini Adnan, Mohd Faizal Nizam Lee Abdullah and Amalina Ibrahim

Regulatory Framework and Environmental Management of the Compact Fluorescent Lamps

Maria Gabriela Lucena, Leadina Sanchez, Carmen Vasquez and Amelec Viloria

A Study on the Relationship Between the Organizational Commitment and Intention of Implementation of Internal Employees in Professional Sport Team on the Type of CSR Activities

Il-Gwang and Kim

Meaning of Recovery of Drug Addicts: Focus Group Study

Azizah Rajab, Faizah Mohd Nor, Wan Zarina Wan Zakaria, Roziana Shaari, Hamidah Abdul Rahman and Dalialh Amir Narayanan

Exploring Language Anxiety among Primary School Students

Azizah Rajab, Faizah Mohd Nor, Wan Zarina, Wan Zakaria, Roziana Shaari, Hamidah Abdul Rahman and Nurzulaikha Mohamed Ariff

The Notion of Student Learning in Problem-Based Learning (PBL) Business English Course (BEC) in a Malaysian University

Suraini Mohd-Ali

Gyun-Young Kang, Youn-Sil Kim and Se-Jin Ju

Estimation of CO₂ Emissions from Meat Consumption in Indonesia

Supriyanto

Gold Mineralization in Paningkaban Areas Gumelar Sub-District, Banyumas Regency, Central Java

Heru Sigit Purwanto, Herry Riswandi and Dedi Fatchurohman

An Investigation of Attachment Factors to Digital Product

Yeon-Hee Hwang and Jai-Beom Kim

Enhanced Feature for Short Document Classification

Ali Abdulkadhim Hasan, Sabrina Tiun, Maryati Mohd Yusof, Umi Asma` Mokhtar and Dian Indrayani Jambari

Examining Motivation among Higher Learning Undergraduates

APC Submit a Manuscript

Search in Medwell

Search

Home About Authors Subscriber Ethics Journals Contact

Home / Journals / Journal of Engineering and Applied Sciences / Editorial Board

Journal of Engineering and Applied Sciences (2022 Volume 17)

Number of issues per year: 24

ISSN: 1816-949x (Print)
ISSN: 1818-7803 (Online)

In Press Current Issue

Archive Editors

Guide

Editorial Board

Director of Publications

Muhammad Kamran

Editorial Board Members

Dr. Dimitris Kanellopoulos	Greece
Ahmed A. Hamoud	Yemen
Dr Murat Karakus	Turkey
Dr Oleg Makarynskyy	Australia
Dr ZEDIRA Hamma	Algeria
Dr. A.M.S. Hamouda	Qatar
Dr. Adel M. Alimi	Tunisia
Dr. Afaq Ahmad	Oman
Dr. Amir Nassirharand	Iran
Dr. Angelo Basile	Italy
Dr. Baowen Xu	China
Dr. Bensafi Abd El Hamid	Algeria
Dr. Bin Xu	China
Dr. Byung-Gyu Kim	Korea

Dr. Cesim Atas	Turkey		
Dr. Chien-Ho Ko	Taiwan	Dr. Miklas Scholz	United Kingdom
	Greece	Dr. Minggen Cui	China
Dr. Christopher J. Koroneos		Dr. Mohamad Y. Jaber	Canada
Dr. Chunzhao Liu	China	Dr. Mohamed Younes El Bouti	Morocco
Dr. Coskun Hamzacebi	Turkey	Dr. Nam H. Tran	Australia
Dr. Daoud I. Zatari	France	Dr. Oke Sunday Ayoola	Nigeria
Dr. Dipankar Pal	India	Dr. Ozgur Kisi	Turkey
Dr. Elif Derya Ubeyli	Turkey	Dr. P. Predeep	India
Dr. Ercan Kahya	Turkey	Dr. Pavan Kumar	India
Dr. Fabian I. Ezema	Nigeria	Dr. Qiang Ji	USA
Dr. Govindhan Dhanaraj	USA	Dr. Radka Vaníčková	Czech Republic
Dr. Guibing Zhu	China	Dr. Sabah A. Abdul-Wahab Al-Sulaiman	Oman
Dr. H-S Shen	China	Dr. Sabeha Barzan Farhod	Iraq
Dr. Hai-Bin Duan	China	Dr. Shahram Ariafar	Norway
Dr. Haitao Liu	USA	Dr. Siamak Hoseinzadeh	South Africa
Dr. Haiwen Liu	Germany	Dr. Steven Sheng-Uei Guan	United Kingdom
Dr. Hao Yi	China	Dr. Tariq Jamil	Oman
Dr. H�seyin Aksel Eren	Turkey	Dr. Ugur Ulusoy	Turkey
Dr. Isaac Elishakoff	USA	Dr. Yaser Dahman	Canada
Dr. Isik Yilmaz	Turkey	Dr. Yong Hong Wu	Australia
Dr. Jadambaa Temuujin	Mongolia	Dr. Yugang YU	The Netherlands
Dr. Jasvir Singh	India	Dr. Yunus BİÇEN	Turkey
Dr. Ji-Huan He	China	Dr. Zhenya Yan	China
Dr. Justin Zhan	USA	Dr. Zine Eddine Baarir	Algeria
Dr. K.W. Chau	Hong Kong	Dr.N.S Marimuthu	India
Dr. Ling WANG	China	Dr.V.Sivasubramanian	India
Dr. Lykourgos Magafas	Greece	Ebaa A. Azooz	Iraq
Dr. MAHDI HOSSEINI	China	lman Isho Gorial	Iraq
Dr. Maode Ma	Singapore	Karwan Hama Faraj Jwamer	Iraq
Dr. Marcin Marek Kamiński	Poland	Lubos Smutka	Czech Republic
Dr. Mark J. Kaiser	USA		

Mansoor Maitah	Czech Republic
Oluwumi Adetan	Nigeria
Osama Basim Al-saffar	Iraq
Prof Dr. Rosziati Ibrahim	Malaysia
Prof. Ali Allahverdi	Kuwait
Prof. C. S. Bagewadi	India
Prof. Dr. Ahmed Masmoudi	Tunisia
Prof. J. M. Feliz Teixeira	Portugal
Prof. Jan Awrejcewicz	Poland
Prof. Jean Deprez	France
Prof. M. Jumah	Jordan
Prof. Magdy El-Tawil	Egypt
Prof. Milorad Bojic	Serbia
Prof. Onwaree Ingkatecha	Thailand
Prof. T. Sree Renga Raja	India
Prof. Yskandar Hamam	France
Prof.Jaime Cuauhtemoc Negrete	Mexico
Professor Dr. Ho Soon Min	Malaysia
Sajjad Sattai	Iran

Medwell Publications

Solomiia Fedushko

Privacy Policy Terms & Conditions Contact us

CONTACT DETAILS

medwellonline@gmail.com

Ukraine

+92 322 22 22 345

Design and power by Medwell Web Development Team. © Medwell Publishing 2023 All Rights Reserved

ISSN: 1816-949X

© Medwell Journals, 2017

Gold Mineralization in Paningkaban Areas Gumelar Sub-District, Banyumas Regency, Central Java

Heru Sigit Purwanto, Herry Riswandi and Dedi Fatchurohman Faculty of Meaning, Geological Engineering, University of Pembangunan Nasional Veteran, Yogyakarta, Indonesia

Abstract: Hydrothermal alterations formed in the research area are carefully grouped into three types of alteration zoning and they are argillic alteration, propylitic alteration and sub-propylitic alteration. The mineralization then is carefully classified as pyrite (FeS₂), chalcopyrite (CuFeS₂), galena (Pbs), bornite (Cu₅FeS₄). In the research area, the mineralization process is controlled by geological structure such as fault and joint. The appearance of the mineralization is abundant and can be found many fulfilling the joint zone mainly shear joint trending Northeast-Southwest and Northwest-Southeast, the direction of joint sharpness measured in the field relatively trending North-South. This study will emphasize on the measurement and detailed analysis to know more about the gold mineralization process and other minerals controlled by structures patterns. The structural control analysis can really be a good helping hand in locating the mineralized areas because basically the activity and geological structure control process are corridor for magma and the its rest compound that brings minerals, so, the methods of mineral ores exploration by structure control can be used in determining ore gold mineralized deposits precipitate on gold deposits system and other minerals on a different area.

Key words: Hydrothermal, alteration, structure, mineralization, deposits

INTRODUCTION

Patterns and models of geological structures is crucial in determining the where abouts of gold mineralization and other ore deposits at a certain area and when the patterns and models of geological structures are already known, then if gold mineralization and ore being found, it will be easier to determine its existence (Goryachev and Pirajno, 2014). This area is an example area that the gold mineralization can be found relatively well in Central Java which until today is still being explore to obtain the existence of economical gold deposits.

Gold mineral and its accompanying minerals contained or crystallized in the veins of quartz (the magma residue/late magmatic) at the fracture/joint lines both in the tension fracture and shear fractures (shear zones) as well as the fault lines (fault zones). Quartz veins structure follows the pattern of fractures and faults in the research area that is trending Northwest-Southeast, Northeast-Southwest, North-South and West-East. Based on analysis regional structure, Paningkaban and its surrounding areas are a tectonic shift patterns Sumatra and Java tectonic pattern (Condon *et al.*, 1996).

From the preliminary results, the geological structure and its relationship with mineralization and gold deposits

in the Paningkaban area and its surrounding shows that there is an indication that the gold mineralization in quartz veins controlled by geological structure pattern. It is based on some researchers review results that the AAS analysis result on a sample of quartz veins in tension and compression fracture shows Au element (gold) is relatively high.

Generally, based on the selected structural lines in the Paningkaban area and its surroundings show that the structure pattern of the fractures and quartz veins are trending NW-SE (Northwest-Southeast), NE-SW (Northeast-Southwest), N-S (North-South) and some E-W (East-West). Furthermore, this research proposal will continue the study measurement and detailed analysis in the alignment area to obtain the certainty of any gold deposits and models that controlled by the structure patterns in such area.

MATERIALS AND METHODS

The methodology of the research is focusing in the secondary data collecting along with some previous studies results both published and unpublished. The primary data begins with landsat imagery and topography maps analysis, then followed by surface mapping

(surface) with data collecting such as geology, outcrop observation, geomorphology, geological structures (faults, fractures and folds), alteration mineralization areas, quartz veins as well as taking rock samples for further analysis.

The equipments used in this research are geological compass, geological hammer, GPS, loupe and others. Mapping stages include; secondary data study in this designated area, morphology and topography observation, position measurement and rock samples collecting and also infrastructures and roads observation. Data processing stage has been carried out by the track and geological observation location map, geological map, geomorphology map, hydrology pattern map, alteration mineralization track map and alteration mineralization zoning map making. In the end all maps, analysis and interpretations are being combined together into the final report.

Geology: Based on the Majenang geological map sheets (Kastowo, 1975), geological structures are found in the form of fault, fold, straight alignment and fracture, involving Oligo-Miocene aged rocks up Holocene epoch. Faults are generally trending Northwest-Southeast to the Northeast-Southwest. The type of faults are thrust fault, normal fault and shear fault both sinistral and dextral and also involves rock aged Oligo-Miocene to Pleistocene, thrust fault is generally forming an arc showing slope variation of the fault plane to South until West direction whereas normal faults can be found scattered in local area. The pattern of folds are trending Northwest-Southeast with a slipped axis. The alignment that allegedly supposed to be fault section have a pattern spread such as fault patterns and generally trending Northeast-Southwest with few Northeast-Southwest which in some place they were intersect. The fractures are generally found and well-developed on tertiary and pleistocene rocks.

Tectonics in this area is at least having two periods which results in a different structure. The first structure occurs in middle miocene and produce thrust feature followed by the intrusion of andesite and basalt. Formation Jampang, Pemali, Rambatan, Lawak and Kalipucang limestone are folded and faulted especially forming normal faults trending Northwest-Southeast and Northeast-Southwest. The second period took place on Plio-Pleistocene epoch, produces strike slip fault and a thrust fault trending Northwest-Southeast and Northeast-Southwest. The Plio-Pleistocene tectonics period faults are formed generally in the boulder faults forms. Geophysical data shows that this latter tectonic activity is intensified back some normal faults (Asikin et al., 1992).

The geomorphology of research area is dominated by sloped hills that steep and relatively trending Northeast-Southwest and Northwest-Southeast with the erosion level about weak until strong. In general, the landscape is controlled by lithology, geological structure and processes of erosion factors. Classification then this research area can be divided into 4 original form units (volcanic, structural, karst, fluvial) and 10 units of land forms, namely volcanic hills landform unit, volcanic plateau landform unit, intrusion hill landform unit, Anticlinal Hill landform unit, Sinklinal valley landform unit, sloped Sinklinal Valley landform unit, Faulted Valley landform unit, Monoclinal hills landform unit, Eroded and sloped karst landform unit and Alluvial plain landform unit.

Based on data collection in the form of initial interpretation, previous research data, field data and laboratory analysis, the column stratigraphy of research area is being generated by the sequence of lithologies following the age from old until recent time. Basic naming technique on each lithology on the research area refers to Indonesian Stratigraphy Cipher (SSI) at 1996 by naming the unofficial unit based on the characteristics of the dominant lithology.

Based on the result of field data collection and analysis which has been carried out in the laboratory, stratigraphy study area was divided into 6 unofficial lithostratigraphy units and 2 litodem with the sequence of an old rock to young as follows: Halang volcanic breccia unit (TMB), Halang sandstone unit (TMBP), Kumbang andesite lava unit (TMA) andesite intrusion (TMI), Tapak volcanic breccia unit (TPBB), Tapak sandstone unit (TPBP), Tapak limestone unit (TPBG) and Alluvial (Qa).

and mineralization: Alteration mineralization process is an altering process in a rock on its chemical, physical and others as a result of a process with hot solution media influence. In this case, the rock which is have been influenced or changed known as wallrock. While the process that happen on the wallrock known as wallrock alteration process which is a chemical process that changes the original rock by hot flowing solution medium. After all, the most important aspects in the rock alteration and mineralization is the presence of fractures in the rock (channelway) which can be the path to discharge the hot solution to the surface and consequently, interact with the wallrock and the result is some new mineral deposits. The association of these new minerals is usually known as a type of alteration.

Rock lithology conditions in the research area are also included in the category in experiencing the process of alteration and minerallization, making the study area was being divided into three zones of alteration, namely: argillic zoning, propylitic zoning and sub-propylitic zoning. This determination is based on the megascopic observation in the field using the helping tools such as loop and mineralography (poles). The alteration zones temperature range in the research area refer to the range of temperature and pH.

Argillic alteration: This alteration zones occupy $\pm 10\%$ from the total of the research area and the relatively located at western part of the research area. This alteration zoning spread relatively trending Southeast-Northwest. This zoning is generally giving some impression of the grayish white to dark gray, milky until cream and sometimes slightly reddish color. Possess hard-soft characteristic, sticky and fatty streak felt on the hand skin. This alteration is generally found in the Halang sandstone unit that cannot being identified the original form caused by the alteration and there is no trace of primary mineral in the wallrock body. This assumes that this type of alteration relatively change the rock with medium-strong intensity. This alteration type is also found in several places in conjunction with the quartz vein along with the sulfide minerals in a form of pyrite and chalcopyrite.

Megascopically on the field, the set of alteration minerals seen in outcrop location of this type of alteration in the research area is dominated by a set of clay minerals which can be seen and felt through its texture, color and streak. The alteration minerals contained in these alteration zones include: kaolinite, illite, quartz and chlorite. In addition, the presence of sulfide minerals are relatively occurring in this zone is in the form of pyrite and others. The observation point location of this type of alteration in the research area (Fig. 1).

Propylitic alteration: This alteration zones occupy ±9% from the total of the research area and the relatively located at western part of the research area. This alteration zoning spread relatively trending Southeast-Northwest and in the outside of former argillic alteration zone. This zoning is generally giving some impression of strong greenish white gray to green to blackish brown color. Possess hard-soft characteristic. This alteration is generally found in the Halang sandstone unit that cannot being identified the original form caused by the alteration and there is no trace of primary mineral in the wallrock body. This assumes that this type of alteration relatively change the rock with medium-strong intensity. This alteration type is also found in several places in conjunction with the quartz vein along with the sulfide minerals in a form of pyrite, chalcopyrite, galena and this alteration semilar with at Tindikala-Boton area (Gouet et al., 2013).

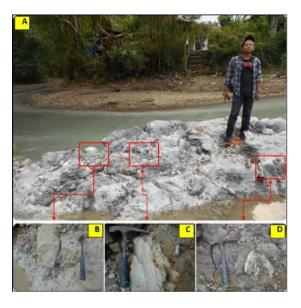


Fig.1: a) The appearance of argillic alteration type outcrops on the location of the observations 9 (Coordinates: X: 278,872, Y: 9,179,848, elevation 160 m); b) the appearance of a collection of dominance clay minera; c) quartz veins containing sulfide minerals such as pyrite and d) quartz veins embedded in the body of rock that dominated by clay minerals. Direction of the image; outcrop N 160°E, parameter N 141°E

Megascopically on the field, the set of alteration minerals seen in outcrop location of this type of alteration in the research area is dominated by a set of minerals chlorite, calcite, kaolin, illite, quartz and clay-sized minerals which can be seen and felt through its texture, color and streak. In addition, the presence of sulfide minerals are relatively occurring in this zone is in the form of pyrite and others. The observation point location of this type of alteration in the research area (Fig. 2).

Sub-propylitic alteration: This alteration zones occupy $\pm 16\%$ from the total of the research area and the relatively located at Western part of the research area. This alteration zoning spread relatively trending Southeast-Northwest and in the outside of former propylitic alteration zone. This zoning is generally giving some impression of greenish gray, gray to light green and brownish color possess hard characteristic. This alteration is generally found in the Halang sandstone unit and can be identified its original. This assumes that this type of alteration relatively change the rock with weak intensity. This alteration type is also found in several places in conjunction with the quartz vein along with the calcite veins.

Fig. 2: a) The appearance of propylitic alteration type outcrops in the location of the observation 20 (Coordinates: X: 280,074, Y: 9,180,125, elevation 153 m); b) the appearance of a collection of dark green chlorite minerals dominance, kaolin, quartz and the montmorillonite mineral. Direction of the image; outcrop N 284°E, parameter N 254°E

Fig. 3: a) The appearance of sub-propylitic alteration type outcrops on the location of the observation 13 (Coordinates: X: 279,666, Y: 9,180,616, elevation 148 m); b) the appearance of sulfide minerals pyrite in quartz veins (quartz veins) and wallrock which has been altered and shows the chlorite minerals. Direction of the image; outcrop N 290°E, parameter N 315°E

Megascopically on the field, the set of alteration minerals seen in outcrop location of this type of alteration in the research area is dominated by aset of minerals chlorite, kaolin, calcite, quart and clay-sized minerals (clay) which can be seen and felt through its texture, color and streak. In addition, the presence of sulfide minerals are relatively occurring in this zone is in the form of pyrite (Fig. 3).

Mineralization in the research areas: Mineralization found in the research area is relatively associated to quartz veins (veins or veinlets) in the Halang sandstone unit as well as on the intrusion body in the study area. Ore mineralization contained in research area such as sulfide minerals such as: pyrite (FeS₂), chalcopyrite (CuFeS₂), galena (Pbs) and bornite (Cu, FeS₄) (Fig. 4).

Fig. 4: The photograph of sample collection in the research area, Paningkaban village, Gumelar District, Banyumas Regency, Central Java

RESULTS AND DISCUSSION

Structural geology results and analysis: Geological structures analysis is carried out in the megascopic and mesoscopic scale. Both analyses have an important role in the understanding and analysis of geological structures in all the research area (Davis and Hippertt, 1998).

Macroscopic analysis performed by interpreting the straightness alignment in the SRTM topographic maps images. Straightness alignment data is then processed into the program named DIPS, making the a rosette diagram showing the direction of alignment obtained from the reflection of geological structure traces direction in the research area.

The straightness alignment data obtained from the SRTM image interpretation: the general direction of the geological structure traces direction alignment in the research area which is relatively trending N 305°E (Northwest-Southeast) and N 055°E (Northeast-Southwest) that supposed to be the traces of geological structures either fault or fold axis alignment.

Results of the analysis of AAS (Atomic Absorption Spectroscopy) or atomic absorption spectrophotometry is used to determine the content of sulfide mineral elements contained in a sample betuan. The analysis shows increase in sulfide mineralization which is characterized by the abundance of the elements Cu, Pb, Zn, Ag and Au, some places elements of Au increases compared with other elements, this same with Jangglengan Area.

CONCLUSION

Hydrothermal alteration which is formed in the research area is grouped into three types of alteration zoning named argillic alteration, propylitic alteration and sub-propyllitic alteration. Mineralization found in research area is pyrite (FeS₂), chalcopyrite (CuFeS₂), galena (Pbs) and bornite (Cu₅FeS₄). Macroscopic structural analysis in the research area based on the direction of past geological structure traces alignment in the form of fault, fold axis lineament that relatively trending N 305°E (Northwest-Southeast).

In the research area, mineralization process is controlled by geological structures such as faults and fractures. An area where many abundant mineralizations found is fractures area especially shear fracture that generally trending Northeast-Southwest and Northwest-Southeast with the direction of fractures sharpness is measured relatively trending North-South. Alteration and mineralization found in the surrounding Sadahayu village as well as in the Paningkaban village. Areas with lithological interaction between igneous and breccia deposits potentially have a feature as a gold carrier deposit.

ACKNOWLEDGEMENTS

Research titled Gold Mineralization in Paningkaban Areas Gumelar Subdistrict, Banyumas Regency, Central Java, corresponds to the official document of the Director of Research and Services Community No. 0094/E5.1/PE/2015 dated January 16, 2015 number 8862 about decision of research grants and dedication to society with leading research universities scheme, then

the researchers would like to thank: Director of Research and Community Services, Directorate of General Higher Education, Ministry of Education and Culture.

REFERENCES

- Asikin, S., A. Handoyo, B. Pratistho and S. Gafoer, 1992.

 Banyumas regional geological map sheet (1308-3).

 Geological Research and Development Centre,
 Indonesia.
- Condon, W.H., L. Pardyanto, K.B. Ketner, T.C. Amin and S. Gafoer *et al.*, 1996. Map sheet Banjarnegara-Pekalongan geological regional (1408-2, 1407-5). Geological Research and Development Centre, Indonesia.
- Davis, B.K. and J.F.M. Hippertt, 1998. Relationships between gold concentration and structure in quartz veins from the Hodgkinson Province, Northeastern Australia. Miner. Deposita, 33: 391-405.
- Goryachev, N.A. and F. Pirajno, 2014. Gold deposits and gold metallogeny of Far East Russia. Ore Geol. Rev., 59: 123-151.
- Gouet, D.H., T.N. Mbarga, A. Meying, S.P. Assembe and A.D.M.M. Pepogo, 2013. Gold mineralization channels indentification in the Tindikala-boton area (Eastern-Cameroon) using geoelectrical (DC&IP) methods: A case study. Intl. J. Geosci., 4: 643-655.
- Kastowo, 1975. Map sheet majenang regional geology (10/XIV-B). Geological Research and Development Centre, Indonesia.