Pore Fractal Dimensions and Coal Facies Role in the Adsoption of Methane Gas, a Case Study on Coal for Tanjung Formation, Arang Alus Area, Binuang District, Tapin Regen

by Basuki Rahmad

Submission date: 03-Apr-2023 02:03PM (UTC+0700)

Submission ID: 2054399805

File name: ng Formation, Arang Alus Area, Binuang District, Tapin Regen.pdf (5.85M)

Word count: 3316
Character count: 19977

Proceedings of

International Symposium on Earth Science and Technology 2021

November 25 - 26, 2021 Shiiki Hall

Kyushu University, Fukuoka, Japan

Organized by

Cooperative International Network for Earth Science and Technology (CINEST)

Sponsored by

Leading Enhanced Notable Geothermal Optimization (LENGO)

Science and Technology Research Partnership for Sustainable Development (SATREPS)

Japan Science and Technology Agency (JST)

Japan International Cooperation Agency (JICA)

JSPS Core-to-Core Program

Cooperative Program for Resources Engineering (CoPRE)

Assisted by

The Mining and Materials Processing Institute of Japan

Joint hosting by Resources Recycling Cluster in Kyushu University Institute for Asian and Oceanian Studies (Q-AOS)

Supported by

Mining and Materials Processing Institute of Japan (MMIJ) Kyushu Branch **MMIJ-Division of Coal Mining Technology**

Greetings from Cooperative International Network for Earth Science and Technology (CINEST)

We are facing with global environmental problems with problems on resources depletion at behind. In particular, the rapid increases in mineral resources and energy consumptions have cast a shadow over the sustainability of human activities. The CINEST was founded in 2008 to enhance cooperative studies and activities by young researchers and engineers, because their boldly tackles must be keys and absolute foundation to solve problems found on the earth, especially in Asia and Africa. I would like to emphasize to young researchers that performing research "by hand" rather than "by manual" may develop their potential to find new

This international symposium started from 2008 cooperating with The JSPS International Training Program during 2008 to 2012, supported by Mitsui-Matsushima Co., Ltd. from 2013 to 2020, and supported by Leading an Enhanced Notable Geothermal Optimization (LENGO) Project of Science and Technology Research Partnership for Sustainable Development (SATREPS) from 2021. The important objective of the symposium is strong networking of young researchers to enhance international collaboration to solve both of global and domestic problems on mineral resource and environment.

Finally, I would like to sincerely thank all of the organizations and participants, and believe the symposium will provide fruitful successes for all.

Welcome to "International Symposium on Earth Science and Engineering 2021".

Organizing Committee (CINEST)

Yasuhiro Fujimitsu (Kyushu University, Japan)

Vice-Chairs:

Yuichi Sugai (Kyushu University, Japan) **Budi Sulistianto**

(Institute Teknologi Bandung, Indonesia) Vladimir Kebo

(VŠB - Technical University of Ostrava, Czech Republic) Xiaoming Zhang (Liaoning Technical University, China)

Members:

Keiko Sasaki (Kyushu University, Japan) Hideki Shimada (Kyushu University, Japan) Akira Imai (Kyushu University, Japan) Takeshi Tsuji (Kyushu University, Japan) Yasuhiro Yamada (Kyushu University, Japan) Rudy Sayoga Gautama (Institute Teknologi Bandung, Indonesia) Pavel Stasa (VŠB - Technical University of Ostrava, Czech Republic) Thitisak Boonpramote (Chulalongkorn University, Thailand) Sugeng Surjono (Gadjah Mada University, Indonesia) Wisup Bae (Sejong University, Korea) Nguyen Xuan Huy

Secretariat:

Akihiro Hamanaka (Kyushu University, Japan)

(Ho Chi Minh City University of Technology, Vietnam)

y. Fujimitsu Yasuhiro Fujimitsu

CINEST Chair

Advisory Committee

Chair:

Hideki Shimada (Kyushu University, Japan)

Vice-Chairs:

Naoki Shikazono (The University of Tokyo, Japan) Agung Harijoko (Gadjah Mada University, Indonesia)

Members:

Aryo Prawoto Wibowo

(Institute Teknologi Bandung, Indonesia)

Hikari Fujii (Akita University, Japan)

Katsuaki Koike (Kyoto University, Japan)

Hiroshi Takahashi (Tohoku University, Japan)

Naoki Hiroyoshi (Hokkaido University, Japan)

Takehiko Tsuruta

(Hachinohe Institute of Technology, Japan)

Altantuya (Mongolian University of Science and Technology, Mongolia)

Mingwei Zhang

(China University of Mining and Technology, China)

Nuhindro Priagung Widodo

(Institute Teknologi Bandung, Indonesia)

Arif Widiatmojo

(National Institute of Advanced Industrial Science and Technology, Japan)

Atsushi Sainoki (Kumamoto University, Japan)

Shinji Matsumoto

(National Institute of Advanced Industrial Science and Technology, Japan)

Sugeng Wahyudi

(NITTOC CONSTRUCTION CO., LTD, Japan)

Editorial and Awarding Committee

Chair:

Takeshi Tsuji (Kyushu University, Japan)

Members:

Takashi Sasaoka (Kyushu University, Japan) Akihiro Hamanaka (Kyushu University, Japan) Naoko Okibe (Kyushu University, Japan) Hajime Miki (Kyushu University, Japan) Moriyasu Nonaka (Kyushu University, Japan) Kotaro Yonezu (Kyushu University, Japan) Hideki Mizunaga (Kyushu University, Japan) Jun Nishijima (Kyushu University, Japan) Tatsuya Wakeyama (Kyushu University, Japan) Saeid Jalilinasrabady (Kyushu University, Japan) Toshiaki Tanaka (Kyushu University, Japan) Tindell Thomas David (Kyushu University, Japan) Nguele Ronald (Kyushu University, Japan) Mitsuo Matsumoto (Kyushu University, Japan) Arata Kioka (Kyushu University, Japan) Tatsunori Ikeda (Kyushu University, Japan) Takehiro Esaki (Kyushu University, Japan)

Steering, Publication and **Fund Committee**

Chair:

Jun Nishijima (Kyushu University, Japan)

Members:

Takashi Sasaoka (Kyushu University, Japan) Kotaro Yonezu (Kyushu University, Japan) Akihiro Hamanaka (Kyushu University, Japan) Tindell Thomas David (Kyushu University, Japan) Mitsuo Matsumoto (Kyushu University, Japan) Arata Kioka (Kyushu University, Japan) Tatsunori Ikeda (Kyushu University, Japan)

Nov. 25, 2021	
9:00~ 9:10	Opening Session
9:10~ 9:45	Plenary Lecture I: Quantitative Analysis of Nano-porous Microstructures Naoki Shikazono (The University of Tokyo)
9:45~ 10:20	Plenary Lecture II: Basic Geological Survey to Lower Exploration Risk of Rare Geothermal Manifestation Prospectus Area Agung Harijoko (Universitas Gadjah Mada)
10:20~ 10:40	Coffee Break
10:40~ 12:00	Technical Sessions I
12:00~ 13:20	Lunch
13:20~ 15:00	Technical Sessions II JPSRE Special Session
15:00~ 15:20	Coffee Break
15:20~ 17:40	E-Poster Session Advanced Research Network for Biohydrometallurgy of Double Refractory Gold Ore

Nov. 26, 2021	
10:20~ 12:00	Technical Sessions III
12:00~ 13:20	Lunch
13:20~ 15:00	Technical Sessions IV
15:00~ 15:20	Coffee Break
15:20~ 16:40	Technical Sessions V
16:40~ 17:10	Awards Ceremony* & Closing Session

^{*} Best Papers, Best Presentations and Best Posters will be announced at the Awards Ceremony.

Contents

Paper No.	Paper Title	Authors	Page
Prenary I	Quantitative Analysis of Nano-porous Microstructures	Naoki Shikazono	1
Prenary II	Basic Geological Survey to Lower Exploration Risk of Rare Geothermal Manifestation Prospectus Area	Agung Harijoko, Mochamad Nukman	2
01	Effect of the Seam Dip Angles in Inclined Extra-Thick Coal Seam Mine	Ulaankhuu Batsaikhan, Takashi Sasaoka, Hideki Shimada, Akihiro Hamanaka	4
02	Estimation of Rock Mass Properties Based on a Modified Geological Strength Index (GSI) and State of Kartsification	Onyango Joan Atieno, Takashi Sasaoka, Akihiro Hamanaka, Hideki Shimada, Dyson Moses, Dintwe Tumelo	10
03	An Open Pit Mine Design for Gold Mining Development in Laos, PDR	Seelae Phaisopha, Hideki Shimada, Takashi Sasaoka, Arkihiro Hamanaka, Sunthron Pumjan, Songwut Artittong, Phanthoudeth Pongpanya, Patthana Bounliyong	16
04	Study of Slope Stability of Tailings Dam Height Expansion from Elevation (RL) 2000 m to RL 2035 m at Hidden Valley Mine, Papua New Guinea	Las Kuri, Takashi Sasaoka, Hideki Shimada, Akihiro Hamanaka, Dyson Moses	21
05	Near-solidus evolution of the ilmenite-bearing Mazua Ultramafic Massif, NE Mozambique: Clues to the emplacement conditions	David A. B. Unganai, Akira Imai, Ryohei Takahashi, Daud L. Jamal, Andrea Agangi	27
06	Petrography and Fluid Inclusion Microthermometry of Skarn-type Copper Mineralization from STD-11 Drill Hole in the Phnom Malu Area, Northern Cambodia	LIM Pagna, IMAI Akira, YONEZU Kotaro, TINDELL Thomas, KONG Sitha	33
07	Host Rock and Ore Geochemistry of the Nanlia and Makorongo Gold Prospects, Mozambique Belt, Northeastern Mozambique: Implications for Ore Genesis	Manuel Nopeia, Akira Imai, Ryohei Takahashi, Daúd Jamal, Andrea Agangi, Kotaro Yonezu, Thomas Tindell	39

	-		
08	Mechanism of mineralization and alteration, on the Washington vein, National Belle, and Argentine vein, Silverton caldera, Colorado	Ryotaro Ichiki, Thomas Tindell	45
09	Early Study of Inventory and Evaluation of Geoheritage Pacitan "Gems of Java", Indonesia	Nazwa Khoiratun Hisan, Pius Artdanno Bernaldo, Ludovicus Damardika Jasaputra, Alviani Permatasari, Arhananta, Aditya Rizky Wibowo, Agung Prayoga, Nur Alif Yusuf Putra Karlina	50
10	Effect on Deformation of Surrounding Ground in New Pipe Jacking Method with Different Excavation Shape	Yukiko Shiraishi, Hideki Shimada, Akihiro Hamanaka, Takashi Sasaoka, Fumihiko Matsumoto, and Tomo Morita	56
11	Study on the Mechanical Properties of Fiber-Cement-Stabilized Soil Using Waste Gypsum Board Paper	Yu SATO, Tomoaki SATOMI and Hiroshi TAKAHASHI	61
12	Study on Mechanical Properties of Cemented Soil Reinforced by Empty Fruit Bunch (EFB)	Delima Canny Valentine Simarmata, Tomoaki Satomi and Hiroshi Takahashi	65
13	Experimental investigation on running resistive forces and soil deformation by running of single grouser on soft sandy ground	Hiroaki NAKAO, Tomoaki SATOMI and Hiroshi TAKAHASHI	71
14	Numerical Simulation in Modelling the Laboratory Scale of Double Disc Cutter Excavatability Using the Three-Dimensional Finite Element Method	Hayati Agustini, Nuhindro Priagung Widodo and Tri Karian	77
15	Evaluation of Pillar Stability in Underground Coal Mine under Weak Geological Condition in Indonesia	Hiroto Hashikawa, Sasaoka Takashi, Akihiro Hamanaka, Hideki Shimada, Ichinose Masatomo	83
16	Study on the influence of blasting vibration due to bench down of blasting in open-pit mines	Sho Tsurukawa, Takashi Sasaoka, Akihiro Hamanaka, Hideki Shimada, Yoshiaki Takahashi, Tei Saburi	87

17	Impact of Geological Structure on Mining-induced Deformation of Rock Slope in An Open-cut Quarry	Cheng Zhang, Amagu Amagu clement, Jun-ichi Kodama, Atsushi Sainoki, Satoshi Ogawa, Chika Umeda, Yoshiaki Fujii, Daisuke Fukuda	90
18	Analysis of Slope Geometry Effect on Slope Stability of Laterite Nickel Open Mine With 3-Dimensional and 2-Dimensional Limit Equilibrium Method in Static and Dynamic Conditions	Thedy Senjaya, Nuhindro Priagung Widodo and Muhammad Zaini Arief	96
19	Effect of Blasting Geometry and Water on Velocity of Detonation of Heavy ANFO Explosive	Ganda Marihot Simangunsong	102
20	Effect of moisture on spontaneous combustion characteristics of lignite	Wei DONG, Yuichi SUGAI, Hemeng ZHANG, Yongjun WANG, Xiaoming ZHANG, Kyuro SASAKI	107
21	Applicability of AE Monitoring for Estimating Gasification Zone in Underground Coal Gasification (UCG)	Yuki Ando, Akihiro Hamanaka, Ken-ichi Itakura, Takashi Sasaoka, Hideki Shimada, Jun-ichi Kodama, Gota Deguchi	113
22	Pore Fractal Dimensions and Coal Facies Role in the Adsorption of Methane Gas, a Case Study on Coal for the Tanjung Formation, Arang Alus Area, Binuang District, Tapin Regency, South Kalimantan	SUGENG, Sari BAHAGIARTI, Heru SIGIT PURWANTO, Basuki RAHMAD	117
23	Ancient-Modern Sangatta Deltaics and Its Implication to Coal Spliting and Washout of Middle Seam, Sangatta, East Kalimantan, Indonesia	Basuki RAHMAD, Munir Zein Damar PANDULU, SUGENG, EDIYANTO, Mochamad Ocky Bayu NUGROHO, Yody RIZKIANTO	122
24	Assessing the geophysical enablers for the Olkaria's East and Southeast fields huge expansion	Bett Gilbert, Fujimitsu Yasuhiro	127
25	Unraveling the subsurface architectural design of the Olkaria geothermal reservoir using 2D and 3D MT Data Inversion	Philip Omollo, Jun Nishijima, Yasuhiro Fujimitsu	136
26	Magnetotelluric MT Survey in Nord-Ghoubbet Geothermal Field (Djibouti)	Haissama Osman Ali, Jun Nishijima, Yasuhiro Fujimitsu	143

	_		
27	ASSESSMENT OF THE CURRENT RESERVOIR CONDITIONS OF MOMOTOMBO GEOTHERMAL FIELD, NICARAGUA.	Kevin Gutierrez, Yasuhiro Fujimitsu, Mitsuo Matsumoto	149
28	Kinetics of the early-stage deposition of siliceous scale on metal plates: a case study at Dieng geothermal power plant	Saefudin JUHRI, YONEZU Kotaro, Agung HARIJOKO, YOKOYAMA Takushi	153
29	Subsurface Resistivity Imaging of a Geothermal Field by Means of Impedance Tensor and Magnetovariational Data Analysis	Maryadi Maryadi and Hideki Mizunaga	159
30	Optimum working fluid selection of proposed Takigami binary geothermal power plant	Reiji Mizoguchi. Saeid Jalilinasrabady, Alvin Kiprono	164
31	Energy and exergy analysis of a single effect geothermal absorption chiller	Alvin Kiprono Bett, Reiji Mizoguchi, Saeid Jalilinasrabady	168
32	The Preliminary Investigation on Geothermal Hot Spring, Te Tek Pus in Oral District, Kampong Speu Province, Cambodia	Sokheng Chork, Muoy Yi Heng, Ichhuy Ngo,and Phanny Yos	172
33	Advances in the use of Phanerochaete chrysosporium in Mycohydrometallurgical Pretreatment of Double Refractory Gold Ores: A Review of Preg-Robbing Reduction of Carbonaceous Materials	Grace Ofori-Sarpong, Clement Owusu and Richard K. Amankwah	177
35	Improving gold recovery in carbonaceous gold ores using blanking agents	Clement Owusu, Selorm Mensah, Konadu Kojo Twum, Grace Ofori-Sarpong, Keiko Sasaki and Richard K. Amankwah	181
36	Investigating the impact of temperature on the degradation of sulfide matrix during the biooxidation of potential double refractory gold concentrates	D.X Makaula, Kojo T. Konadu, E. Opitz, M. Smart, Keiko Sasaki, S.T.L. Harrison	184
37	Sequential Biotreatment of Extremely Refractory Gold Ores Using Laccase	Ryotaro Sakai, Cindy, Kojo T. Konadu, Diego M. Mendoza, Richmond Asamoah, Keiko Sasaki	187

38	Effects of Common Heavy Metals on Laccase Activity for Enzymatic Degradation of Carbonaceous Matter in Double Refractory Gold Ores	Cindy, Diego M. Mendoza, Kojo T. Konadu, Hirofumi Ichinose and Keiko Sasaki	191
39	Gold Determination in Double Refractory Gold Ores: Extraction Methods and Analytical Techniques	Diego M. Mendoza and Keiko Sasaki	193
40	Precipitation behavior of Magnetite	Hirano Hiroto, Yonezu Kotaro associate professor	196
41	Gulf Basalt mapping using sensitive bands for Landsat 8 in Nord-Ghoubbet geothermal field.	Samod Youssouf Hassan, Kotaro YONEZU	202
42	Monitoring in the early stage of silica scale formation	Arisato Kaito, Saefudin Juri, Yonezu Kotaro, Kiyota Yumi, Ueda Akira, Yokoyama Takushi	207
43	A study of geochemical characterization of rock samples from Fiji mine sites: A necessary approach to improve sustainability in the mineral sector.	Apete Soro, Toshifumi Igarashi	213
44	Comparison of Landsat-8 and Sentinel-2 Imagery for Identifying Hydrothermal Alteration in a Vegetated Area	Arie Naftali Hawu Hede, Syafrizal and Dzaki Fakhri Khairo	217
45	Rheology of silica nanoparticle stabilized pickering emulsion for fracking fluid application	Mukolwe Mboya, Yuichi Sugai and Ronald Nguele	221
46	Enhancing Surfactant Desorption through Low Salinity Water Post-Flush during Enhanced Oil Recovery	Ichhuy Ngo, Kyuro Sasaki, Liqiang Ma, Ronald Nguele and Yuichi Sugai	225
47	Source Rock Characterization and Evaluation in Battambang province, Western Tonle Sap Basin, Onshore Cambodia.	HENG Ratha, Chandeoun ENG, Sopheap PECH, Kimhouy OY, Tina THORN, Vechheka Oeur	234
48	Reservoir Characterization of Sandstone and Limestone in Northern and Western Tonle Sap Basin, Onshore Cambodia	Chitra Buth, Chandoeun Eng, Sopheap Pech, Kimhouy Oy, Tina Thorn and Vechheka Oeur	238

49	Experimental study on surface soil CO ₂ flux in abandoned goaf of Haizhou Open-pit Mine	Yongjun Wang, Qian ZHENG, Xiaoming ZHANG, Hemeng ZHANG, Yuchi SUGAI, Kyuro SASAKI	244
50	Deep Learning approach for Modeling Land Use/Land Cover Change Using Remote Sensing Techniques	Muhammad Salem, Naoki Tsurusaki	250
51	Application of a new robust impedance estimator based on Hilbert-Huang transform for magnetotelluric method	Hao Chen, Hideki Mizunaga, Toshiaki Tanaka , Gang Wang and Maik Neukirch	253
52	Estimation of Elastic Wave Velocity in Digital Rocks: Insight from Feature Extraction of Pore Structure Using Convolutional Neural Network	Koki Shige, Takeshi Tsuji, Tatsunori Ikeda and Kazuki Sawayama	257
53	Seismic Traffic footprint identification based on AI techniques	Ahmad B. AHMAD, Takeshi TSUJI	261
54	Investigation of a sulfite reagent as a depressant of chalcopyrite in flotation of copper and molybdenum	Yuki Semoto, Gde Pandhe Wisnu Suyantara, Hajime Miki, Keiko Sasaki, Tsuyoshi Hirajima, Yoshiyuki Tanaka, Kumika Ura	265
55	Synthesis and characterization of g- C_3N_4 @artificial converter slag composites for photocatalysis under visible light toward water remediation	Takumi Inoue, Chitiphon Chuaicham and Keiko Sasaki	267
56	Organic leaching of spent Mo/Co-catalyst	Phann Idol, Naoko Okibe	269
57	Activated carbon-assisted bioleaching of three types of Cu/As sulfide concentrates	Kaito Hayashi, Yuji Aoki, Takahiro Suwa, Tsuyoshi Hirajima, Keiko Sasaki, Naoko Okibe	271
58	Study of autogenous carrier flotation technique for finely ground chalcopyrite particles – a review	Muhammad Bilal, Mayumi Ito, Kanami Koike, Vothy Hornn, Fawad Ul Hassan, Sanghee Jeon, Ilhwan Park, Naoki Hiroyoshi	274
59	A REVIEW OF GOLD EXTRACTION FROM ARSENIC/ANTIMONY BEARING ORES	Takunda Joseph Mhandu, Naoki Hiroyoshi, Mayumi Ito, Ilhwan Park, Sanghee Jeon	278

60	Functions of physically adsorbed Fe(III) and structurally doped Fe(III) in montmorillonite/ TiO ₂ composite for photocatalytic degradation of phenol	Li Zhang, Chitiphon Chuaicham, and Keiko Sasaki	282
61	A study on the water injection method of Falcon-Knelson concentrator	Ryuhei Matsuoka, Mayumi Ito, Sanghee Jeon, Ilhwan Park, Naoki Hiroyoshi	284
62	Enhanced magnetic separation of finely-ground rare earth minerals by oil agglomeration	Yuki Kanazawa, Mayumi Ito, Naoya Sato, Sanghee Jeon, Ilhwan Park and Naoki Hiroyoshi	287
63	Computational Study for Influence of Viscosity Ratio and Capillary number on Relative Permeability Value in a 2-phase Flow System	Natanael Suwandi, Fei Jiang, Takeshi Tsuji	291
64	Estimating subsurface structure of Mars using ambient noise from InSight seismic data	Marina Orita, Tatsunori Ikeda, Takeshi Tsuji and Kota Mukumoto	295
65	The Use of High-resolution Ambient Noise Surface Wave Tomography to Map Sedimentary and Tectonic Structures in the Kinki Area, Southwestern Japan	Bokani Nthaba, Tatsunori Ikeda, Takeshi Tsuji, Hiro Nimiya, and Yoshihisa Iio	299
66	Imaging lithological boundary in the Hishikari mine area by using autocorrelation analysis of seismic data from mine explosions	Tarek S. Imam, Tatsunori Ikeda, Jiro Uesugi, Yoshinori Okaue, and Takeshi Tsuji	303
67	Subsurface Reservoir Monitoring System using Continuous and Controlled Artificial Seismic Source	Ryosuke Matsuura, Takeshi Tsuji and Tatsunori Ikeda	307
68	Simulation of a new innovative semi-aerobic landfill design optimized using disconnected perforated pipes	Cynthia Nandwa Malava Takayuki Shimaoka and Teppei Komiya	311
69	Fundamental Study on the Effect of Oxygen Concentration on Acid Mine Drainage Generation	Kan Otsubo, Akihiro Hamanaka, Hideki Shimada, Takashi Sasaoka, Shinji Matsumoto	315
70	Geochemical characterization of a tailings dam releasing neutral mine water	Kenani Malama, Thaw Dar Wunn, Toshifumi Igarashi	319

71	Paleovolcanic Groundwater Basin System in Batur Mountain and Surrounding, Gunungkidul Regency, Yogyakarta Province	Alviani Permatasari, Pius Artdanno Bernaldo, Ludovicus Damardika Jasaputra, Nazwa Khoiratun Hisan, Arhananta, Agung Prayoga, Aditya Rizky Wibowo, Nur Alif Yusuf Putra Karlina	323
72	Preliminary Study on Lithology, and Geochemical Characteristics for Gold and Copper Deposits in Area 1, Phnom Sro Ngam, Kompot Province, southwest Cambodia	Kov Rathanak, Sirisokha Seang, Kakda Kret, Oy Kimhouy, Sophea Boeut, Jaydee Ammugauan, Sitha Kong, Kotaro Yonezu, Koichiro Watanabe, Tola Sreu, and Seangleng Hoeu	330
73	Preliminary study on lithology, hydrothermal alteration and soil/rock geochemistry for gold and copper at Area 6, Phnom Sro Ngam Tenement, Chhouk District, Kampot Province, Cambodia	Suy try Ly, Sirisokha Seang, Kakda Kret, Oy Kimhouy, Sophea Boeut, Jaydee Ammugauan, Sitha Kong, Kotaro Yonezu, Koichiro Watanabe, Tola Sreu, and, Seangleng Hoeu	334
74	Preliminary study on lithology, hydrothermal alteration, and soil and rock geochemistry for gold and copper at Area 6, Phnom Sro Ngam Tenement, Chhouk District, Kampot Province, Cambodia.	Suy try Ly, Sirisokha Seang, Kakda Kret, Oy Kimhouy, Sophea Boeut, Jaydee Ammugauan, Sitha Kong, Kotaro Yonezu, Koichiro Watanabe, Tola Sreu, and, Seangleng Hoeu	338
75	Preliminary Study on Lithology, Hydrothermal Alteration, and Geochemical Characteristics for Gold and Copper Deposits in (Area 1), Phnom Sro Ngam, Kompot Province, southwest Cambodia	Kov Rathanak, Sirisokha Seang, Kakda Kret, Oy Kimhouy, Sophea Boeut, Jaydee Ammugauan, Sitha Kong, Kotaro Yonezu, Koichiro Watanabe, Tola Sreu, and Seangleng Hoeu	343
76	Distribution of rare earths minerals of the Semarule Syenite Complex, Botswana.	Noriaki. T, Akira. I	348
77	Characteristics of Epithermal Gold Deposits in Cineam, West Java, Indonesia	Aldio Kresna Pambayu, Syafrizal, and Arie Naftali Hawu Hede	353

78	Hydrothermal alteration mapping from ASTER and Landsat-8 in Kampot Fold Belt, southwest Cambodia	Chhayo Chan, Kakda Kret, Sirisokha Seang, Chanmoly Or, Kotaro Yonezu, Koichiro Watanabe, Sitha Kong, Reaksmey Kry, Kimhouy Oy, Seangleng Hoeun, Jaydee Ammugauan, Samnang Kong, Sophea Boeut, Tola Sreu	358
79	3-D Interpretation of Airborne Gravity Data at Wadi El Assuity, Egypt	Tamer Farag, and Hidiki Mizunaga	364
80	A Study on Visualization of Underground Roots Using	Chuichi INOUE, Hideki MZUNAGA, Toshiaki TANAKA	368
81	Example of application of a new MT time series processing method	Kazuto INOUE, Hao CHEN, Toshiaki TANAKA, Hideki MIZUNAGA	372
83	Direct utilization of geothermal energy: design of geothermal heated greenhouse	Koji Kusukawa, Negthe John, Saeid Jalilinasrabady	375
84	The Influence of Extreme Temperatures on Thermal Conductivity of the Grouting Mixture Designated for Borehole Heat Exchanger	Matej Kristek, Marek Klimesch and Patricie Zilova	377
85	Geochemical Characterization and Hydrothermal alteration of Noya Geothermal field in North-eastern Kyushu, Japan	Solomon Tekie, Kotaro Yonezu, Thomas Tindell, Sachihiro Taguchi, Akira Imai	383
86	A Game Theoretic Analysis Regarding Consensus Building of Geothermal Power Plant Development in Kyushu Area, Japan	Kotaro SHINOZAKI, Tatsuya WAKEYAMA	387
87	Optimization of geothermal power plant in Japan and Kenya depend on ambient temperature	Ryota Asayama, Saeid Jalilinasrabady, Alvin Bet Kiprono	391
88	Prototype Development of a Geothermal Reservoir Simulator Implementing the Embedded Discrete Fracture Model	Taichi Hirose, Mitsuo Matsumoto	394

89	Effects of coexisting pyrite on suppression of sphalerite in the flotation of copper-zinc sulfides	Nodoka Orii, Mayumi Ito, Kosei Aikawa, Sanghee Jeon, Ilhwan Park, Refilwe Magwaneng, Tatsuhiro Ono, Taisuke Sakakibara, Kazuya Sunada, and Naoki Hiroyoshi	398
90	A new method to detect product boundary in jig separator using pressure sensor	Naoki Sawada, Mayumi Ito, Shoko Kimura, Ilhwan Park, Sanghee Jeon, Naoki Hiroyoshi	401
91	Passive treatment of Mn/Zn-bearing mine water using Mn ²⁺ -oxidizing bacteria	Taiki Kondo, Naoko Okibe	404
92	Removal and Recovery of Au(III) by Biosorption and Biomineralization Using Persimmon Tannin Gel	Yuto NAGANEYAMA, Sho MIYASATO, and Takehiko TSURUTA	407
93	Mechanism and Control Method of Deformation in Gob-Side Entry with Thick and Competent Roof Strata	Jinshuai Guo, Liqiang Ma and Ichhuy Ngo	411
94	Effect of Normal Stress on Direct Shear Test	Ganda Marihot Simangunsong	416
95	Characterization of black vein and rocks in the Ruruno deposits	Yoki Hara, Akira Imai	419
96	The Influence of Groundwater and Thermal Conductivity on the Ground Source Heat Pump Performance in Tropical Region	Arif Widiatmojo, Youhei Uchida	424

Pore Fractal Dimensions and Coal Facies Role in the Adsorption of Methane Gas, a Case Study on Coal for the Tanjung Formation, Arang Alus Area, Binuang District, Tapin Regency, South Kalimantan

Sugeng¹, Sari BAHAGIARTI¹, Heru SIGIT PURWANTO¹, Basuki RAHMAD¹, Rivano CAHYA WARDANA²

¹Department of Geological Engineering, Faculty of Technology Mineral,
Universitas National Development "Veteran" Yogyakarta, Indonesia

²Student of Geological Engineering, Universitas National Development "Veteran"
Yogyakarta, Indonesia
Email author: basukirahmad@upnyk.ac.id;b-rahmad2004@yahoo.com

ABSTRACT

This research aims to determine the role of coal facies and the value of pore fractal dimensions on changes in the adsorption of coal methane gas. This study location is in the Arang Alus area, Binuang District, Tapin Regency, South Kalimantan Province.

As many as 4 (four) coal seams were observed, namely, seam D (oldest layer), C, B, A (youngest), each seam was sampled using the Channel Sampling method. The method for determining the facies of coal uses maceral, for calculating the value of the pore fractal dimensions using the box counting method, while gas adsorption using the Adsorption Isotherm method is carried out in Lemigas Jakarta, Indonesia.

Based on the analysis of coal facies, seams D and B are included in the Fen facies, seams C and A are included in the Wet Forest Swamp facies. The value of the pore fractal dimensions of seam D and B = 1.91 - 1.92, the value of the pore fractal dimension is 1.895 - 1.896, while the adsorption volume of methane gas in seam D and B coal = 425 - 315 Scf/ton, seam C and A = 214 Scf/ton and 431 Scf/ton.

The changes in coal facies from Fen to Forest Wet Swamp affect the changes in pore fractal dimension values and adsorption of coal methane gas. Coal in the Fen facies has a pore fractal dimension and the adsorption of methane gas is greater than in the Wet Forest Swamp facies. Mineral matter is a contaminant in the Fen facies which can cause reduced adsorption of methane gas.

Keywords: Facies, Fractal Dimension, Adsorption, Fen, and Wet Forest Swamp

INTRODUCTION

According to Mavor and Nelson (1997), that coal is a reservoir of methane gas with heterogeneous pore structures such as irregular size, shape, and distribution of pores, but nevertheless between pores are connected through the medium between pores in the matrix and cleats (coal fracturing), therefore Coal's pore structure can serve as a gas absorber (gas adsorption)and gas storage (gas content). The structure of coal pores is relatively more complex than the pore structure of conventional reservoirs such as in sandstone. The uptake value of coal methane gas both vertically and laterally in the coal seam is variable. Hal is caused by changes in maceral characteristics and the quality of coal such as: rank (reflectant vitrinite & calories), moisture content and mineral matter content. The process of methane gas in coal is the process of attaching gas molecules that are in the liquid phase on the surface of the pore through chemical and physical bonds with the amount of gas adsorption more than 95%. The thing is referred to as adsorption gas and the rest is referred to as free gas.

According to Zhang et al.(2014), characteristics of coal pore structure such as pore size, pore shape and pore distribution are interconnected. Conditions like this are caused by coal facies, namely changes in the environment of peat swamps and plant types. Therefore changes in coal facies can be to determine the maceral characteristics of coal that serves as a matrix of pores i.e. micropores, mesopores, and macropores.

Zhang et al. (2014) and Liu & Nie (2016), explained that in general the nature of coal pores (shape, distribution, and size of pores) is irregular (complex), so to know the dimensions of coal pores i.e. by means of fractal geometry analysis. Fractal geometry method is a very effective method for determining the character of the surface conditions of irregular coal pores. In general, fractal geometry analysis can be used to determine coal pores in both matrix and *cleats* (coal fracturing) (Cai et al, 2011; Wang, 2017). The use of fractal geometry analysis of coal pores can help determine the gas content and coal methane gas uptake (Liu &Nie, 2016). Thus fractal geometry analysis can be used to determine the nature of coal

pores (size, shape, and distribution of pores) so as to help find out the information on the adsorption value of coal methane gas.

SAMPLE AND METHOD

Primary data collected from the field data of four sampling locations representing coal seam A, B, C, and D. The sampling locations can be seen in the following table (Table1.)

Table 1 Location sampling coordinates

Seam Coals	Mether East	Meter North	4
A	294610	9638026	
В	294612	9638039	
C	294613	9638040	
D	294620	9638085	

Coal sample data is taken using the channel sampling method from the top to the bottom of each coal seam. Each coal seam correlated with wells at coordinates 292858,693 meters East and 9638682,718 meters North (Fig.1).

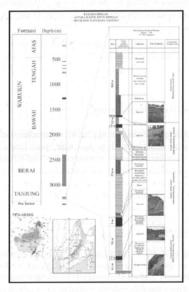


Fig.1 Correlation well log with outcrop along with number sampling

Subsequent samples were conducted laboratory tests to determine coal maceral and vitrinite reflectors using the Craic Coal Microscope.

To determine coal facies using model of diagram Diessel (1989) with Gelification Index (GI) and Tissue Preservation Index (TPI) parameters. Other parameters used to determine coal facies by knowing the value of the Ground Water Index (GWI) and

Vegetation Index (VI), these values are then plotted in a diagram made by Calder et al, 1991 modified by Zhao, 2017

The adsorption isotherm test is carried out based on the volumetric method to determine sorption capacity as a function of pressure; the gas used is methane gas (CH₄) purity 99.9%.

The relationship of volume - pressure at a certain temperature (sorption isotherm) can be used to determine the gas storage capacity and estimate the volume of released gas from the sample in line with the decrease in reservoir pressure. In general, the relationship between storage gas capacity and pressure uses the Langmuir equation:

Gs = (VLP)/(PL + P) (1) Where: Gs = Storage gas capacity, m3 / ton

P = Pressure, KPa

VL = Langmuir Volume Constant, m3 / ton PL = Langmuir pressure constant, KPa

Fractal dimension calculation is done with the following procedure: there is a stage of processing samples imagery in analysis with SEM, then samples is done scanning with a large enough current sum of 50 µA with voltage source 60 kV, 8 seconds exposure length. Images resulting from the scanning process in the form of digital images. Image of samples in the form of grayscale. The next process is to process images using the fractal program version of Sugeng, 2020 made by researchers run in Matlab software. This process distinguishes between solids and coal pores by converting the image of validity into a binary image, then thresholding. This binary image serves to distinguish between black pores and the edges of white grain solids. Each border area of the edge of the black pores is given a value of 0 pixels (black) and the edge limit of the solid pores is rated 254 pixels (white)(fig. 2). Calculation of pore fractal dimensions using the box counting method, the usual dimension is denoted by D which states the topological dimensions on each fractal object. The number of subunits or subsegments of iterations of a fractal object is denoted by N, while the length of the subsegment is denoted by r, the relationship between D, N, and r is expressed as follows: N, = (r) with takes logarithms from both segments of the equation, dimensions can be found with equations in Below:

$$D = -\lim_{r \to 0} \log N(r) / \log r \tag{1}$$

Where $log(N_0)$ is the number of squares that cover pores, log(r) is the size of the length of the pore side of the box.

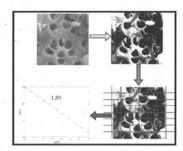


Fig.2 Procedure for Finding Pore Fractal Dimensions (D) from Example: (a). Grayscale Photo from SEM, (b) Binary Image, (c) Image in Close Box, (d) Result of Pore Fractal Dimension

RESULT AND DISCUSSION

Based on the results of calculations of Gelification Index (GI), Tissue Preservation Index (TPI) Groundwater Index (GWI) and Vegetation Index (VI) (Table 2). Diessel (1986) established a correlation between coal and environmental facies indicators according to the Gelification Index (GI) and Tissue Preservation Index (TPI) for Perm coal in the Sydney basin. TPI represents the effect of the input of wood materials and their preservation before final deposition. Increased TPI values are thought to indicate the dominance of arborescent plants where peat is formed. GI reflects water level or continuity of water availability during peat accumulation. Another common method is used to determine peat formation with Groundwater Index (GWI) and Vegetation Index (VI) (Calder et al, 1991). VI shows a many vitrinite content compared to existing mineral elements. GWI indicates the presence of water in the peat formation process.

Table 2. Results of proximate, maceral, and calculation TPI, GI, GWI, and VI

Proximate				Maceral				1		e .				
SC	Ash	VM	M	FC	Te	Des	TV	TI	Tl	Py	TPI	GI	GWI	VI
	%,Adb	%,Adb	%,Adb	%,Adb	%	%	%	%	%	%	127			
A	2.56	48.75	3.74	44.95	26.6	43.4	70	28.2	0	1.8	2.24	2.93	0.02	0.79
В	14.94	45.26	2.51	37.29	21.5	41.1	62.6	31	0.4	6.0	1.1	2.39	0.10	0.75
C	5.44	43.16	3.7	47.7	46	29	75	23.8	0	1.2	2.36	3.22	0.02	1.72
D	23.16	38.02	2.91	35.91	24.6	42.4	67	27.3	1.7	4	1.11	2.77	0.06	0.81

SC = Sample coal, VM = Volatile matter, M = Moisture, FC = Fix carbon, Te = Telocolinite

Des = Desmocolinit, TV = Total Vitrinite, TI = Total Inertinite, TL = Total Liptinite, Py = Pyrite

TPI = Tissue Preservation Index, GI = Gelification Index, GWI = Ground Water Index, VI = Vegetation Index

Based on the plot of the GWI and VI value diagrams of the modified Calder et al (1991) diagram Zhao et al (2017) the coal fccies in the Tanjung Formation can be grouped into two types of coal facies:

a) Wet Forest Swamp: is a peat formation zone or *mire* controlled by variations in the water surface. These facies are characterized by relatively moisture coal with a slight herbaceous percentage peat filler plant. Wet forest swamp are conditions where peat formation is far from the sea with dominant woody plants, this is evidenced by the analysis of coal petrography of higher maceral telovitrinite composition. Coal in the area of research is included in this facies, namely: in coal seams A and C.

 b). Fen:is a peat formation zone or mire controlled by the process of rising and falling water. Plants formed at this stage are herbaceus plants that supply

the formation of peat in wet conditions. Arborecent plants very rare at this stage, plant tissues at this stage decompose very strongly. Strong decomposition leads to a reduction in micro-pores. In the facies fen at the time of the flood causes high preservation of organic sulphur which causes high sulfur content. Fen occurs as a transitional stage between herbaceous and forest swamps (Diessel, 1992), as well as the formation of peat in wet conditions, Fen is dominated by herbaceus plants based on maceral consisting mostly of desmocollinite. Coal in the area of research is included in this facies, namely:in the coal seams D and B.

Based on the results of laboratory tests on adsorption isotherm of methane gas in coal seams in the

Tanjung Formation, wet forest swamp volume of adsorption gas methana (samples coal seams A and C) the bigger more than coal in deposits in fen facies conditions (samples coal seams B and D) (Table 3).

Table 3 Results of methane gas adsorption tests fractal dimensions of pores, and coal facies

Sample	Adsorbed CH4 storage capacity at seam depth Scf/ton	Pore fractal dimentions	Coal Facies		
related a	as recieve	D	krisa Japa Anjumbu		
Seam A	294	1,896	Wet Forest Swamp		
Seam B	315	1,91	Fen		
Seam C	431	1,895	Wet Forest Swamp		
Seam D	425	1,92	Fen		

Condition Wet Forest Swamp has a larger maceral telovitrinite content compared to detrovitrinite, the ash content is less than the coal deposited in fen facies. Wet Forest Swamp shows the process of peat formation in humid plant conditions so that the process of gelification in plants containing lignin runs well as a result of the opening of plant tissues (Teichmuller, 1989), in addition to the reduced decomposition process causing the formation of mesopores and micropores that regular. The regularity of the pores causes the process of adsorption of methane gas to be greater. The process of destroying cell structure by organisms is easier to walk on shrub plants than in plants containing lignin. Although gelocolinite and corpocolinite are assumed to be derived from lignin and tannins, the more obvious macerals derived from lignin and tannins are telinite and telocolinite (Rahmad B, 2014). Facies Wet Forest Swamp in the research area the percentage of telocolinite, semifusite, and fusinite is quite large (samples coal seams A and C) means the research area at the time of peat formation the position of water is below the surface of the peat so that there will be good decomposition, in addition to the general ash the percentage is small.

Fen deposition environment has a smaller maceral televitrinite content compared to detrovitrinite, more ash content than wet forest swamp. This facies has a large GWI, this shows the process of peat formation of water logged plant conditions as a result of the gelification process in plants containing cellulose running optimally so as to cause the opening of plant tissues. Large GWI also results in process decomposition running fast causing mesopores and micropores to spread irregularly, so that the adsorption of methane gas is reduced.

The regularity and irregularity of the shape of the pores is due to the maceral composition of the vitrinite group in the wet forest swamp and fen differently. Facies Wet Forest Swamp is composed of maceral telovitrinite (33.5 - 46%) and maceral detrovitrinite (28.4-29%), Fen facies composed of telovitrinite (21.5 - 31.6%) and detrovitrinite (33.6 -42.5%). High detrovitrinite causes the coal will have the dominant primary pores, namely the pores between detritus (maceral granules) (Zhang et al, 2014). Pore detritus resulting from the process of the influence of surface water fluctuations at the time of the watering. Fluctuations in surface water cause maceral fragments to occur, as a result of which the pores between fragments are irregular.

Fractal dimensions of pores are used to describe the characteristics of pore structure (pore distribution and pore shape) (Liu and Nie,2016). The shape of the pores causes a large value of fractal dimensions of pores, regular pores have a relatively smaller pore fractal dimension value compared to irregular pores (Norsiah et al,2017). Regularity of the shape of the pores is influenced by the facies where peat is deposited, Facies Wet Forest Swamp form regular pores because it is dominated by telovitrinite so that it has fractal dimension values Small. Fen facies form irregular pores because they are predominantly maceral detrovitrinite so the fractal dimension value is relatively greater.

The relationship of fractal dimensions (D) with maceral detrovitrinite and telovitrinite in each maceral from research results show that maceral telovitrinite has a downtrend if Fractal dimensions of the pore go down, whereas maceral detrovitrinite indicates an uptrend if fractal dimensions rise at different facies conditions

The regularity of pores affects the adsorption of methane gas, this is reflected in the relationship of fractal dimensions of pores (D) with Langmuir Volume (VL) and Pressure Langmuir (PL). The relationship between the fractal dimensions of the pore with PL and VL in the Wet Forest Swamp and Fen facies has a positive correlation relationship. The correlation value between PL and the dimensions of fractal pores in wet forest swamp facies is $R^2 = 0.6010$, this relationship is weaker than coal in fen facies ($R^2 = 0.7201$).

The relationship between the volume of Langmuir and the dimensions of the fractal pore in the Wet Forest Swamp facies showed a positive correlation with the correlation value (R2 = 0.6014), while in the Fen facies the correlation value was more High (R2 = 0.7409), this relationship indicates roughness and surface irregularity of coal in methane gas adsorption (Liu and Nie,2016). Wet Forest Swamp facies roughness and irregularities

of pores are relatively smoother and regular compared to fen facies. The regularity of the pore will affect the value of the fractal dimensions of the pore, if the pores are regular it will have a smaller fractal dimension than the pores that are Irregular. Large fractal dimensions of pores will have a large adsorption of methane gas, while the fractal dimension of small pores will have a relatively smaller adsorption of methane. The presence of mineral matter in the Fen facies will cause disturbances in the adsorption of methane gas, the fen facies has large pore fractal dimensions with small gas adsorption due to mineral matter that fills the pores in coal, on the other hand the wet forest swamp facies will have relatively smaller fractal dimensions with The large adsorption is due to the absence of mineral matter that fills the coal pores.

CONCLUSION

REFERENCES

Mavor, M.J., and Nelson, C. (1977): Coalbed gas in place methodology and error summary, In Coalbed reservoir gas in place analysis, Gas Research Institute

Zhang, S., Tang, S., Tang, D., Huang, W., and Pan, Z. (2014): Determining fractal dimensions of coal pores by FHH model: problems and effects, *Journal of Natural Gas Science and Engineering*, vol. 21, pp. 929-939.

Liu, X.F., and Nie, B.S (2016): Fraktal characteristics of coal samples utilizing image analysis and gas Adsorption, *Fuel* 182, pp 314 – 322.

Cai, Y., Liu, D., Pan, Z., Che, Y., and Lin, Z. (2016): Investigation the Effects of Seepage – Pores and Fractures on Coal Permeability by Fraktal Analysis, *Transp Porous Med* 111, pages 479 – 497.

Wang, L.L. (2017): Characteristics of pore coal structure and fractal dimension of low – coal rank: a case study of lower Jurassic Xishanyao coal in the Southern Junggar Basin NW China, *Fuel*, 193, pp 254 – 264.

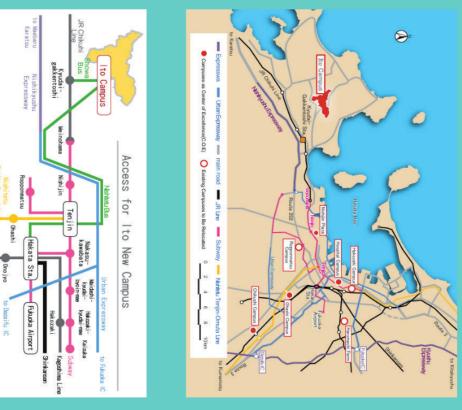
Diessel, C.F.K. (1986): "Utility of coal petrology for sequence stratigraphic analysis." *Int.J, Coal Geol*, 70 (1-3), pp. 3-3

Coal facies greatly affect the adsorption of methane gas, wet forest swamp facies are good facilities for gas adsorption

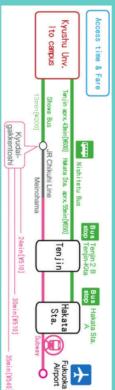
Coal pore structure (size, shape, and distribution) affects the size of the fractal dimensions of the pore, coal with a regular pore structure will cause the fractal dimension of the pore. Smaller than irregular pore structures.

The fractal dimension of the pore correlates with the adsorption of methane gas the greater the fractal dimension of the pore will cause the adsorption of methane gas to rise, vice versa.

ACKNOWLEDGMENTS


The research was carried out Due to the assistanceship by the Institute of Research and Community Service, Universitas Pembangunan Nasional "Veteran" Yogyakarta and companies of PT Tanjung Alam Raya for which the authors expressed their gratitude.

Calder, J.H., Gibbing M.R., and Mukhopadhyay P.K. (1991): "Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: Implication for the maceral-based interpretation of rheotropic dan raised paleomires". *Bull. dela Societe*


Zhao, L., Qin, Y., Cai, C., Xie, C., Wang, G., Huang, B., and Xu, C. (2017): "Control of coal facies to Adsorption – desorption divergence of coals: A case from the Xiqu Drainage Area, Gujiao CBM Block, North China," *Int. J. Coal Geol*, 171, pp. 169-184.

Teichmuller, M. (1986): Organic petrology of source rocks, history and state of the art, Advance in Organic Geochemistry, Organic Geochemistry, 10, 581 – 599.

Rahmad, B. (2013): Model Pengembangan Genesa Batubara Muara Wahau Kalimantan Timur Berdasarkan Karakteristik Maseral, Geokimia Organik dan Isotop Karbon Stabil, Disertasi ITB. Norsiah., Ilwan, A., dan Sampurno, J. (2017): Identifikasi Jenis Gambut Berdasarkan Struktur Poriporinya Dengan Menggunakan Geometri Fraktal, Prisma Fisika, vol. V, no 2.

Pore Fractal Dimensions and Coal Facies Role in the Adsoption of Methane Gas, a Case Study on Coal for Tanjung Formation, Arang Alus Area, Binuang District, Tapin Regen

ORIGINALITY REPORT

SIMILARITY INDEX

INTERNET SOURCES

PUBLICATIONS STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

16%

★ www.creet.kyushu-u.ac.jp

Internet Source

Exclude quotes

On

Exclude matches

< 10%

Exclude bibliography On