CALCULATION AND ANALYSIS RADIUS DRAINAGE FOR DEVELOPMENT OF BETUNG FIELD WELLS JAMBI SUB-BASINSOUTH SUMATERA by Basuki Rahmad **Submission date:** 03-Apr-2023 02:46PM (UTC+0700) **Submission ID: 2054422734** File name: CALCULATION_AND_ANALYSIS_RADIUS_DRAINAGE_CINEST2022.pdf (4.05M) Word count: 5742 Character count: 32279 #### **Proceedings of** ### **International Symposium on Earth Science** and Technology 2022 #### **December 1 - 2, 2022 Shiiki Hall** Kvushu University, Fukuoka, Japan #### Organized by Cooperative International Network for Earth Science and Technology (CINEST) #### Sponsored by Leading Enhanced Notable Geothermal Optimization (LENGO) Science and Technology Research Partnership for Sustainable Development (SATREPS) Japan Science and Technology Agency (JST) Japan International Cooperation Agency (JICA) JSPS Core-to-Core Program Cooperative Program for Resources Engineering (CoPRE) #### Assisted by The Mining and Materials Processing Institute of Japan Joint hosting by Resources Recycling Cluster in Kyushu University Institute for Asian and Oceanian Studies (O-AOS) **Smart Mining Special Program** Department of Earth Resources Engineering, Kyushu University #### Supported by Mining and Materials Processing Institute of Japan (MMIJ) Kyushu Branch MMIJ-Division of Coal Mining Technology © by CINEST #### Greetings from Cooperative International Network for Earth Science and Technology (CINEST) We are facing with global environmental problems with problems on resources depletion at behind. In particular, the rapid increases in mineral resources and energy consumptions have cast a shadow over the sustainability of human activities. The CINEST was founded in 2008 to enhance cooperative studies and activities by young researchers and engineers, because their boldly tackles must be keys and absolute foundation to solve problems found on the earth, especially in Asia and Africa. I would like to emphasize to young researchers that performing research "by hand" rather than "by manual" may develop their potential to find new solutions This international symposium started from 2008 cooperating with The JSPS International Training Program during 2008 to 2012, supported by Mitsui-Matsushima Co., Ltd. from 2013 to 2020, and supported by Leading an Enhanced Notable Geothermal Optimization (LENGO) Project of Science and Technology Research Partnership for Sustainable Development (SATREPS) from 2021. The important objective of the symposium is strong networking of young researchers to enhance international collaboration to solve both of global and domestic problems on mineral resource and environment. Finally, I would like to sincerely thank all of the organizations and participants, and believe the symposium will provide fruitful successes for all. Welcome to "International Symposium on Earth Science and Engineering 2022." #### **Organizing Committee (CINEST)** #### Chair: Yasuhiro Fujimitsu (Kyushu University, Japan) #### Vice-Chairs: Yuichi Sugai (Kyushu University, Japan) Budi Sulistianto (Institute Teknologi Bandung, Indonesia) Vladimir Kebo (VŠB - Technical University of Ostrava, Czech Republic) Xiaoming Zhang (Liaoning Technical University, China) #### Members: Keiko Sasaki (Kyushu University, Japan) Hideki Shimada (Kyushu University, Japan) Akira Imai (Kyushu University, Japan) Yasuhiro Yamada (Kyushu University) Takeshi Tsuji (Tokyo University) Rudy Sayoga Gautama (Institute Teknologi Bandung, Indonesia) Pavel Stasa (VŠB - Technical University of Ostrava, Czech Republic) Thitisak Boonpramote (Chulalongkorn University, Thailand) Sugeng Surjono (Gadjah Mada University, Indonesia) Wisup Bae (Sejong University, Korea) Nguyen Xuan Huy (Ho Chi Minh City University of Technology, Vietnam) #### Secretariat: Akihiro Hamanaka (Kyushu University, Japan) Y. Fujimitsu Yasuhiro Fujimitsu CINEST Chair #### **Advisory Committee** Hideki Shimada (Kyushu University, Japan) #### Vice-Chairs: Koichiro Watanabe (Japan International Cooperation Agency, Japan) Richard Diaz Alorro (Curtin University, Australia) Aryo Prawoto Wibowo (Institute Teknologi Bandung, Indonesia) Hikari Fujii (Akita University, Japan) Katsuaki Koike (Kyoto University, Japan) Hiroshi Takahashi (Tohoku University, Japan) Naoki Hiroyoshi (Hokkaido University, Japan) Takehiko Tsuruta (Hachinohe Institute of Technology, Japan) Altantuya (Mongolian University of Science and Technology, Mongolia) Mingwei Zhang (China University of Mining and Technology, China) Nuhindro Priagung Widodo (Institute Teknologi Bandung, Indonesia) Arif Widiatmojo (National Institute of Advanced Industrial Science and Technology, Japan) Atsushi Sainoki (Kumamoto University, Japan) Shinji Matsumoto (National Institute of Advanced Industrial Science and Technology, Japan) Sugeng Wahyudi (NITTOC CONSTRUCTION CO., LTD, Japan) Tatsuya Wakeyama (Tokyo Institute of Technology, Japan) #### **Editorial and Awarding Committee** #### Chair: Akira Imai (Kyushu University, Japan) Takashi Sasaoka (Kyushu University, Japan) Akihiro Hamanaka (Kyushu University, Japan) Naoko Okibe (Kyushu University, Japan) Hajime Miki (Kyushu University, Japan) Kotaro Yonezu (Kyushu University, Japan) Hideki Mizunaga (Kyushu University, Japan) Jun Nishijima (Kyushu University, Japan) Saeid Jalilinasrabady (Kyushu University, Japan) Toshiaki Tanaka (Kyushu University, Japan) Nguele Ronald (Kyushu University, Japan) Mitsuo Matsumoto (Kyushu University, Japan) Arata Kioka (Kyushu University, Japan) Tatsunori Ikeda (Kyushu University, Japan) Takehiro Esaki (Kyushu University) Akane Ito (Kyushu University) #### Steering, Publication and **Fund Committee** #### Chair: Jun Nishijima (Kyushu University, Japan) #### Members: Takashi Sasaoka (Kyushu University, Japan) Kotaro Yonezu (Kyushu University, Japan) Akihiro Hamanaka (Kyushu University, Japan) Mitsuo Matsumoto (Kyushu University, Japan) Arata Kioka (Kyushu University, Japan) Tatsunori Ikeda (Kyushu University, Japan) Takehiro Esaki (Kyushu University) | Dec. 1, 2022 | | |--------------|---| | 9:00~ 9:05 | Opening Session | | 9:05~ 9:40 | Plenary Lecture I: | | | Mining History and Engineering Education Development in Japan | | | Koichiro Watanabe (Japan International Cooperation Agency, Japan) | | 9:40~ 10:15 | Plenary Lecture II: | | | Technospheric Mining of Critical and Strategic Metals from Mine Wastes and Anthropogenic Ores | | | Richard Diaz Alorro (Curtin University, Australia) | | 10:15~ 10:40 | Coffee Break | | 10:40~ 12:00 | Technical Sessions I | | 12:00~ 13:00 | Lunch | | 13:00~ 14:40 | Technical Sessions II | | | JPSRE Special Session | | 14:40~ 15:00 | Coffee Break | | 15:00~ 16:20 | Technical Sessions III | | 15:00~ 17:20 | Advanced Research Network for Biohydrometallurgy of Double Refractory Gold Ore | | 16:20~ 16:40 | Coffee Break | | 16:40~ 18:00 | E-Poster Session | | Dec | • | ~ | 200 | |-----|---|-----|-----| | Dec | | -71 | 1// | | 9:00~ 10:20 | Technical Sessions IV | |--------------|------------------------------------| | 10:20~ 10:40 | Coffee Break | | 10:40~ 12:00 | Technical Sessions V | | 12:00~ 13:00 | Lunch | | 13:00~ 14:20 | Technical Sessions VI | | 14:20~ 14:40 | Coffee Break | | 14:40~ 16:00 | Technical Sessions VII | | 16:00~ 16:20 | Coffee Break | | 16:20~ 17:40 | Technical Sessions VIII | | 17:40~ 18:10 | Awards Ceremony* & Closing Session | ^{*} Best Papers, Best Presentations and Best Posters will be announced at the Awards Ceremony. #### Contents | Paper
No. | Authors | Paper Title | Page | |---------------|---|--|------| | Prenary
I | Koichiro Watanabe | Mining History and Engineering
Education Development in Japan | 2 | | Prenary
II | Richard Diaz Alorro | Technospheric Mining of Critical
and Strategic Metals from Mine
Wastes and Anthropogenic Ores | 3 | | 1 | LY Panhavong, Sirisokha Seang, Kakda Kret,
Kimhouy Oy, Kotaro Yonezu, Koichiro Watanabe
Tola Sreu | Lithology, hydrothermal alteration,
and ore characteristics of Area-1 in
Koh Sla, Chhouk district, Kampot
Province, southern Cambodia | 6 | | 2 | Kimhak Neak, Kakda Kret, Tola Sreu, Chanmoly
Or and Sirisokha Seang | Petrophysical and Petrographical
Studies for Characterization of
Reservoir Quality of Cambodian
Offshore: A Case Study on the
Khmer Basin in the Gulf of
Thailand | 12 | | 3 | Rahta HENG, Sopheap PECH, Sreymean SIO,
Chandeoun ENG, Chanmoly OR | Organic Matter Identification of
Black Shale in Phnom Khley,
Bokor Formation, Kampot
Province, Cambodia | 16 | | 4 | Boeurn Chanmakara, Sirisokha Seang, Kakda
Kret, Kotaro Yonezu, Koichiro Watanabe and
Khin Zaw | Geology and Hydrothermal
Alteration of Skarn Deposit in Area
4, Phnom Sro Ngam Tenement,
Chhouk District, Kampot Province,
Cambodia | 20 | | 5 | Lytheng THORNG, Chanmoly OR, Sopheap PECH, Sreymean SIO, Chandoeun ENG | Characteristics of Reservoir
Properties of Bokor Formation,
Kampot Province, Cambodia | 26 | | 6 | Sreymean Sio, Chanmoly Or, Chandoeun Eng | Review of Sedimentary Basin
Formation and Petroleum System
of Khmer Basin, Offshore
Cambodia | 30 | | 7 | Sopheap Pech, Chanmoly Or, Ratha Heng, and Chandoeun Eng | Identification of Depositional
Environment of Sediments in
Kampong-Som basin, Southern
Part of Cambodia | 35 | |----|---|--|----| | 8 | Syafrizal, Syafrizal, Andy Yahya Al Hakim,
Periska Rasma, Asti Sulastri | Geochemistry of Bangka Granite
Related to The Occurrences of
REEs:
Case Study on Alluvial and
Laterite Samples | 40 | | 9 | Syafrizal, Akmal Yahya Hidayat, Wirandika
Mayzzani Hadiana, Mirza Dian Rifaldi, and
Periska Rasma | CHARACTERIZATION OF
QUARTZ SAND IN BANGKA
AND CENTRAL KALIMANTAN
REGION AS RAW MATERIAL
FOR SOLAR PANELS | 46 | | 10 | Wanyonyi Edwin, Yonezu Kotaro, Akira Imai,
Yokoyama Takushi and Kizito Opondo | Characterization of Amorphous
Silica Scales at Flash Separators in
the Olkaria Geothermal Field,
Naivasha, Kenya | 52 | | 11 | Ryunosuke Terashi, Saefudin Juhri, Shunsuke
Miyabe, Eiki Watanabe, Kotaro Yonezu ¹ , Takushi
Yokoyama | A preliminary experiment for development of a simple evaluation method of silica scale inhibitors | 57 | | 12 | Kaito Arisato, Juhri Saefudin, Kotaro Yonezu
Shunsuke Miyabe, Eiki Watanabe, and Takushi
Yokoyama | The formation factors of silica
scale from geothermal water with
low silica concentration and near
neutral pH | 63 | | 13 | Saefudin Juhri, Kaito Arisato, Ryunosuke Terashi,
Muhammad Istiawan Nurpratama, Agung
Harijoko, Kotaro Yonezu, Takushi Yokoyama | Removal of Iron form Geothermal
Water by Activated Carbon and its
Effect on the Polymerization of
Silicic Acid at Acidic pH | 67 | | 14 | Eric O. Ansah | Mineral surface reactions controlling copper leaching in heaps | 73 | | 15 | Yuika Kawazoe, Kazuma Kimura and Naoko
Okibe | Waste Fe-sludge from the mine-water treatment plant as a promising adsorbent for As | 79 | |----|---|--|-----| | 16 | Taiki Kondo & Naoko Okibe | Biotreatment of Mn/Zn-containing mine water | 82 | | 17 | Idol Phann, Sae Yamamoto and Naoko Okibe | Selective dissolution of
molybdenum and cobalt from spent
hydrodesulfurization catalysts
using amino acid | 86 | | 18 | Daniyarov Berdakh, Gde Pandhe Wisnu
Suyantara, Hajime Miki, Tsuyoshi Hirajima,
Keiko Sasaki, Daishi Ochi, Yuji Aoki | Separation of enargite and chalcocite with H2O2 oxidation treatment using flotation method. | 89 | | 19 | Joshua B. Zoleta, Sanghee Jeon, Akuru Kuze, Ilhwan Park, Mayumi Ito, Naoki Hiroyoshi | Iron Oxide as Electron Mediator in Gold Cementation with Zero-Valent Aluminum in Gold-Copper Ammoniacal Thiosulfate Medium | 92 | | 20 | Ilhwan Park, Taito Horii, Mayumi Ito, Naoki
Hiroyoshi | Carrier magnetic separation to
recover finely ground rare earth
minerals: The effect of gravity
separation as a pre-concentration
step | 96 | | 21 | Avellyn Shinthya Sari Ratih Hardini Kusuma
Putri Esthi Kusdarini, Yudho Dwi Galih
Cahyono, Melinda Makmara | VARIATION OF COPPER
PRODUCT SIZE TO INCREASE
USING HYDROMETALURGY
METHOD | 99 | | 22 | Naoya YAGUCHI, XIAODONG LIU, Tomoaki
SATOMI and Hiroshi TAKAHASHI | Study on Relationship between Cone Index and Excavating Resistive Force for Excavation Acting on Excavator Bucket | 102 | | 23 | Riku FUNAKI, Tomoaki SATOMI and Hiroshi
TAKAHASHI | Fundamental Study on Evaluation
of Soil Quality and Water Content
for Hand-Guided Sludge Recovery
Machine | 108 | | 24 | Ryohei SUZUKI, Xiaodong Liu, Tomoaki
SATOMI and Hiroshi TAKAHASHI | Study on relationship between cone index of sandy ground and excavating resistive force for excavation acting on the blade | 112 | |----|--|---|-----| | 25 | Dyoh Try Saputra, Nuhindro Priagung Widodo,
Ganda M. Simangunsong, Yudhidya Wicaksana,
Taufiqullah, Ahmad Rohman | Analysis of Digging Forces on
Laboratory Scale Excavator | 118 | | 26 | Yoshio Udagawa Shuhei Saegusa | The Geotechnical Study on the
Quantitative Evaluation Method of
Geological Heterogeneity in
Tunnel Face | 122 | | 27 | Hiroto Hashikawa, Mao Pisith,Takashi Sasaoka,
Akihiro Hamanaka, Hideki Shimada, Ulaankhuu
Batsaikhan, and Jiro Oya | Research on Safety Pillar Width in
Longwall Mining under Weak
Geological Condition by means of
Numerical Simulation | 126 | | 28 | Ulaankhuu Batsaikhan, Phanthoudeth Pongpanya,
Munkhzorig Enkhdelger, Takashi Sasaoka, Hideki
Shimada and Ian Krop | The Study of The Correlation
Between Gate Road Direction and
In-Situ Major Horizontal Stress in
Steeply Dipping Underground
Coal Mining | 132 | | 29 | Yuichiro Aragane, Ulaankhuu Batsaikhan, Takashi
Sasaoka, Akihiro Hamanaka, Hideki Shimada | Numerical Study on Underground
Development from Open Pit
Mining at the Naryn Shukhait
Mine in Mongolia | 136 | | 30 | Yuma Ishii, Akihiro Hamanaka, Ken-ichi Itakura,
Takashi Sasaoka, Hideki Shimada, Jun-ichi
Kodama, and Gota Deguchi | Study on AE Generation from
Subbituminous Coal and Lignite in
Coal Heating Experiments | 139 | | 31 | Ichhuy Ngo, Liqiang Ma, Jiangtao Zhai,
Yangyang Wang and Tianxiang Wei | Mechanical Properties and
Microstructural Evolution of
High-Volume Fly Ash Backfill
Material Catalyzed Using CO2 | 143 | | 32 | Yongjun Wang, Qian Zheng, Wei Dong, Jinfeng
Meng, Huixin Chen, Hemeng Zhang, Yuichi
Sugai, Xiaoming Zhang, Kyuro Sasaki | Dynamic Correlation between
Surface CO2 Flux and Goaf
Spontaneous Combustion of
Haizhou Open-pit Coal Mine | 148 | |----|---|---|-----| | 33 | Hemeng Zhang, Jiafeng Fan, Zhiyu Zhang,
Yongjun Wang, Fangwei Han, Zhanming Zhang,
Xiaoming Zhang, Yuichi Sugai, Kyuro Sasaki | Numerical simulations on coal
spontaneous combustion in the gob
of U-type ventilation considering
the aging effect | 153 | | 34 | Kotaro SHINOZAKI, Tatsuya WAKEYAMA and
Jun NISHIJIMA | Agent-based Model Analysis on
the Consensus Building of
Geothermal Development from the
Viewpoint of Individual
Rationality | 157 | | 35 | Marietta W. Mutonga, Yasuhiro Fujimitsu | Geochemistry of discharged fluids
from production well MW-20B
Menengai Geothermal Field,
Kenya | 162 | | 36 | Philip Omollo , Jun Nishijima | Analysis of the Olkaria geothermal reservoir Internal structure from 3D gravity models | 168 | | 37 | Bett Gilbert, Fujimitsu Yasuhiro | Analytical description of the production decline at the Olkaria East geothermal field, Naivasha Kenya | 174 | | 38 | Deo Danava, Simon Heru Prassetyo and Ridho
Kresna Wattimena Institut Teknologi Bandung,
Indonesia | Determination of the Height and
Width of the Collapse Zone for
Shallow Tunnels | 182 | | 39 | Danu Putra, Tri Karian and Budi Sulistianto | Stope Dimension Optimization in
Marginal Vein Deposits using the
Stope Optimizer and Hill of Value
(HoV) Principle | 187 | | 40 | Ali Husain TAHERDITO, Budi SULISTIANTO,
Tri KARIAN, Nuhindro Priagung WIDODO,
Akhmad Ardian KORDA | Geotechnical Analysis of
Development Tunnel Stability At
Longwall Mine In East Kalimantan | 193 | | 41 | Devi Kamaratih, Nuhindro Priagung Widodo,
Thedy Senjaya, and Ridho Kresna Wattimena | Experimental and Analytical Study
of The Water Phreatic Level on
The Stability of Laboratory Scale
Dam Using Slide2 Software | 199 | |----|--|---|-----| | 42 | Syani Liffa SUCI, Tri KARIAN, Simon Heru
PRASSETYO, and Budi SULISTIANTO | Heap Leach Stability Analysis using PFC2D | 205 | | 43 | Francis Kwaku Darteh, Gifty Ampiah Annobil,
Alex Kwasi Saim, Patience Anna Cann, Grace
Ofori-Sarpong | Assessing the Efficiency of a
Two-Stage Chemical-Biological
Oxidation on a Double Refractory
Gold Concentrate | 209 | | 44 | Didi X. Makaula, Kojo T. Konadu, Mariette
Smart, Elaine Opitz, Susan T. L. Harrison, Keiko
Sasaki | Impact of the carbonaceous matter composition on sequential bio-pretreatment of South African double refractory gold ore (DRGO) | 213 | | 45 | Cindy, Hirofumi Ichinose and Keiko Sasaki | Multiple Additions of
Laccase-Mediator System in
Sequential Treatment of Double
Refractory Gold Ore | 216 | | 46 | Diego M. Mendoza, Hirofumi Ichinose and Keiko
Sasaki | GC-MS Characterization of
Organic Compounds in Different
Carbonaceous Gold Ores after
Sequential Extraction | 218 | | 47 | Ikumi Suyama, Kojo Twum Konadu Yuji Aoki
and Keiko Sasaki | Improvement of gold extraction by
thiourea leaching of double
refractory gold ore from aspects of
ore pretreatments and leaching
conditions | 222 | | 48 | Kojo T. Konadu, Keiko Sasaki | Effect of additives on gold extraction by cysteine | 224 | | 50 | Yuya Nakamura, Kotaro Yonezu, Akira Imai, T.
Tindell, Syafrizal | Geochemical and mineralization
characteristics of Toguraci gold
deposit in Halmahera Island,
Indonesia | 226 | | 52 | Hiroto Hiroto, Kotaro Yonezu, Takushi Yokoyama | Effect of redox condition on the precipitation of Fe oxide/hydroxide in the presence of silicic acid | 232 | |----|---|---|-----| | 53 | Shunnosuke Omachi, Kotaro Yonezu, M. Rosana,
Akira Imai | Mineralogical Characteristic of the
Heavy Sulfide Zone at the
Grasberg Porphyry Cu-Au Deposit,
Papua, Indonesia | 238 | | 54 | Michitaka Aruga, Akira Imai and Kotaro Yonezu | Geochemical modeling of boiling
phenomenon in low sulfidation
epithermal gold deposits | 242 | | 55 | Kazuki Kohama, Tatsuo Nozaki, Samuel Morfin,
Kazuhiko Shimada, Yutaro Takaya, Jun-ichiro
Ishibashi, Keiko Hattori and Kotaro Yonezu | Geochemical composition and occurrence of gold in sulfide ores at the Higashi-Aogashima Knoll Caldera hydrothermal field | 246 | | 56 | Onameditse L. Seaba and Akira Imai | Nature of ore-forming fluid and
formation conditions of the Tau
gold deposit, Tati Greenstone Belt,
Botswana | 252 | | 58 | Lisbeth Herrera, Kotaro Yonezu, Akira Imai and
Kelym Martinez | Mineralogical analysis of drilling
cuttings from geothermal well N1,
El Hoyo-Monte Galán geothermal
area, central western Nicaragua. | 258 | | 59 | Rita Gorata Ngwanaotsile, Akira Imai, Kotaro
Yonezu and Jacob Kaavera | Characterization of gold
mineralization in the Kraaipan
Greenstone Belt, Southern
Botswana | 262 | | 60 | Elian Mukti Prabowo, Nazwa Khoiratun Hisan,
Sugeng Widada, Ediyanto | Geology And Study of Sandstone
Provenance Jaten Formation,
Pandean and Surrounding Area,
Dongko District, Trenggalek
Regency, East Java | 267 | | 61 | Joan Atieno Onyango, Takashi Sasaoka, Hideki
Shimada and Akihiro Hamanaka | A Methodology for Slope Stability
Analysis in Karst-Prone Rock
Mass using Random Number
Generator and Finite Element
Analysis | 273 | |----|--|---|-----| | 62 | Yifei ZHAO, Hideki SHIMADA, Takashi
SASAOKA, Akihiro HAMANAKA | Simultaneous stochastic optimization study of open pit mining complex under uncertainty | 279 | | 63 | Auaradha Shukura Muji, Ganda Marihot
Simangunsong, and Ridho Kresna Wattimena | Selection of Blasting Design using AHP-TOPSIS | 283 | | 64 | Masato Takeuchi, Yoshiaki Takahashi, Takashi
Sasaoka, Akihiro Hamanaka, Hideki Shimada,
Shiro Kubota, Tei Saburi | Fundamental Research on
Dynamics Failure of Concrete with
Steel Reinforcement near Free
Surfaces | 288 | | 65 | Erni Irmawati, Avellyn Shinthya Sari and Faath
Ghifary Radlia Widodo | Determination of Stress Orientation of Fracture Using Rosette Diagram, Case Study of Umbulrejo Village, Ponjong District, Gunungkidul Regency, Special Region of Yogyakarta | 292 | | 66 | Muoy Yi HENG, Saranyu HENG, Chandoeun
ENG and Frederic NGUYEN | Quality assurance of Concrete pile
using Cross-hold Sonic Logging
and Soil Profile | 295 | | 67 | Aisyah Indah Irmaya, Basuki Rahmad, Deddy
Kristanto, Aris Buntoro | CALCULATION AND ANALYSIS RADIUS DRAINAGE FOR DEVELOPMENT OF BETUNG FIELD WELLS JAMBI SUB-BASIN-SOUTH SUMATERA | 300 | | 68 | Meakh Sovanborey, Yuichi Sugai | Preliminary Investigation on
Impacts of Temperature, Pressure,
Viscosity, and Solubility on
Expansion of CO2-based Foamy
Bitumen | 304 | | 69 | Yuto Noguchi, Chitiphon Chuaicham and Keiko
Sasaki | Factors improving the photocatalytic activity in Fe-doped hydroxyapatite derived from blast furnace slag | 308 | |----|---|--|-----| | 70 | Kaiqian Shu, Chitiphon Chuaicham, Yuto
Noguchi, Keiko Sasaki | Hydrothermal synthesis of Fe-doped hydroxyapatite from converter slag toward photodegradation of xanthate and reduction of Cr(VI) under visible-light irradiation | 310 | | 71 | Takumi Inoue, Chitiphon Chuaicham and Keiko
Sasaki | Synthesis and characterization of g-C3N4/ converter slag photocatalyst composites for hydrogen production | 312 | | 72 | Ryoji Ogi, Gde Pandhe Wisnu Suyantara, Hajime
Miki, Tsuyoshi Hirajima, Keiko Sasaki, Yuji Aoki,
Daishi Ochi | Study on the Effect of Sodium
Metabisulfite on Selective
Flotation of Chalcopyrite and
Molybdenite with Seawater | 314 | | 73 | Anggi Simanullang, Irwan Iskandar, Andy Yahya
Al Hakim | Analysis of Mineralogy in the
Determination of Hydrothermal
Alteration Zone in the Field of
Geothermal Patuha, Ciwidey,
Bandung | 316 | | 74 | Chheng Kim, Kakda Kret, Sirisokha Seang, Sitha
Kong, Chanmoly Or, Kimhouy Oy, Jaydee
Ammugauan, Kimhak Neak, Tola Sreu | Lithological Analysis of Koh
Nheak, Mondulkiri Province Using
Landsat-8 OLI and ASTER | 320 | | 75 | Chheuy Pothsma, Kakda Kret, Sirisokha Seang,
Sitha Kong, Chanmoly Or, Reaksmey Kry,
Kimhouy Oy, Chan Chhayo, Tola Sreu, Sokeang
Hoeun, Seangleng Hoeun, Chanmaly Chhun,
Kimhak Neak | Hydrothermal Alteration Mineral
Mapping by Integrating of ASTER
and Landsat-8: A case study in
Phnom Peam Louk, Kompong
Chhang Province, Southwest
Cambodia | 326 | | 76 | Arie Naftali Hawu Hede, Syafrizal, Mohamad
Nur Heriawan, Lina Kusumawati, and
Muhammad Alif Ikhsan | Mapping the Distribution of
Cassiterite-Associated Minerals
Using a High-Resolution Optical
Satellite Image | 332 | |----|--|--|-----| | 77 | Jovian Addo Putra, Mohamad Nur Heriawan,
Agus Haris Widayat | Geostatistical Drill Hole Spacing
Analysis for Coal Resource
Evaluation in the South Sumatra
Basin, Indonesia | 338 | | 78 | Siwi Adwitiya Hadi, Firly Rachmaditya Baskoro,
Aryo Prawoto Wibowo, Fadhila Achmadi Rosyid | Proposed Domestic Coal Price in
Indonesia considering Supply and
Demand Factors by using System
Dynamics Method | 343 | | 79 | PHUNG QUOC HUY | The Role of Coal in the
Asia-Pacific Region During the
Transitional Period | 347 | | 80 | Basuki RAHMAD, Yody RIZKIANTO
Mochamad Ocky Bayu NUGROHO, Sugeng
RAHARJO, EDIYANTO, Rozi Kurnia
RUSANDI | Coal Facies of Coal Deposit, Tekorejo-Buay Madang Area, OKU Timur Districs, South Sumatra, Indonesia. | 352 | | 81 | Mustiatin, Irwan Iskandar, Komang Anggayana, I
Ketut Ariantana, Suryantini, Sudarto Notosiswoyo | An Overview on Bali's Largest Volcanic Lake: Detecting the Source of Lake Water Using Surface Hydrogeochemical Approach | 358 | | 82 | I K Dwika Paramananda, Rudy Sayoga Gautama,
Ginting Jalu Kusuma, Sendy Dwiki, Sonny
Abfertiawan, Abie Badhurahman, Firman
Gunawan and Lionie C Butarbutar | Modeling of Acid Mine Drainage
Treatment Development for Mine
Closure (Case Study: ON2 Area,
Lati Mine Operation, Berau Coal) | 363 | | 83 | Soshi Torigoe, Akihiro Hamanaka, Hideki
Shimada, Takashi Sasaoka, Shinji Matsumoto | Reduction of Acid Mine Drainage
Generation with Reduction of
Oxygen Concentration | 369 | | 84 | Petra Adinda Tanaya Wiyadi, Nuhindro Priagung
Widodo, Ahmad Ihsan, and Fadli Zaka Waly | Numerical Simulation Study of
Controlling Air Temperature and
Humidity Affected by Mechanical
Equipment Heat Load at
Underground Gold Mine | 373 | |----|---|--|-----| | 85 | Takaaki Kunimasu, Kazuki Sawayama, Tatsunori
Ikeda, Takeshi Tsuji | Relationship between ice content
rate and elastic wave velocity of
lunar regolith simulant based on
digital rock physics | 379 | | 86 | Tomoki UCHIGAKI, Takeshi TSUJI and
Tatsunori IKEDA | Estimation of subsurface structure
and utility of Lunar Active Seismic
Profiling System (LASP) | 383 | | 87 | Sak SYN and Chandoeun ENG | Seismic Data Interpretation for
Hydrocarbon-Bearing Zones in
Northern Tonle Sap Sedimentary
Basin, Onshore Cambodia | 387 | | 88 | Tina THARN, Chandoeun ENG, and Sreymean SIO | Study of geological structure
evolution by 2D seismic data and
paleo-stress in Western Tonle Sap
sedimentary basin, Cambodia | 393 | | 89 | Shuto Takenouchi, Takeshi Tsuji, Kazuya
Shiraishi, Yasuyuki Nakamura, Shuichi Kodaira,
Gou Fujie, Kota Mukumoto | BSR-derived heat flow distribution
by automated velocity analysis in
the Nankai Trough, Japan:
Interpretation of spatial high heat
flow variation caused by geological
features | 400 | | 90 | Maryadi Maryadi, Evi Komala Sari, Ahmad
Zarkasyi, and Hideki Mizunaga | Imaging the Geothermal System of
Gunung Lawu Prospect Area Based
on the Integrated Analysis of 3-D
Magnetotelluric and Satellite
Gravity Data | 404 | | 91 | Brenda Ariesty Kusumasari, Koki Kashiwaya,
Yohei Tada, Yudi Rahayudin and Katsuaki Koike | Mineral Assemblage Optimization in Multicomponent Geothermometry Computation for Reservoir Temperature Estimation with a Case Study of Patuha Field, Indonesia | 408 | |----|---|--|-----| | 92 | Ilham Firmansyah, Irwan Iskandar and Mohamad
Nur Heriawan | Analysis of Water Characteristics
in Patuha Geothermal Field,
Ciwidey, Bandung Regency | 410 | | 93 | Jieling Wu and Mitsugu Saito | A Study on the Prediction of
Post-Earthquake Municipal Road
Recovery | 415 | | 94 | Arif Widiatmojo, Youhei Uchida | Simulation of Ground Source Heat
Pump Performance With Analytical
Borehole Heat Exchanger Model | 421 | | 95 | Shunsuke ZAIMA, Jun NISHIJIMA, Keigo
KITAMURA and Yasuhiro FUJIMITSU | Deep hydrothermal system inferred
from the MT and gravity survey in
the Hohi geothermal area, Central
Kyushu, Japan. | 425 | | 96 | Masahiro Nakamichi, Keigo Kitamura, Jun
Nishijima | Permeability Tests on Rock Cores
under High Temperature and
Pressure Conditions | 429 | | 97 | Hideya Iizuka, Jun Nishjima | Elucidation of Low Temperature
Hydrothermal System in Oita City | 432 | | 98 | Moktar Bileh Awaleh, Jun Nishijima | Gravity data analysis and
Interpretation in Arta geothermal
prospect, Djibouti | 436 | | 99 | Shimpei Nozaki | Development of 1D Occam
Inversion Program for MT Method
Using Apparent Resistivity and
Phase Data | 441 | | 100 | Fransiskus Xaverius Bimantara, Syafrizal, Arie
Naftali Hawu Hede | Characteristics of Rare Earth
Elements Enrichment in Surface
Area of Wayang Crater, West Java,
Indonesia | 447 | |-----|--|---|-----| | 101 | Leta Lestari, Ginting Jalu Kusuma, Abie
Badhurahman, Sendy Dwiki, Rudy Sayoga
Gautama, Salmawati | Various Spectral Indices for
Identifying Mine Void using
Sentinel 2 Image | 454 | | 103 | Taishi Tsubokawa, Takahiro Esaki, Ronald Nguele
and Yuichi Sugai | Development of carbon dioxide separation membranes using nanoparticles | 457 | | 104 | Armitha Tiwik Pritayanti, Putri Rizka Sania | Pumping System Planning at an
Open Mine at PT X Tambarangan
Village, Tapin District, Tapin
Regency, South Kalimantan | 457 | | 105 | Herbert A. P. Silalahi, Ginting Jalu Kusuma, Abie
Badhurahman, Rudy Sayoga Gautama,
Sendy Dwiki, and Salmawati | Geochemical Modeling of Acid Mine Drainage Generation and Neutralization in Laboratory-Scaled Kinetic Test lusing Mixing of Fly Ash and PAF Material | 460 | | 106 | Yukun Liu, Naoki Hiroyoshi, Mayumi Ito, Ilhwan
Park | Flotation of finely ground chalcopyrite in the presence of nanobubbles | 464 | | 107 | Teti Indriati, Budi Sulistijo, Arie Naftali Hawu
Hede and Mirza Dian Rifaldi | Preliminary Study of Land
Movements in Talagasari Village,
Ciamis, West Java, Indonesia, to
Help the Local Community
Conduct Independent Mitigation | 466 | | 108 | Muhammad Anggara Imam Tantowi, Nurhindro
Priagung Widodo, Tri Karian, Yudhidya
Wicaksana and Taufiqullah | Prediction of Digging Force Using
Artificial Neural Network | 470 | | 109 | Anatasya Claresta, Simon Heru Prassetyo and
Ridho Kresna Wattimena | Analysis of Support Pressure
Requirement to Minimize
Squeezing Potential in Deep
Tunnels | 474 | |-----|---|--|-----| | 110 | Ganda M. Simangunsong & Asril Fitrabuana | Evaluation of the Use of
Blast-induced Vibration Predictors
in Open Pit Coal Mine | 480 | | 111 | Mohamad Nur Heriawan, Rifki Andika, Fajar
Djihad, Andy Yahya Al Hakim, Haeruddin | Spatial Distribution of Volcanic
Products Based on Remote Sensing
Analysis and Geophysical Survey
at Southeastern Part of East Java,
Indonesia | 485 | | 112 | Sugeng Wahyudi and Tomohiko Abe | Nanobubble Technology for
Accelerating Carbonation on
Cement-based Material | 491 | | 113 | Y. Ishikawa, A. Imai, K. Yonezu, T. Tindell, M. Rosana, E. Yuningsih | Mineralization and Characteristics
of Ore-Forming Fluid in the
Grasberg Porphyry Deposit, Papua,
Indonesia | 493 | #### CALCULATION AND ANALYSIS RADIUS DRAINAGE FOR DEVELOPMENT OF BETUNG FIELD WELLS JAMBI SUB-BASIN-SOUTH SUMATERA Aisyah Indah Irmaya¹, Basuki Rahmad², Deddy Kristanto², Aris Buntoro² ¹Department of Petroleum, Faculty of Engineering, Proklamasi 45 University, Yogyakarta 55281, Indonesia ²Pembangunan Nasional Veteran University, Yogyakarta 55283, Indonesia #### **ABSTRACT** The Betung Field consists of 4 reservoir layers, namely L-2, L-3, L-4 and L-5 with the production target of the Air Benakat Formation. Based on the calculation of reserves in 2017, L-5 has Original Oil In Place of 16,531.05 MSTB. In this layer the average production is 667.65 BOPD. This paper will discuss the analysis of the radius of the drain radius based on the calculation of reserves from reservoir data and production data where this analysis is one of the strategic factors in adding wells for the development of the Betung field. This study uses a data processing methodology using Oil Field Manager (OFM) software. The output of data processing is the drain radius which is one of the strategies to determine the development of the next wells. The AI-209 well has a drain radius of 155.11 meters and a cumulative production of 37184 barrels; The AI-210 has a drain radius of 209.94 meters and a cumulative production of 48233 barrels; The AI-211 has a drain radius of 310.83 meters and a cumulative production of 66488 barrels; The AI-213 has a drain radius of 181.33 meters and a cumulative production of 29499 barrels and the AI-214 has a drain radius of 255.93 meters with a cumulative production of 12500 barrels. The reference wells are located in the Southeast-South and South-Southwest directions which have a large enough drain radius (bubble map), indicating that this areas are good enough for the development of potential wells. Keywords: Radius drainase, Comulative production, Reservoir data, Production data, Oil field Manager (OFM) #### INTRODUCTION Indonesia has a large potential for hydrocarbon basins, one of which is the South Sumatra basin (AQ Rabbani et al, 2018). It is estimated that there are 4.3 billion barrels of hydrocarbon reserves in this basin (Klett, 2000), which are still in the exploration and production stage (AA Prawoto et al, 2015). One of the production fields in the South Sumatra basin that is the focus of this research is the Betung Field. This field consists of 4 reservoir layers, namely L-2, L-3, L-4 and L-5 with the production target of the Air Benakat Formation. Based on the calculation of reserves in 2017, layer five (L-5) has Original Oil In Place of 16,531.05 MSTB (AI Irmaya et al, 2022). In this layer the average production is 667.65 BOPD. Based on the data above, this field is still very likely to be developed with the addition of further wells. The addition of a well requires in-depth analysis of integrated data including subsurface geology, reservoir and production characteristics. This paper will discuss the analysis of the radius of the drain radius based on the calculation of reserves from reservoir data and production data where this analysis is one of the factors in adding wells to the development of the Betung field. Reserve is part of resources where the definition of resources is part of the total amount of oil and gas and associated substances from a reservoir that is estimated at a certain time and can be produced and added to future estimated reserves (Dadang R et al, 2011). Calculation of reserves has several methods including volumetric method, monte carlo, material balance and decline curve. In this study, the calculation of reserves is carried out using the volumetric method whichincludes the calculation of the amount of oil and gas in place with a combination of volumetric maps, petrophysical analysis and reservoir engineering. Volumetric method formula: $$Ni = 7758 x Vb x \emptyset \frac{1 - Swi}{Roi}$$ (1) Where: Ni Vb : Initial volume of oil in place, STB : Volume of reservoir rock, acre-ft Average porosity, fraction Swi : Average initial water saturation, fraction Boi : Initial formation volume factor, bbl/STB Fig. 1 * Location of the Jambi Sub-Basin Research Area-South Sumatra Basin (Bishop, M. G. 2001) #### **METHODOLOGY** This study uses a data processing methodology using Oil Field Manager (OFM) software. The processed data is in the form of reservoir data, namely porosity, fluid saturation, formation volume factor and also production data. The output of data processing is the drain radius which is one of the strategies to determine the development of the next wells. #### **RESULTS AND DISCUSSION** The wells located in L-5 and which are the focus of research: AI-209, AI-210, AI-211, AI-213, AI-214, AI-217, AI-219, AI-220, AI-221, AI-222. The position of these wells can be seen in Figure 2. Fig 2. Location of L-5 wells Fig 3. L-5 Production Performance Table 1. Reservoir Data and Cumulative Production Data L- | 3 | | | | | | |--------|-------|-------|--------|--------|--------| | Wells | Np | h | Ø | Swi | Boi | | | Bbl | m | Friksi | Friksi | Friksi | | AI-209 | 37184 | 27.81 | 0.2322 | 0.5161 | 0.12 | | AI-210 | 48233 | 25.36 | 0.2564 | 0.6573 | 0.12 | | AI-211 | 66488 | 17.62 | 0.2493 | 0.6794 | 0.12 | | AI-213 | 29499 | 21.76 | 0.1906 | 0.5622 | 0.12 | | AI-214 | 12500 | 27.64 | 0.2024 | 0.9357 | 0.12 | |--------|-------|-------|--------|--------|------| | AI-217 | 1076 | 27.44 | 0.1876 | 0.9629 | 0.12 | | AI-219 | 4032 | 22.70 | 0.2535 | 0.3408 | 0.12 | | AI-220 | 10723 | 23.77 | 0.3023 | 0.3812 | 0.12 | | AI-221 | 346 | 14.13 | 0.1117 | 0.8225 | 0.12 | | AI-222 | 3513 | 30.75 | 0.3103 | 0.2813 | 0.12 | Based on the data above, the calculation of the drain radius is carried out using the assumption reservoir formula in the form of a tank model. Calculation of the drain radius for Well AI-209: $$Ni = 7758 \times Vb \times \emptyset \frac{1-Swi}{Boi}$$ $$Vb = A \times h$$ $$A = \frac{\text{Ni x Boi}}{7758 \text{ x h x } \emptyset \text{ (1-Swi)}}$$ $$A = \frac{371840.8 \times 1.22}{7758 \times 27.81 \times 0.23 \text{ (1-0.51)}}$$ $$A = \frac{453644.8}{24315.022}$$ $$A = 18.6569$$ acre $$A = 18.6569 \times 43560 \text{ ft}^2$$ $$A = 812697.906 \text{ ft}^2$$ $$A = \pi r^2$$ $$r^2 = \frac{A}{\pi}$$ $$r^2 = \frac{812697.906}{3.14}$$ $$r^2 = 258820.98$$ $$r = \sqrt{258820.98}$$ ft $$r = \frac{508.744}{3.281}$$ $$r = 155.11 \text{ m}$$ The following are the results of the calculation of the drain radius for the L-5 wells (Table 2.) Table 2. Calculation of the L-5 Wells Drain Radius | Calculation Resu | ılts | | |------------------|-------|--------| | Wells | Np | r | | _ | Bbl | m | | AI-209 | 37184 | 155.11 | | AI-210 | 48233 | 209.94 | | AI-211 | 66488 | 310.83 | | AI-213 | 29499 | 181.33 | | AI-214 | 12500 | 255.93 | | AI-217 | 1076 | 105.11 | | AI-219 | 4032 | 46.72 | | AI-220 | 10723 | 70.23 | | AI-221 | 346 | 50.07 | | AI-222 | 3513 | 45.58 | | | | | The distribution of the calculation of the drain radius (bubble map) based on data processing using Oil Field Manager (OFM) software can be seen in Figure 4. Fig. 4 Bubble Map of L-5 wells The size of the Bubble map is influenced, among others, by the length of production time (Figure 3) and the quality of the reservoir. Based on the distribution of the bubble map in Figure 4, it shows that wells in the Southeast-South direction have a large enough drain radius so that these wells can be used as reference wells, namely AI-211 (r=310.83 meters) and well AI-213 (r=181.33 meters). This indicates that the reservoir in the Southeast-South area is quite good for the development of potential wells in the future in terms of the drain radius. Likewise, the South-Southwest area, where reference wells AI-209 (r=155.11) and AI-210 (r=209.94 m) have large drain radius, so that the South-Southwest area also has a large reservoir potential. good for the development of potential wells in the future. The distance or location of development wells needs to consider the drain radius (bubble Map) to find out how far the area has been taken/drained from the well radius of 250 m (if there is no Drill Stem Test) and also to find out whether the bubble map is a the wells in the same layer are in contact with the adjacent wells, because if they are in contact, there is an indication that the production of the two wells affects each other. Based on the guidelines from SKK Migas in the technical aspect subsurface – POD, where the P1 limit (proven reserve) based on the radius of the well is 1.5 x Investigation Radius from the DST results calculated using the Darcy formula and if there is no DST using a well radius of 250 m (Figure 5). Fig 5. Distribution of Reserve Areas by Well Radius (Dadang Rukmana, Technical Aspect Subsurface, 2014) The case study in the Betung L-5 field shows that several existing reference wells have a drain radius of more than 250 meters. This shows that the P2 well reserve has been proven so that it becomes P1. The following are some scenarios for the coordinates of potential area development directions for further wells based on one of the field development strategies using drain radius: Well 1 (X: 306471.398325, Y: 9791720.748063) Well 2 (X: 306072.637820, Y: 9791842.369060) Well 3 (X: 305885.445402, Y: 9792094.687247) Fig.6 Scenario of the location of the next development wells #### CONCLUSION Based on the results of calculations and analysis of the drain radius of the L-5 wells in Betung Field, it can be concluded: - The L-5 wells in Betung Field which are used as references based on the calculation of the drain radius are AI-209 well; AI-210; AI-211; AI-213 and AI-214. - 2. The AI-209 well has a drain radius of 155.11 meters and a cumulative production of 37184 barrels; The AI-210 has a drain radius of 209.94 meters and a cumulative production of 48233 barrels; The AI-211 has a drain radius of 310.83 meters and a cumulative production of 66488 barrels; The AI-213 has a drain radius of 181.33 meters and a cumulative production of 29499 barrels and the AI-214 has a drain radius of 255.93 meters with a cumulative production of 12500 barrels. - Based on the calculation of the drain radius, the wells located in the Southeast-South and South-Southwest directions have a large enough drain radius, indicating that the reservoir in the Southeast-South and South-Southwest area is good enough for the development of future potential wells. - Scenario the location of potential wells is at the coordinates: Well 1 (X: 306471.398325, Y: 9791720.748063); Well 2 (X: 306072.637820, Y: 9791842.369060); Well 3 (X: 305885.445402, Y: 9792094.687247) #### REFERENCES AA Prawoto et al., Potensi Hidrokarbon Formasi Air Benakat, Lapangan CA, Cekungan Sumatere Selatan (2015) Abdull Qudus Rabani., Perhitunagn Cadangan Hidrokarbon Berdasarkan Analisis Pemetaan Geologi Bawah Permukaan Lapangan "X" Formasi Air Benakat Cekungan Sumatera Selatan (2018) AI Irmaya et al., Perhitungan dan Analisa Petrofisik Lapangan Betung, Formasi Air Benakat, Sub-Cekungan Jambi-Cekungan Sumatera Selatan. J. SEMITAN, 1 (1), 68 – 80 (2022) Bishop, M.G., South sumatra Basin Province, Indonesia: The Lahat/Talangakar-Cenozoic Total Petroleum System. USA: USGS (2011) Dadang Rukmana., Technical Aspect Subsurface (2014) Dadang Rukmana, Dedy Kristanto, V. Dedi Cahyoko Aji., Teknik Reservoir Teori dan Aplikasi (2011) De Coster, G. L., Central and South Sumatra Basin., The Geology of The Proceedings Indonesian Petroleum Association, Third Annual Convention., 77-110 (June 1974) Ginger, D dan Fielding, K., The Petroleum and Future Potential of The South Sumatra Basin. Indonesian Petroleum Assocoation (2005) Klett, T.R., Schmoker, J.W., and Ahlbrandt, T. S., Assessment hierarchy and initial province ranking: in U.S. Geological Survey World Energy Assessment Team, U.S. Geological Survey World Petroleum Assessment 2000—Description and Results, U.S. Geological Survey Digital Data Series DDS 60, 4 CD-ROMs (2000). Pulunggono A, Cameron N.R., Sumatran Microplates, Their Characteristics and Their Role in the Evolution of the Central and South Sumatra Basin. Proc.13th Ann.Conv.IPA, Jakarta, p 121 -143 (1984) ## CALCULATION AND ANALYSIS RADIUS DRAINAGE FOR DEVELOPMENT OF BETUNG FIELD WELLS JAMBI SUB-BASIN-SOUTH SUMATERA **ORIGINALITY REPORT** 0% SIMILARITY INDEX 0% INTERNET SOURCES 0% PUBLICATIONS 0% STUDENT PAPERS **PRIMARY SOURCES** Exclude quotes On Exclude bibliography On Exclude matches < 10%