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Abstract 
Sillimanite is a brittle mineral as a metamorphic mineral product which is 
generally derived from clay, along with an increase in pressure and high 
temperature (600˚C - 900˚C), and kaliophilite is also a brittle mineral as a 
potassium bearing in the sand-shale series, which contributes to the clay 
diagenesis process. In the development of shale hydrocarbon in the 
Brownshale formation in the Bengkalis Trough, Central Sumatra Basin, using 
the correlation of the XRD (bulk and clay oriented), TOC, Ro, and MBT 
analysis results from the drill cuttings of well BS-03, so that the fracable zone 
interval can be determined. From this correlation, it shows that the presence 
of sillimanite and kaliophilite minerals as minor minerals greatly affects the 
changes in shale character and hydrocarbon generation, where at depth 
intervals of 10,780 ft downward (sand series-shale) there is an interesting 
phenomenon, i.e. low MBT, low TOC, and high Ro, so it is believed that the 
depth interval of 10,780 ft downward is a fracable zone interval (brittle shale) 
which is a good candidate for hydraulic fracking planning, while the upper 
depth interval is a fracture barrier. 
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1. Introduction 

Source rock in the Central Sumatra Basin, consists of four shale formations, 
namely: the Petani and Telisa Formation [1], Pematang Group [2], and coal Si-
hapas Group [3]. Based on geochemical analysis, it shows that only the Brown-
shale formation from Pematang Group is the main rock source in Central Su-
matra, which is spread over several sub-basins (troughs), namely: Balam, Ran-
gau, Kiri, Aman, and Bengkalis [4]. The depositional environment of this forma-
tion is formed from Lacustrine with lithological rocks consisting of laminated 
shales, brown in color, rich in organic matter, which indicates a depositional en-
vironment with calm water conditions [5]. 

From the results of previous research, it was stated that in general the Brown-
shale formation has good prospects for the development of shale hydrocarbon, 
supported by several parameters, including: TOC (fair - very good), kerogen 
type II/III, brittleness index greater than 0.48, and the rock compressive strength 
is below 70 MPa [5]. 

The brittleness index is the most widely used parameter to measure the brit-
tleness of rocks [6]. In general brittleness is used as a descriptor in the selection 
of depth interval for hydraulic fracking planning, so brittleness is one of the 
most important rock mechanical properties, and is used in determining the 
prospect of shale hydrocarbon [7] [8] [9] [10] [11]. 

Mineralogical analysis using XRD (X-ray Diffraction) and MBT (Methyele 
Blue Test) from drill cuttings data can also be used to determine the type and 
character of shale [6] [8]-[13]. 

Sillimanite mineral is a brittle mineral which is a metamorphic mineral prod-
uct that generally comes from clay, along with the increase in pressure and high 
temperature (600˚C - 900˚C) with a burial depth of about 5 - 6 km [14], and is 
very influential on hydrocarbon generation [15]. 

Kaliophilite is a mineral brittle, as a potassium-bearing mineral in the sand-shale 
series [16], contributing to the clay diagenesis process, which can change the 
character of shale from ductile to brittle, due to the process of changing the reac-
tive smectite mineral to illite or kaolinite as non-reactive mineral [15]. 

The purpose of this research is to determine the fracable zone interval in the 
Brownshale formation by using the correlation of the results of XRD (bulk and 
clay oriented), TOC, Ro, and MBT analysis from drill cuttings of well BS-03, and 
from this correlation shows that the presence of sillimanite and kaliophilite 
minerals as minor minerals is very influential on changes in shale character and 
hydrocarbon generation which correlates with fracable zone interval as good 
candidates for hydraulic fracking planning. 

2. Study Area, Geological Setting of the Central Sumatra Basin 
2.1. Bengkalis Trough Study Area 

The well BS-03 is the only well in the study area that penetrates the Brownshale 
formation of the Pematang Group, as the research target which is located on the 
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north side depocenter of the Bengkalis Trough located in Riau Province, Indo-
nesia (Figure 1). Currently the Bengkalis Trough area is managed by two oil 
company operators, namely the Malacca Strait EMP Group and the CPP Block 
BOB PT. Bumi Siak Pusako-Pertamina Hulu, which each gave permission and 
contribution to conduct this research.  

 

 
: Well Location (BS-03) 

Figure 1. Study area of the Bengkalis Trough [17]. 

2.2. Geological Setting 

The Central Sumatra Basin was formed during the Early Tertiary (Eocene-Oligocene) 
as a series of half grabens and horst blocks developed in response to an 
East-West direction of extensional regime [18]. A divergent transform boundary 
(non-coupling) between the Sunda Microplate and the Indian Oceanic Plate 
during Paleogene gave rise to extensional regime and crustal stretching of the 
western part of the Sunda Land resulting in the formation of Pematang type 
grabens [19]. Pematang Graben Development can be divided into 4 stages: 
• Stage I Pre-Graben (Early Eocene) 

During the early Eocene the Indian Ocean Plate was moving N 10˚E [19]. At 
this time approximate north-south to north-west-southeast lines of weakness with 
complementary northeast-southwest shears developed. These lines of weakness 
later became the hinge lines and fault scarps of graben and half-graben struc-
tures. During the early to Middle Eocene, the angle of plate convergence in-
creased from N 10˚E to N 50˚E with a resulting minor compressional component 
[20]. Gentle crustal doming resulting from subduction also began at this time 
compensating the weak compressional stress, especially in tensional stress sys-
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tem. Incipient block rotation occurred along the earlier developed lines of N-S 
weakness. Deposition of Lower Red Beds Formation began in developing shal-
low graben. 
• Stage II Graben (Middle Eocene) 

Rapid graben development began as a result of relaxation of the Middle Eo-
cene compression by a change in the plate convergence angle to the present N 
20˚E. Deposition of the Brown Shale and Coal Zone Formations occurred during 
this stage of graben development. 
• Stage III Pematang Structuring (Oligocene) 

During the late Early Oligocene continued spreading of the graben and in-
creased episodic right-lateral wrench movement occurred resulting in Pematang 
Structuring. 
• Stage IV Lake Fill (Late Oligocene-Early Miocene) 

This stage represents the beginning of a tectonic phase resulting in rapid de-
position of the Lake Fill Formation. It is characterized by uplift and rapid ero-
sion of highland areas, and culminated with the major unconformity at the end 
of Pematang deposition. Regional subsidence in the Early Miocene accompanied 
by a major marine incursion, ended the rift phase of graben development. 

The Pematang Group Brownshale Formation is the main source rock of hydro-
carbons in the Central Sumatra Basin and is the oldest sedimentary rock aged Eo-
cene to Oligocene which is deposited unconformity in the half-graben [4] [21]. 

The stratigraphic analysis can be determined by the sequence and distribution 
of the Brownshale zone. Based on the correlation between wells, it is the most 
reliable method in stratigraphic analysis, but it cannot be done, because only the 
well BS-03 penetrates the Brownshale zone. Determination of marker names using 
tectonic episodes using references from Lambiase (1990), as shown in Figure 2,  

 

 

Figure 2. Tectonic episodes, geological structures and depositional environments in sev-
eral basins [22]. 
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namely: Rift Initiation, Early Syn Rift, Mid Syn Rift and Late Syn Rift. The nam-
ing is considered to be more representative of the tectonostratigraphy of the 
Central Sumatra Basin because it reflects the tectonic and sedimentation 
processes produced in each episode. 

Rift Initiation is the beginning of the formation of rifting, where the initials of 
new faults are formed to form fluvial deposits which are dominated by sand-
stone lithology to conglomerates, this can be analogous to the Lower Red Bed 
Formation. Early Syn Rift is characterized by active large faults and rapid subsi-
dence, resulting in a lacustrine environment and depositing fine-grained mate-
rials such as claystone and siltstone which are equivalent to the Brownshale 
Formation (Lacustrine Brownshale). Middle Syn Rift is the initial phase of de-
creased subsidence activity and regional silting occurs causing deltaic to fluvial 
deposits to form, indicating the final phase of the Browshale Formation (Flu-
vio-Deltaic Brownshale). Late Syn Rift is the final phase of subsidence activity 
where a fluvial to deltaic environment is formed which is dominated by sandstone 
lithology which reflects the Upper Red Bed Formation. 

In tectonostratigraphy, the basin filling deposits in the Central Sumatra Basin 
consist of 4 stages, namely: Rift Initiation (Lower Red Bed), Early Syn rift (Lacu-
strine Brownshale), Mid Syn Rift and Late Syn Rift (Upper Red Bed). The main 
targets for hydrocarbon shale development are the Early Syn Rift (Lacustrine 
Brownshale) and Mid Syn Rift (Fluvio Deltaic Brownshale) zones. 

The facies model for the depositional environment of the Pematang Group 
Brownshale formation used the approach of the Changsong (1991) model, where 
the well BS-03 was analogous to the Deep Lacustrine Deposits (DF) facies model, 
as shown in Figure 3. 

 

 

Figure 3. Depositional facies model of lacustrine environment [23]. 
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3. Research Methods 

Figure 4 shows the correlation of XRD, MBT, TOC, and Ro analyzes of drill cut-
tings to build a fracability model. This research focuses on the Brownshale for-
mation, Pematang Group, Bengkalis Trough, Central Sumatra Basin, Indonesia 
by correlating the results analysis of drill cuttings data in a flowchart, through 
several steps to obtain a sweetspot fracable window interval. 

 

 

Figure 4. The workflow for the correlation of XRD, MBT, TOC, and Ro analysis from drill cuttings to build a 
fracability model of the Brownshale formation of well BS-03. 

4. Literature Review 

The types of minerals contained in rock samples can be identified using XRD 
(X-Ray Diffraction) analysis with the bulk method [24], and the result is that the 
peaks can be read by the type of mineral based on the determinant peaks [25], 
and can be categorized into two, namely the major minerals and minor minerals. 
From the results of the main minerals, namely Quartz, Clay, and Carbonate 
(Q-C-C), the brittleness index can be determined using the Jarvie Equation 
(2007), as follows: 

( )Jarvie,2007
qtz

t

W
BI

W
=                        (1) 
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where:  
BI = brittleness index 
Wqtz = quartz mineral weight 
Wt = total mineral weight (quartz + clay + carbonate) 
The brittleness index is the most widely used parameter to measure the brit-

tleness of rocks [6]. In general, brittleness is used as a descriptor in the selection 
of formation depth intervals for hydraulic fracking planning, so brittleness is one 
of the most important rock mechanical properties, and is used in determining 
the prospect of shale hydrocarbons [9] [10] [11]. 

Meanwhile, minor minerals include: Feldspar, Apatite, Pyrite, Dolomite, Sil-
limanite, Kaliophilite, etc. The presence of sillimanite and kaliophilite as minor 
minerals greatly influences the diagenesis process and the character of shale 
rocks. 

Sillimanite is a brittle mineral as a metamorphic mineral product which gen-
erally derived from clay, along with increasing pressure and high temperature 
(600˚C - 900˚C) with a burial depth of about 5 - 6 km [14]. Kaliophilite is a brit-
tle mineral, as a potassium bearing in the sand-shale series, which contributes to 
the clay diagenesis process [16]. 

Mondshine (1966) in his paper presented the shale classification based on MBT 
and X-ray diffraction (XRD) analysis, namely soft (ductile), firm (less ductile), 
hard (less brittle), brittle (brittle shale) as shown in Table 1. Babajide (2016) stated 
that the largest cation exchange rate is owned by allogeneic minerals (source rock 
fragment), while the smallest is owned by autogenic (chemical processes). 

 
Table 1. Shale classification based on MBT and XRD analysis [6] [12]. 

Shale Type 
Related to Hydraulic  

Fracking 
MBT*  

(meq/100g) 
Water Content  

(Wt%) 
Clay Types 

Soft Ductile 20 - 40 25 - 70 smectite illite 

Firm Less Ductile 10 - 20 15 - 25 illite mixed layer 

Hard Less Brittle 3 - 10 5 - 15 illite possibly smectite 

Brittle Brittle 0 - 3 2 - 5 illite kaolinite chlorite 

 

MBT (Methylene Blue Test) is used to determine the ability of clay to bind ca-
tions from a solution, namely by using methylene blue to measure the total ca-
tion exchange capacity of the clay, where the cation exchange depends on the 
type and crystallinity of the mineral, the pH of the solution, the type of cation 
being exchanged, and the concentration of mineral content contained in clay. 
MBT values are expressed in pounds per barrel of bentonite-equivalent 
clay/100lb shale (meq/100grams). 

Source rock is a shale rock that contains a lot of carbon elements (high TOC), 
and has a type of kerogen that has the potential to produce hydrocarbons with a 
certain degree of maturity. TOC (Total Organic Carbon) values are expressed in 
percent weight (wt.%). According to Peters & Casa (1994), source rock based on 
TOC values can be classified into 5 types, as shown in Table 2. 

https://doi.org/10.4236/ojogas.2020.54017


A. Buntoro et al. 
 

 

DOI: 10.4236/ojogas.2020.54017 222 Open Journal of Yangtze Gas and Oil 
 

Table 2. Type of source rock [26]. 

Type of Source Rock TOC (wt%) 

Poor Source Rock 0 - 0.5 

Fair Source Rock 0.5 - 1 

Good Source Rock 1 - 2 

Very Good Source Rock 2 - 4 

Excellent Source Rock >4 

 

Maturity is the process of changing organic substances into hydrocarbons. 
The maturity process is caused by an increase in temperature below the earth's 
surface. By knowing the maturity level of a source rock, it can be estimated that 
the ability of the rock to produce oil or natural gas. The level of maturity of a 
rock can be determined by Vitrinite Reflectance (Ro). Vitrinite Reflectance (Ro) 
values are expressed in percent (%). 

In developing shale hydrocarbon commercially based on the results of pre-
vious research, several basic criteria are proposed as shown in Table 3. 

 
Table 3. Basic criteria for developing shale hydrocarbon commercially [10] [12] [26] [27]. 

No Parameter Criteria 

1 Total Organic Carbon (TOC), wt.% >1 wt% 

2 Shale thickness, ft >100 ft 

3 Brittleness Index shale, dimensionless >0.48 

4 - Ro, Oil-prone generation, % >0.6% 

 
- Ro, Gas-prone generation, % >0.8% 

5 Fracability Index shale, dimensionless 
 

 
- Fracable >0.55 

 
- Not Fracable (hard to frac) ≤0.55 

6 Methylene Blue Test (MBT), Brittle Shale, meq/100g ≤3 

5. Results and Discussion 
5.1. XRD & MBT Analysis Using Drill Cuttings Data of Well BS-03 

The results of semi-quantification calculations from XRD (bulk) analysis of 32 
samples of drill cuttings to determine the percentage of minerals at each depth 
interval are shown in Table 4. From Table 4 it can be seen that at each depth 
interval the percentage of the main mineral content obtained is Quartz, Clay, 
and Carbonate, so that the brittleness index can be calculated using the Jarvie 
equation (2007). From the results of XRD (bulk) analysis, an interesting pheno-
menon was found, namely the presence of sillimanite and kaliophilite minerals 
in the Brownshale formation which was significantly started at a depth interval 
of 10,780 ft downward, both of which belong to the brittle mineral category [25]. 

From Table 4 based on minor minerals group, there is an interesting 
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Table 4. Results of semi-quantification calculations from XRD (bulk) and MBT analysis at the depth interval of 10420 - 11642 feet 
well BS-03. 

No Depth (ft) 

Main Mineral Minor Mineral 

Total 
MBT 

(meq/100gr) Quartz 
(%) 

Calcite 
(%) 

Clay 
(%) 

Feldspar 
(%) 

Apatite 
(%) 

Pyrite 
(%) 

Dolomite 
(%) 

Sillimanite 
(%) 

Kaliophilite 
(%) 

1 10,420 - 10,430 70.94 0.00 4.84 13.82 0.00 3.26 2.73 4.42 0.00 100.00 8 

2 10,460 - 10,470 63.95 0.00 12.63 9.70 0.00 3.70 5.33 4.69 0.00 100.00 5.5 

3 10,500 - 10,510 48.45 4.74 15.45 10.90 2.27 3.83 4.23 5.39 4.74 100.00 6.5 

4 10,540 - 10,550 61.35 0.00 8.48 11.23 4.25 5.01 4.45 5.22 0.00 100.00 4 

5 10,580 - 10,590 57.82 0.00 12.07 12.34 0.00 5.00 6.64 6.14 0.00 100.00 4.5 

6 10,620 - 10,630 60.90 0.00 11.07 7.09 4.38 4.45 5.42 6.69 0.00 100.00 8 

7 10,660 - 10,670 72.88 0.00 7.67 9.93 0.00 3.47 3.03 3.00 0.00 100.00 6.5 

8 10,700 - 10,710 58.21 0.00 14.63 9.14 2.44 4.11 7.02 4.45 0.00 100.00 8 

9 10,740 - 10,750 72.47 0.00 14.20 5.58 0.00 3.44 4.31 0.00 0.00 100.00 7 

10 10,780 - 10,790 62.40 0.00 11.98 7.88 3.23 4.11 4.61 5.80 0.00 100.00 4 

11 10,820 - 10,830 43.49 2.78 13.02 4.86 8.11 4.44 5.80 9.62 7.89 100.00 5.5 

12 10,860 - 10,870 55.76 0.00 5.17 7.85 3.68 3.72 5.45 10.73 7.65 100.00 5 

13 10,900 - 10,910 45.63 0.00 13.66 7.28 5.26 4.14 4.70 13.20 6.13 100.00 5 

14 10,940 - 10,950 41.58 2.08 9.99 6.11 5.25 4.38 5.12 15.30 10.18 100.00 3 

15 10,980 - 10,990 32.24 0.00 11.97 10.90 6.24 4.47 7.30 15.34 11.54 100.00 6 

16 11,020 - 11,030 29.97 5.55 8.56 7.22 5.82 2.46 5.09 23.24 12.08 100.00 5.5 

17 11,060 - 11,070 60.40 3.89 6.05 6.36 3.18 2.97 3.55 7.44 6.16 100.00 3 

18 11,100 - 11,110 41.59 2.33 8.59 8.47 5.63 3.23 5.85 14.26 10.05 100.00 2.5 

19 11,140 - 11,150 38.35 2.73 6.67 8.62 5.06 5.84 5.09 15.05 12.58 100.00 2 

20 11,180 - 11,190 42.39 0.00 10.85 6.19 5.99 4.51 6.94 14.94 8.20 100.00 2 

21 11,220 - 11,230 62.18 0.00 10.90 4.87 2.80 3.57 3.34 7.03 5.30 100.00 2.5 

22 11,260 - 11,270 37.50 0.00 9.65 11.47 7.54 3.64 5.73 14.47 9.99 100.00 2.5 

23 11,300 - 11,310 44.35 3.65 9.06 9.39 4.54 4.14 6.02 11.31 7.55 100.00 1.5 

24 11,340 - 11,350 46.37 0.00 9.38 6.20 5.27 3.77 4.90 12.18 11.92 100.00 2 

25 11,380 - 11,390 63.29 0.00 5.09 3.34 3.30 4.01 3.20 10.77 7.00 100.00 4.5 

26 11,420 - 11,430 33.81 0.00 12.60 9.33 6.32 4.37 7.23 14.79 11.56 100.00 5.5 

27 11,460 - 11,470 56.57 0.00 7.19 0.00 6.16 3.89 4.86 11.00 10.32 100.00 5.5 

28 11,500 - 11,510 57.90 0.00 9.04 4.11 3.31 3.37 4.07 10.27 7.93 100.00 3.5 

29 11,540 - 11,550 38.68 13.26 12.70 5.01 5.57 3.75 5.32 8.77 6.94 100.00 4 

30 11,580 - 11,590 23.26 7.53 13.45 7.35 7.63 3.32 7.25 16.86 13.36 100.00 4 

31 11,620 - 11,630 41.80 0.00 17.20 0.00 9.25 3.94 5.10 13.27 9.42 100.00 4 

32 11,642 32.47 3.91 14.46 6.81 8.00 3.37 5.98 12.58 12.42 100.00 6.5 

         Brittle Mineral 
(Bladh et al., 2001) 

 

Low MBT  
Brittle Shale 

(Mondshine, 
1966) 

https://doi.org/10.4236/ojogas.2020.54017


A. Buntoro et al. 
 

 

DOI: 10.4236/ojogas.2020.54017 224 Open Journal of Yangtze Gas and Oil 
 

phenomenon, namely the presence of sillimanite and kaliophilite minerals which 
significantly appear starting at a depth interval of 10,780 ft downward, where both 
minerals have a brittle tenacity [25], so they can be categorized as brittle minerals. 

The result of the MBT analysis also shows an interesting phenomenon, name-
ly at a depth interval of about 10,780 ft the value drops below 3 meq/100g, indi-
cating the category of brittle shale [12]. 

Referring to the presence of the sillimanite and kaliophilite minerals (brittle 
minerals), as well as the low MBT value (brittle shale), then at the interval of 
10,780 ft downward it is believed to be is a fracable zone interval (brittle shale) 
which is a good candidate for hydraulic fracking planning, while the upper depth 
interval is a fracture barrier. 

5.2. Correlation of Lithofacies with XRD (Bulk), MBT, TOC, Ro 
Analysis of Drill Cuttings and Total Gas from Composite Log 
Data of Well BS-03 

The correlation of lithofacies with the results of XRD (bulk), MBT, TOC, Ro 
analysis from drill cuttings, and total gas from composite log data of well BS-03 
is shown in Figure 5, which shows a strong correlation with the depth interval in 
the sand-shale series. This can confirm the fracability model, i.e.: 

 

 

Figure 5. Correlation of lithofacies with the results of XRD (bulk), MBT, TOC, Ro analysis from drill cuttings, and total gas from 
the composite log data of well BS-03. 

 
a) At the depth interval of the sand-shale series, sillimanite is present, which is 

a brittle mineral as a result of alteration from clay at high temperatures (600˚C - 
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900˚C), which supports the hydrocarbon generation process, and it is proven 
that at this depth interval Ro reaches a value of greater than 0.6%. 

b) The presence of kaliophilite, which is a brittle mineral, as a potassium-bearing 
mineral in the sand-shale series, contributes to the clay diagenesis process. 

c) The value of MBT at the depth interval of the sand-shale series is generally 
low MBT, and has a strong correlation with low TOC and high Ro. This is in 
accordance with item a), where the deeper the maturity (Ro) is higher, so that 
the TOC value decreases. 

d) Sand-shale series interval is the most prospective Brownshale formation 
interval to produced hydrocarbon, based on items a), b), c), and the total gas 
from the composite log data of well BS-03. 

5.3. Correlation of Lithofacies with XRD (Clay Oriented), MBT, 
TOC, Ro Analysis of Drill Cuttings and Total Gas from  
Composite Log Data of Well BS-03 

From the correlation of lithofacies with the results of XRD (Clay Oriented) 
analysis, MBT, TOC, Ro from drill cuttings, and total gas from the composite log 
data of well BS-03 is shown in Figure 6, which shows the dominance of kaolinite 
and illite clay minerals compared to the other clay minerals, with the following 
explanation: 

 

 

Figure 6. Correlation of lithofacies with the results of XRD (Clay Oriented) analysis, MBT, TOC, Ro from drill cuttings, and total 
gas from the composite log data. 
 

The dominance of kaolinite and illite minerals as non-reactive minerals (hard 
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- brittle), where both minerals are products of clay diagenesis, the results can be 
seen in the ternary diagram (Figure 7), namely smectite due to the influence of 
high temperature and the presence of potassium (K+) minerals, which is sup-
ported by the sand-shale series environment changes to illite (kaolinite), silica, 
and H2O with the following chemical reactions: 

 

 

Figure 7. Ternary diagram of the results of XRD (Clay Oriented) analysis from drill cuttings of well BS-03 [29]. 
 

Smectite + K+ → Illite + Silica + H2O 

This reaction will produce water (H2O), causing an increase in pore pressure 
[15] [28]. 

6. Conclusions 

1) Brittleness index based on XRD (bulk) analysis shows that the entire depth 
interval of the Brownshale formation (10,420 - 11,642 ft) is above 0.48 (brittle 
category), but based on the MBT analysis, not all depth intervals are brittle shale 
which correlates with the fracable zone interval. 

2) At the depth interval of the sand-shale series, there is sillimanite mineral, 
which is a brittle mineral as a result of alteration from clay at high temperatures 
(600˚C - 900˚C), which supports the hydrocarbon generation process, and it is 
proven that at this depth interval Ro reaches a value of greater than 0.6%. 

3) The presence of kaliophilite, which is a brittle mineral, as a potassium-bearing 
mineral in the sand-shale series, contributes to the clay diagenesis process, which 
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causes changes in the character of shale which was originally ductile because it is 
dominated by smectite mineral, along with hydrocarbon generation to become 
brittle shale which is dominated by kaolinite and illite minerals, and confirmed 
from the results of the MBT analysis which showed that the sand-shale series 
depth interval was generally low MBT (brittle shale category). 

4) Sand-shale series interval is the most prospective Brownshale formation 
interval to produce hydrocarbon based on items 2, 3, and the total gas depth in-
terval from the composite log data of well BS-03. 

5) Kaolinite and illite minerals dominate at depth intervals in the sand-shale 
series environment which is rich in potassium (K+) mineral, as the product of 
clay diagenesis.  
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