SUSUNAN PANITIA SEMINAR NASIONAL
“MANAJEMEN SUMBERDAYA MINERAL DAN ENERGI UNTUK KETAHANAN NASIONAL”

Penanggungjawab : Dr. Ir. Sari Bahagiarti K., MSc.
Pengarah : Ir. Wawong Dwi Ratminah, MT.

Ketua Pelaksana : M.Th. Kristiati. EA, ST, MT
Sekretaris : Drs. Nur Ali Amri, MT
Bendahara : Ir. Puji Pratiknyo, MT
Sek. Sidang : Dr. Ir. Suharsono, MT
Sek. Makalah : Herwin Lukito, ST, MSi
Pembantu Pelaksana : Budi Iriyanti

Tim Penelaah:
Prof. Dr. Ir. H. Supranto, SU.
Dr. Ir. Dyah Rini Ratnaingsih, MT.
Dr. Ir. Edi Winarno, MT
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kata Pengantar Panitia</td>
<td>iii</td>
</tr>
<tr>
<td>Kata Pengantar Dekan Fakultas Teknologi Mineral</td>
<td>iv</td>
</tr>
<tr>
<td>Susunan Panitia</td>
<td>v</td>
</tr>
<tr>
<td>Daftar Isi</td>
<td>vi</td>
</tr>
<tr>
<td>1. Pengaruh Cr(III) di dalam Adsorpsi Larutan Polimer (PAM)</td>
<td>1</td>
</tr>
<tr>
<td>pada Media Pori terhadap Peningkatan Perolehan Minyak</td>
<td></td>
</tr>
<tr>
<td>Boni Swadesi, Suranto</td>
<td></td>
</tr>
<tr>
<td>2. Frakiraan Potensi Statis Reservoir Panasbumi Namora I</td>
<td>15</td>
</tr>
<tr>
<td>Langit Berdasarkan Simulasi Monte Carlo</td>
<td></td>
</tr>
<tr>
<td>Eko Widi Pramudiohadi</td>
<td></td>
</tr>
<tr>
<td>3. Pemilihan Metode Pengangkatan Buatan pada Sumur Minyak</td>
<td>25</td>
</tr>
<tr>
<td>dengan Menggunakan Sistim Pakar</td>
<td></td>
</tr>
<tr>
<td>Anas Puji Santoso</td>
<td></td>
</tr>
<tr>
<td>4. Studi Laboratorium Lumpur Dasar Bontonite Lokal Kupang</td>
<td>38</td>
</tr>
<tr>
<td>yang Terkontaminasi Kadar Garam (NaCl)</td>
<td></td>
</tr>
<tr>
<td>Nursuhascaryo</td>
<td></td>
</tr>
<tr>
<td>5. Penurunan Persamaan Permeabilitas Batuan melalui Pendekatan</td>
<td>50</td>
</tr>
<tr>
<td>dengan Konsep Fraktal</td>
<td></td>
</tr>
<tr>
<td>Yosaphat Sumantri</td>
<td></td>
</tr>
<tr>
<td>6. Perhitungan Biaya Investasi Pemboran pada Pengembangan</td>
<td>64</td>
</tr>
<tr>
<td>Lapangan Migas</td>
<td></td>
</tr>
<tr>
<td>Herianto</td>
<td></td>
</tr>
<tr>
<td>7. Perencanaan Reperforasi dan Side Tracking untuk Peningkatan Produksi</td>
<td>88</td>
</tr>
<tr>
<td>pada Sumur-sumur Lapangan Minyak Tua</td>
<td></td>
</tr>
<tr>
<td>Herianto</td>
<td></td>
</tr>
<tr>
<td>8. Perhitungan Kapasitas Rig yang Diperlukan pada suatu Rencana Operasi</td>
<td>107</td>
</tr>
<tr>
<td>Pemboran Mig</td>
<td></td>
</tr>
<tr>
<td>Herianto</td>
<td></td>
</tr>
</tbody>
</table>
PERENCANAAN RE PERFORASI DAN SIDE TRACKING UNTUK PENINGKATAN PRODUKSI PADA SUMUR-SUMUR LAPANGAN MINYAK TUA

Oleh:
Herianto

ABSTRAK

Dengan bertambah tuanya sumur-sumur minyak, maka water cut terus meningkat hingga diatas 95 %. Banyak faktor yang menyebabkan hal ini, antara lain terlalu besaranya kapasitas pompa yang dipasang sehingga di reservoir terjadi water coning akibat meningginya level WOC (Water Oil Contact) di daerah perforasi. Salah satu metoda yang diterapkan guna memperbaiki performance sumur dilakukan reperforasi dengan menyemen zona air atau melakukan pemboran side track.

Kata kunci: Reperfo, Sidetrack, sumur tua.

ABSTRACT

With old of oil wells, hence water cut to increasing till above 95 %. Many factor causing this matter, for example too big of attached pump capacities so that in reservoir happened coning water effect of WOC high level (Water Oil Contact) in area of perforation. One of the applied method utilize to improve; repair performance of well conducted by re-perforations with cementing plug of water zone or make side track drilling.

Keyword: Re-Perforation, Sidetrack, old well
I. PENDAHULUAN

Permasalahan utama pada lapangan minyak tua, adalah tingginya water cut, hingga diatas 95 %. Kedua, ini disebabkan naik zona Water Oil Contact (WOC) sehingga, interval perforasi hampir seluruhnya masuk pada zona air. Cara yang pertama untuk menanggulangi masalah ini adalah dengan menyenakan zona air disekitar perforasi dan kemudian melakukan perforasi ulang atau yang dikenal dengan re perfo pada bagian atasnya. Kerusakan sumur akibat water coring dikarenakan laju produksi yang terlalu besar diatas maksimum efisiensi rig. Penggunaan pompa yang dipaksakan dan keinginan meningkatkan laju produksi merupakan masalah awal problem ini.

II. DASAR TEORI

Pada teori dasar ini akan dibahas tentang laju produksi minyak, maximum efisiensi rate (MER) dan kerusakan formasi.

2.1. Laju Produksi

Harga laju produksi (q) dari jari-jari pengurusan ke jari-jari sumur (drawdown) dapat dihitung dengan Persamaan Darcy untuk aliran radial, fluida satu lesa dengan kompressibilitas kecil dan konstan pada reservoir yang homogen dan horizontal\(^{10}\), yaitu:

\[
q = \frac{0.007082 \, k \, h \, (P_s - P_{wf})}{\mu \, B \, ln \left(\frac{r_e}{r_w} \right)}
\]

dimana:

- \(q\) = laju alir, bbl/day
- \(k\) = permeabilitas batuan, md
- \(h\) = ketebalan formasi produktif, ft
- \(P_s\) = tekanan Reservoir, psi
- \(P_{wf}\) = tekanan dasar lubang sumur, psi
- \(\mu\) = viscositas fluida, cp
- \(B\) = faktor volume formasi, scf/stb
- \(r_e\) = jari jari pengurusan, ft
- \(r_w\) = jari-jari sumur, ft

Jika alirannya hanya minyak, maka productivity indeksnya :

\[
P_I = \frac{0.007082 \, k \, h}{\mu \, B \, r_e \, ln \left(\frac{r_e}{r_w} \right)}
\]

Manajemen Sumber Daya Mineral dan Energi Untuk Ketahanan Nasional
Bila alirannya terdiri dari minyak dan air, maka pendekatannya adalah sebagai berikut:

$$P_l = \frac{0.007082 \, k \, h}{\ln \frac{\rho_e}{\rho_w}} \left[\frac{k_o}{\mu_o B_o} + \frac{k_w}{\mu_w B_w} \right]$$

\[(2-3) \]

2.2. Maximum Efficiency Rate (MER)

Maximum Efficiency Rate (MER) didefinisikan sebagai laju produksi yang dijinkan tanpa reservoir mengalami kerusakan sehingga akan memperoleh recovery minyak secara maksimal. Bila reservoir diproduksikan dengan rate yang lebih besar dari MER, maka ultimate recovery minyak akan berkurang. Tetapi bila rate produksi lebih kecil dari MER maka ultimate recovery tidak akan bertambah tanpa meningkatkan recovery terlebih dahulu.

Harga MER ini berbeda untuk setiap reservoir, dimana besarnya antara lain dipengaruhi oleh jenis mekanisme pendorong yang dimiliki oleh reservoir tersebut. Mekanisme pendorong water drive pada umumnya memberikan recovery lebih besar daripada depletion drive, karena mempunyai efisiensi pendorong yang baik. Meyer, Gardner dan Pirson menerapkan metode perhitungan laju aliran minyak kritis terhadap gas dan water coning.

2.2.1. Laju aliran kritis Gas Coning

Gas coning, diasumsikan bahwa batas gas-minyak (GOC) telah turun di sekitar lubang bor sebagai akibat dari aliran radial minyak dan perbedaan tekanan yang berasal dari GOC tersebut seperti Gambar 2.1.

Gambar 2.1. Kondisi Gas Coning

Laju maksimum minyak kritis terhadap gas coning dapat diturunkan dengan persamaan

$$q_{o_{\text{max}}} = \frac{0.001535 \left(\rho_o - \rho_g \right) k_o h}{\ln \left(\frac{r_o}{r_w} \right) \mu_o \left[h^2 - (h - D)^2 \right]}$$

\[(2-4) \]
Dimana kedalaman penembusan sumur (D) dapat dihitung dengan persamaan sebagai berikut:

\[D = h - \left(h - h_c \right) \frac{\rho_o - \rho_g}{\rho_w - \rho_g} \]

dimana:

- \(q_{o,max} \) = Laju maksimum minyak kritis, bbl/day
- \(h \) = Tebal formasi minyak, ft
- \(\rho_o \) = Densitas minyak, gr/cc
- \(\rho_g \) = Densitas gas, gr/cc
- \(k_o \) = Permeabilitas effektif minyak, md
- \(r_p \) = Jari-jari pengurasan, ft
- \(r_o \) = Jari-jari sumur, ft
- \(\mu_o \) = Viscositas minyak, cp
- \(D \) = Kedalaman penembusan sumur pada formasi minyak, ft

2.2.2. Laju aliran kritis Water Coning

Kondisi water coning terlihat pada Gambar 2.2. Asumsi yang dibuat adalah bahwa batas minyak dan water kontak (WOC) naik disekitar lubang bor dalam bentuk kerucut, hal ini disebabkan adanya aliran radial minyak dan perbedaan tekanan yang berasal dari WOC tersebut.

Gambar 2.2. Kondisi Water Coning

Adapun persamaan laju maksimum kritis minyak terhadap water coning, dapat ditulis seperti dalam Persamaan 2-6, dimana tekanan kapiler diabaikan.
\[q_{\text{max}} = 0.001535 \frac{(p_2 - p_1)}{\ln\left(\frac{r_2}{r_1}\right) \mu_s} [h^2 - D^2] \] \hspace{2cm} \text{(2-6)}

2.2.3. Laju aliran kritis Gabungan Gas dan Water Coning

Gas dan water coning terjadi bersama dalam suatu sumur seperti yang terlihat pada gambar 2.3. Interval perforasi \(h_0 \) ditempatkan ditengah-tengah antara water oil contact (WOC) dan gas oil contact (GCC) untuk mendapatkan minyak maksimum tanpa terjadi water atau gas coning. Hal ini akan tercapai dengan menghitung optimasi antara kedalaman penembusan perforasi sumur \(D \) dalam suatu kotebalan reservoir horizontal dan interval komlesi \(h_0 \).

![Gambar 2.3. Kondisi Kombinasi Gas dan Water Coning](image)

Keterangan Gambar:

\(Z_s \) = Jarak antara Water Oil Contect dengan Tengah Interval Perforasi, \(ft \)

Perison membagi laju maksimum minyak kritis \(Q_{\text{max}} \) terhadap gas dan water coning kedalam dua komponen. Pertama adalah laju alir minyak kritis terhadap water coning \(Q_{\text{w}} \) dimana laju alir maksimum minyak tanpa adanya air ke dalam sumur. Laju tersebut berbeda di bawah garis horizontal \(Z_s \) (Gambar 2.3). Kedua adalah laju alir minyak kritis terhadap gas coning \(Q_{\text{g}} \) dimana laju minyak maksimum tanpa terjadi gas breakthrough. Laju minyak ini berada di atas garis horizontal \(Z_s \), yang mana diberikan dengan hubungan:

Manajemen SumberDaya Mineral dan Energi Untuk Ketahanan Nasional

92
Laju alir minyak kritis terhadap water coning \(q_{ow} \) dapat dinyatakan dalam persamaan sebagai berikut:

\[
q_{ow} = 0.001535 \frac{k_o (\rho_w - \rho_o)}{\mu_o B_o \ln \left(\frac{r_o}{r_w} \right)} \left(\frac{\rho_o - \rho_g}{\rho_w - \rho_g} \right)^2 \left(h^2 - h_c^2 \right) \]

(2-8)

Untuk formulasi analitis berupa angka akurata, penurunan temperatur, seiring dengan menurunnya suhu, menyebabkan minyak menjadi lebih mendidih dan suhu terjangka.

Sedang laju alir minyak kritis terhadap gas coning \(q_{og} \), dihitung dengan persamaan:

\[
q_{og} = 0.001535 \frac{k_o (\rho_w - \rho_o)}{\mu_o B_o \ln \left(\frac{r_o}{r_w} \right)} \left(1 - \frac{\rho_o - \rho_g}{\rho_w - \rho_g} \right) \left(h^2 - h_c^2 \right) \]

(2-9)

Total laju maksimum minyak kritis terhadap gas dan water coning diberikan dengan mensubstitusikan persamaan 2-8 dan 2-9 kedalam persamaan 2-10, berikut ini:

\[
Q_{o,max} = q_{ow} + q_{og} \]

(2-10)

dimana:

- \(Q_{o,max} \) = Laju maksimum minyak kritis terhadap gas dan water coning, bbl/day
- \(q_{ow} \) = Laju alir minyak kritis terhadap water coning, bbl/day
- \(q_{og} \) = Laju alir minyak kritis terhadap gas coning, bbl/day

Sehingga didapatkan persamaan laju maks. kritis terhadap gas dan water coning:

\[
Q_{ow} = 0.001535 \frac{k_o \left(h^2 - h_c^2 \right)}{\mu_o B_o \ln \left(\frac{r_o}{r_w} \right)} \left(\frac{\rho_o - \rho_g}{\rho_w - \rho_g} \right)^2 \left(\frac{\rho_o - \rho_g}{\rho_w - \rho_g} \right) + \left(\frac{\rho_o - \rho_g}{\rho_w - \rho_g} \right)^2 \left(1 - \frac{\rho_o - \rho_g}{\rho_w - \rho_g} \right) \left(h^2 - h_c^2 \right) \]

(2-11)

2.3. Kerusakan Formasi Akibat Produksi

Adanya formation damage (kerusakan formasi) dan pengurangan permeabilitas efektif minyak pada zona produktif disekitar lubang bor akan menyebabkan kerusakan formasi. Kerusakan ini dapat terjadi pada waktu pemboran, well completion, dan operasi produksi. Penurunan permeabilitas ini akibat adanya material lain yang masuk kedalam porositas batuan dan naiknya produksi air dan gas.
Kerusakan formasi pada saat produksi dapat diakibatkan oleh beberapa faktor yang meliputi:

- **Endapan Organik**
 Untuk jenis hidrokarbon berat seperti asphalit akan terendapkan didalam tubing, lubang perforasi, dan formasi karena adanya penurunan tekanan dan temperatur disekitar lubang bor selama proses produksi berlangsung. Fraksi hidrokarbon yang terendapkan akan membentuk kristal. Sebab lain adalah penurunan temperatur sehingga menyebabkan reaksi kimia antara minyak mentah dan asam organik.

- **Endapan Silt dan Clay**
 Untuk formasi unconsolidated, problem sumur berupa terikutnya partikel padatan yang menyebabkan rusaknya formasi itu sendiri serta rusaknya peralatan produksi.

- **Gas Blocking**
 Dengan diproduksikannya minyak akan diikuti dengan turunnya tekanan reservoir sampai dibawah tekanan bubble point (P_b) minyak sehingga akan menyebabkan gas lebih banyak keluar dari larutannya. Keluarnya gas dari larutan akan sebanding dengan laju produksi. Akumulasi gas pada lubang perforasi disebut dengan Gas Blocking.

- **Water Blocking**
 Water blocking dan water encroachment akan menyebabkan naiknya water oil ratio. Water encroachment dipengaruhi oleh permeabilitas batuan khususnya yang berlapis-lapis yang akan menyebabkan air terproduksi ke sumur bersama-sama dengan minyak. Water coning sensitif terhadap rate produksi serta stabil seiring dengan kenaikan permeabilitas terhadap saturasi air. Water coning akan terjadi melalui lapisan semen yang rekah, akibat adanya water blocking.

Laju produksi minyak dari suatu sumur pada umumnya merupakan suatu keadaan yang tidak dapat dihindarkan. Untuk memperoleh minyak semaksimal mungkin, sumur harus dijaga agar tetap berproduksi dengan laju produksi yang optimum. Oleh karena itu apapula pada suatu sumur terjadi penurunan produksi harus segera ditangani agar dapat segera dilakukan usaha-usaha untuk menjaga agar sumur tetap berproduksi dengan optimum ataupun usaha yang akan meningkatkan laju produksi minyak. Untuk mencapai tujuan tersebut, biasanya dilakukan suatu kerja ulang (workover) pada sumur tersebut.

Manajemen Sumber Daya Mineral dan Energi Untuk Keberlanjutan Nasional
III. Workover

3.1. Pengertian Workover

Workover atau kerja ulang adalah salah satu kegiatan dalam usaha meningkatkan produktivitas dengan cara memperbaiki problem atau memperbaiki kerusakan sumur sehingga diperoleh kembali laju produksi yang optimum.

Sebelum memutuskan untuk mengadakan kerja ulang ini perlu beberapa pertimbangan, yaitu:

1. Harus diyakini benar bahwa cadangan minyaknya masih cukup besar sehingga untuk tujuan pengurasan reservoirmnya perlu mengadakan rehabilitasi sumur-sumur produksi tersebut.
2. Masih belum tercapainya laju produksi yang optimum, sehingga perlu diselidiki faktor-faktor penyebabnya agar dapat ditentukan jenis operasi kerja ulangnya.
3. Terproduksinya material yang tidak diinginkan, produksi air dan atau gas yang berlebihan sehingga menyebabkan rusaknya peralatan dan perlengkapan lainnya.
4. Rencana menaikkan kapasitas produksi tanpa memandang apakah terjadi problem mekanis dan formasi atau tidak.

3.2. Metode-metode Workover

Workover dilakukan berdasarkan pada faktor-faktor yang menyebabkan suatu sumur tidak berproduksi lagi secara optimum. Berdasarkan faktor-faktor yang menyebabkannya, maka metoda-workover yang dapat dilakukan adalah Squeeze cementing, Reperforation, Recompletion dan Sand control.

3.2.1. Squeeze Cementing

Squeeze cementing adalah suatu proses penyemenan dimana bubur semen ditekan ke tempat tertentu di dalam sumur untuk menutup daerah yang diinginkan. Operasi ini biasanya dilakukan untuk memperbaiki kegagalan atau kerusakan pada penyemenan pertama ataupun untuk tujuan-tujuan tertentu.

Secara umum kegunaan dari squeeze cementing adalah :

- Memperbaiki primary cementing yang rekah atau semen yang tidak baik ikatannya.
- Memperbaiki casing yang pecah atau bocor.
- Menutup perforasi-perforasi yang tidak diinginkan atau yang sudah tidak dipakai.
- Menggantikan zona-zona produksi.
- Mengontrol gas oil ratio (GOR) dan water oil ratio (WOR) yang tinggi dengan jalan mengisolasi zona minyak dari formasi gas bearing dan atau water bearingnya.
- Menutup zona lost circulation atau zona dengan tekanan tinggi atau produksi air/gas yang berlebihan.

Untuk menyelesaikan tujuan di atas hanya dibutuhkan volume bubur semen yang relatif sedikit, tetapi harus ditempatkan pada titik yang tepat pada sumur. Untuk itu diperlukan perencanaan...
yang baik terutama perencanaan bubur semen dan penentuan tekanan serta pemilihan metoda atau teknik yang digunakan untuk operasi ini.

Ada dua cara yang dikenakan pada operasi squeeze cementing, yaitu:

1. **High Pressure Squeeze Cementing**

 Dalam high pressure squeeze cementing ini casing sering tidak kuat menahan tekanannya, karena itu diberi tekanan imbang di annulus drill pipe casing (squeeze cementing dilakukan dari drill pipe) diatas packer karena dalam operasi ini dipasang packer untuk mengarahkan tekanan ke formasi. Tekanan yang harus dikerjakan dapat dihitung dengan menggunakan persamaan (3-1) berikut:

 \[P_0 = P_s - P_c + 0,052 D (W_c - W_m) \] \hspace{1cm} (3-1)

 dimana:
 - \(P_0 \) = Tekanan imbang di annulus, psi
 - \(P_s \) = Squeeze pressure di permukaan, psi
 - \(P_c \) = Collapse pressure yang diijinkan, psi
 - \(W_c \) = Density bubur semen, ppg
 - \(W_m \) = Density lumpur, ppg
 - \(D \) = Kedalaman packer, ft

 Gambar 3.1.
 High – Fluid Loss Cement Squeeze

 Persamaan (3-1) menunjukkan bahwa tekanan di annulus (yang mengimbangi \(P_0 \)) diatas packer ditambah collapse pressure casing yang diijinkan (\(P_c \)) harus sama dengan squeeze pressure di
permukaan \((P_e) \) ditambah tekanan differential oleh bubur semen. Sedangkan tekanan yang diperbolehkan untuk tekanan imbang adalah:

\[
P_{\text{bmax}} = 0,\delta P_o - 0,052 \, D \, (W_e - W_m) \]

dimana:
- \(P_{\text{bmax}} \) = Tekanan imbang maksimum, psi
- \(P_o \) = Burst pressure casing yang diijinkan, psi

Dari Persamaan (3-1) dan (3-2) dapat diketahui squeeze pressure maksimum yang aman, yaitu:

\[
P_{\text{s}} = P_o - 0,052 \, D \, (W_e - W_m) + P_{\text{bmax}} \]

2. Low Pressure Squeeze Cementing

Teknik ini lebih dikenal dengan teknik semen fluid loss rendah. Teknik tekanan rendah ini mencakup penempatan semen diatas interval perforasi dan memberikan tekanan yang cukup untuk membentuk filter cake dari semen yang didehidrasi di dalam perforasi dan dalam saluran-saluran atau rekahan-rekahan yang mungkin terbuka perforasi tersebut, seperti yang terlihat pada Gambar 3.2.

Pada low pressure squeeze cementing ini sering tidak digunakan packer dan dalam praktiknya tekanannya adalah 300 psi dibawah tekanan rekeh formasinya. Tingginya teknik squeeze pada titik tekanan tinggi menyebabkan rekahnnya formasi, sehingga perlu hati-hati, karena itulah teknik tekanan rendah lebih aman.

Beberapa anjuran untuk melakukan squeeze cementing ini adalah:
- Tekanan squeeze akhir maksimum di permukaan tidak harus 1000 psi diatas break down pressure (tekanan pompa dimana fluida untuk pertama kali masuk ke dalam formasi).
- BHP maksimum 1 psi/ft kedalaman.
- Untuk sumur-sumur dangkal biasanya BHP ditentukan dengan persamaan:

\[
BHP = 0,4 \, D + 500 \ , \ psi
\]

Jumlah semen untuk squeeze cementing bervariasi dari beberapa sak sampai ratusan sak. Volume squeeze cementing tergantung dari tenaga pompa, break down pressure filtrat slurry, permeabilitas formasi (permeabilitas besar akan menyebabkan dehidrasi semen dengan cepat, maka semen akan cepat mengeras karena bridging, jadi tekanan squeeze naik dengan cepat), panjang zona yang diperforasi, kondisi primary cementing, dan hubungan antara top kolom semen dengan titik dimana squeeze akan dilakukan.
Gambar 3.2.
Low – Fluid Loss Cement Pressure

Operasi yang sering digunakan pada teknik squeeze cementing adalah operasi block squeeze dan operasi plug back.

a. Operasi Block Squeeze
Operasi ini dimaksudkan untuk mencegah migrasi air atau gas ke dalam zona produksi dengan jalan mengisolasi lapisan di atas atau di bawah lapisan produktif sebelum sumur dikomplesi. Teknik ini akan melibatkan dua kali perforasi dan dua kali squeeze, yaitu untuk lapisan di atas lapisan produktif dan squeeze di bawah lapisan produktif dan kemudian baru diadakan perforasi pada zona produktif.

b. Operasi Plug Back
Operasi ini dimaksudkan untuk menyumbat zona lost circulation, menutup zona abandonment, sebagai whipstock plug pada pemboran berarah, dan testing formasi (karena jarak di bawah zona yang akan ditest tidak mungkin dipasang bridge plug).
3.2.2. Reperforasi

Reperforasi dilakukan pada zona-zona produktif yang ada dalam sumur dan sesuai dengan target kedalaman yang telah ditentukan. Pada pengerjaannya ternyata sering pula terjadi di bawah target tersebut tidak terpenuhi (lubang perforasi terletak di lapisan sebelum zona yang seharusnya diperforasi) atau bahkan target yang ditetapkan terlampau (perforasi dilakukan terlalu dalam dari target yang telah ditentukan). Dengan demikian maka perlu dilakukan perforasi ulang sesuai dengan target yang telah ditentukan.

Selain target yang ditentukan tersebut, terdapat beberapa alasan yang memungkinkan dilakukannya perforasi ulang, yaitu:

- Adanya sumbatan pada lubang perforasi yang sudah ada oleh material yang berasal dari formasi, seperti pasir atau chale.
- Pemindahan target perforasi, karena perforasi pada lapisan produktif yang lama sudah tidak dianggap ekonomis lagi dan perlu ditutup, kemudian dipindahkan ke lapisan produktif lain yang lebih ekonomis.
- Menambah lubang perforasi baru yang bertujuan untuk meningkatkan jumlah aliran fluida ke dalam lubang sumur.

Jenis-jenis perforasi antara lain: Bullet Perforating, Jet perforating dan Metoda Perforasi Overbalance

a. Bullet Perforating

Pada metoda ini, alat perforatornya terdiri dari beberapa pucuk/laras senapan api yang dirancang sedemikian rupa sehingga dapat diturunkan ke dalam lubang bor dan dapat ditembakkan secara elektris dari permukaan. Peluru-peluru tersebut akan menembus casing dan membus formasi dengan kecepatan sangat tinggi.
Bagian bullet perforating gun utamanya terdiri dari:

- Fluid seal disk (untuk menahan masuknya fluida sumur ke alat)
- Gun barrel dan gun body, dimana barrel disekrupkan dan tempat igniter (sumbu), propelant (peluru) dengan shear disk didasarnya untuk memegang bullet ditempatnya sampai tekanan maksimum karena terbakarnya powder.
- Kawat yang meneruskan arus listrik untuk mekanisme kontrol pembakaran powder charge.
- Gun body terdiri dari silinder besi panjang dan sejumlah gun yang diturunkan ke dalam sumur melalui kabel logging.

Adapun keuntungan bullet perforating adalah:

- Umumnya lebih murah dan jumlah peluru yang ditembakkan dapat diatur sesuai dengan kebutuhan.
- Dapat meningkatkan permeabilitas formasi akibat rekahan yang dibuatnya (terutama dibagian ujung).
- Pada formasi lunak, penetrasi bullet dapat sama dan bisa lebih tajam dibanding dengan jet perforating.

Sedangkan kerugian bullet perforating adalah:

- Tidak dapat digunakan untuk lubang sumur yang bertemperatur tinggi (lebih dari 275°F).
- Penembusan pada formasi sedang – keras kadang lebih dangkal dibanding dengan jet perforating (tidak baik untuk casing berlapis).
- Perekahan yang dihasilkan dapat menyebabkan terproduksinya air atau gas dari formasi yang bersangkutan.

b. Jet perforating

Pada metoda ini, penembusan target (casing, semen, dan formasi) dihasilkan oleh suai arus jet berkecepatan tinggi sekitar 30.000 ft/dtk dan dengan tekanan ±4 juta psi bersamaan dengan hancurnya bagian dalam liner.

Prinsip kerja jet perforating bukan gaya powder yang melepaskan bullet, tetapi powder yang eksplosif diarahkan powder charganya sendiri menjadi arus yang berkekuatan tinggi yang dapat menembus casing.

Terlihat liner pecah dan ikut arus jet berkecepatan 30 ribu ft/detik dengan tekanan sampai 4 x 10⁶ psi, sedangkan gumpalan liner yang pecah (carrot) yang dapat menutup perforasinya, dapat dicegah dengan design retrievalnya.

Adapun keuntungan jet perforating adalah:

- Dapat digunakan untuk temperatur lubang sumur ± 400°F.
- Cocok untuk formasi keras karena penetrasinya lebih dalam.
- Rekahan yang dibuat tidak besar sehingga cocok untuk formasi yang tipis dan kemungkinan terproduksinya air/gas dapat dihindari secara lebih baik.
- Penentrasiya lebih banyak dipengaruhi oleh standoff (jarak yang harus ditempuh jet atau bullet sebelum mencapai target), semakin besar standoff, maka penetrasi jet semakin pendek.

Sedangkan kerugian jet perforating adalah:
- Kurang memberikan fracture sehingga kurang baik untuk formasi-formasi tebal.
- Jet akan memberikan lubang yang runching di bagian dalam (tidak bulat) maka tidak dapat menggunakan klep-klep bola, sedang penggunaan packer memerlukan kehalusan dinding casing.
- Jika standoff besar, maka jet terhalang lumpur.

Untuk mengatasi hal tersebut, maka diciptakan jenis jet perforating yang baru, yaitu Tubing Conveyed Perforating (TCP) dimana sistem gunanya diturunkan melalui tubing produksi atau drillpipe. Gun perforasi dapat disusun untuk variasi panjang sesuai formasi yang akan di perforasi serta kerapattanya.

Keuntungan sistem TCP ini adalah:
- Untuk interval sangat panjang atau multiple interval bisa di perforasi satu trip, sehingga rig timenya hemat.
- Gun perforasinya dapat diturunkan pada sumur-sumur miring dimana wireline gun tidak dapat diturunkan.
- Untuk kepentingan gravel pack, metoda ini lebih efisien karena adanya big hole charge dari TCP, serta sumur dapat langsung di flow test pada laju aliran hingga stabil.
- TCP gun dapat diturunkan bersama rangkaian DST.
- Kerapatan penembakan (shoot densities)nya 4 – 12 spf

c. Metoda Perforasi Overbalance

Metoda ini dilakukan pada kondisi tekanan dasar sumur \(P_{sw} \) lebih besar dari tekanan formasi \(P_f \). Hasil penelitian menunjukkan bahwa cara ini kurang menguntungkan karena lubang hasil perforasi akan tersumbat oleh partikel seperti lumpur dan serpahan akibat aliran fluida pemboran saat perforasi.

d. Metoda Perforasi Underbalance

Metoda perforasi ini kebalikan metoda overbalance, dimana \(P_{sw} < P_f \), sehingga setelah perforasi aliran fluida dalam sumur akan membersihkan lubang perforasi.

3.2.3. Recompletion

Masalah yang sering terjadi pada sumur-sumur minyak atau gas adalah kerusakan mekanis dari peralatan-peralatan di dalam sumur produksi. Hal inilah yang merupakan satu alasannya yang berpengaruh untuk dilakukannya suatu kerja ulang karena adanya kerusakan mekanis ini. Kerusakan mekanis ini akan mengakibatkan suatu kesulitan dalam mengontrol sumur dan terjadinya penurunan produksi. Apabila hal ini tidak segera diperbaiki maka akan terjadi gangguan yang lebih parah dalam kelangsungan produksi sumur.
Problema mekanis yang sering terjadi di dalam sumur adalah kebocoran tubing atau packer. Karena itu harus diperbaiki atau diganti secepat mungkin. Hal ini membutuhkan suatu penanganan dengan jalan operasi recompletion dalam arti kompleks kembali secara keseluruhan, mengingat agar kekeragaman kompleks benar-benar baru seluruhnya, sehingga diharapkan tidak akan terjadi lagi kebocoran tubing atau packer dalam waktu dekat.

Perlu diketahui, bahwa tempat-tempat berikut ini dapat memungkinkan terjadinya kebocoran dalam tubing adalah:

- Di blast joint atau flow coupling yang berhubung akibat kuantitas arus pasir yang terbawa minyak dari formasi.
- SSD (Sliding Side Door), yaitu packing yang rusak pada side door atau eroded karena arus fluida bersama pasir yang bertekanan cukup tinggi.
- Telescopic yang selalu di adjust pada waktu set tubing hanger atau dual packer.
- Side pocket, mandrel dimana dummy packingnya tidak menutup dengan baik (jalan kelumarnya, ganti dummy gas lift valve yang baru).
- Pada sambungan tubing atau tool joints.

Gejala kebocoran dapat dilihat apabila:

- Semua sliding sleeve door (SSD) dari multi zona telah tertutup tetapi masih terjadi kenaikan tekanan, walaupun tekanannya telah dibuang ke atmosfir.
- Kehilatan adanya kesamaan antara shut in pressure short string dan long string walaupun dari zona yang berbeda.
- Adanya indikasi water cut yang berlebihan dari salah satu string atau GOR yang besar, dimana menurut data reservoir tidak seharusnya dominan, dan lain-lain.

IV. TEKNIK OPERASIONAL

Metoda yang digunakan adalah menentukan batas Water Oil Contact (WOC), yaitu dengan pertimbangan bertambah tinggi water cut (air yang ikut terproduksi), maka hampir semua batas interval perforasi telah berada pada zona air. Penutupan interval perforasi dengan squeeze cementing diperlukan untuk menutup zona air. Apabila tebal effective reservoir yang mengandung minyak masih optimum untuk di perforasi, dapat di lakukan perforasi ulang atau re perfo pada bagian atas reservoir. Adapun operasi workover yang dilakukan adalah dengan mengeluarkan atau mencabut seluruh rangkaian peralatan di dalam sumur, kemudian dilakukan kompleks kembali.
Begitu juga apabila kita ingin meningkatkan produksi sumurnya dengan jalan membuka zona-zona atau lapisan-lapisan yang belum pernah diproduksi untuk dikembangkan bersama-sama dengan zona lapisan sebelumnya, maka usaha inipun harus memerlukan suatu operasi kerja ulang, dimana akan dilakukan kompleksi kembali (recompletion) sumur, apakah itu dengan dual completion atau dengan multi completion.

Recompletion juga dapat dilakukan untuk menghindari terproduksinya air akibat dari kenaikan water oil contact, seperti yang terlihat pada Gambar 4.2, berikut ini.
Dari Gambar 4.2, rencana re perforasi dilakukan dengan memplug semen interval perforasi sumur lama yang telah berproduksi 100% air, kemudian dikembangkan pemboran sumur sidetrack dengan window diatas puncak antiklin menuju reservoir minyak. Diperlukan korelasi log sumuran yang dapat memastikan geometri reservoir dan posisi yang tepat dari zona minyak sasaran. Cara ini seolah-olah dirancang seperti membor sumur baru, dengan interval perforasi seketat reservoir effektif yang mengandung minyak.

Untuk lebih jelasnya peningkatan produksi air (water cut) yang terlalu cepat akibat proses produksi dapat dilihat pada contoh kasus berikut:

Sebuah sumur vertikal dibor pada suatu reservoir minyak yang didasarnya terdapat air. Berikut data reservoir yang diberikan:

- Density difference \((\rho_w - \rho_o)\) = 0.48 gr/cc
- Permeability, \(K_o\) = 200 md
- Oil column thickness = 80 ft
- Perforated interval, \(hp\) = 8 ft
- Oil viscosity, \(\mu_o\) = 0.4 cp
- Oil volume formation factor, \(B_o\) = 1.32 RB/STB
- Drainage area = 80 acres
- Drainage radius, \(\text{re}\) = 1053 ft
- Wellbore radius, \(\text{rw}\) = 0.25 ft
- Pressure differential between static and flowing well pressures \((P_{ws} - P_{wf})\) = 80 psi

Hitung rate produksi minyak kritis dengan menggunakan Meyer, Gardner and Pirson Method?

Jawaban:

Menggunakan Metode Meyer, Gardner and Pirson Method dengan persamaan 2-4

\[
q_{cr} = 0.001535 \cdot \frac{k_o (\rho_w - \rho_o)}{\mu_o B_o \ln \left(\frac{r_o}{r_w} \right)} \left(1 - \frac{\rho_o - \rho_e}{\rho_w - \rho_e} \right) \left(h_e^2 - h_e^2 \right)
\]

\[
q_{cr} = 0.001535 \cdot \frac{200 \cdot (0.48)}{0.4132 \ln \left(\frac{1053}{0.25} \right)} \left(80^2 - 8^2 \right)
\]

\[
q_{cr} = 211.9 \equiv 212 \text{ STB/day}
\]
Dari contoh kasus ini apabila di produksikan apabila kita produksikan diatas laju aliran kritis 212 STB/day dapat mempercepat terjadinya water coning dan secara cepat, water cut akan naik. Kerusakan ini yang menyebabkan kita untuk melakukan langkah referforasi pada lapisan minyak.

V. PEMBAHASAN DAN KESIMPULAN

5.1. Pembahasan

Dasar dari pada tindakan referforasi pada zona minyak diatas zona air dilakukan pada saat WOC telah melewati interval perforasi atas. Hal ini dipengaruhi oleh kerusakan formasi terutama akibat produksi, yaitu pemberian laju produksi yang dipaksakan melebihi MER water coning dan pemaksakan peningkatan produksi dengan penggunaan pompa. Indikasi yang pasti adalah peningkatan water cut hingga mendekati 100% atau sumur hanya memroduksi air. Apabila ketebalan formasi produktif (zona minyak) masih dalam interval lubang sumur, maka dapat dilakukan squeeze cementing untuk memplug zona airnya dan membuka kembali zona minyak dibagian atas dengan operasi re perforasi. Teknik ini yang dikenal dengan squeeze-reperfo. Hampir semua lapangan minyak tua menerapkan hal ini untuk peningkatan produksi minyaknya.

Teknik yang lain yaitu melakukan side tracking well pada zona diatasnya dan mengarahkan lubang baru menebus posisi atas antiklin. Ini dilakukan apabila ketebalan zona produktif pada sumur yang lama, telah terisi dan terinfusi dengan air atau dengan kata lain WOC telah melewati interval efektif perforasi. Langkah awal operasi ini adalah melakukan cement plug pada zona perforasi lama, kemudian membuat window, atau jendela terbuka kearah puncak antiklin yang menjadi target untuk memperoleh zona perforasi yang efektif di zona minyak. Setelah zona minyak tertembus, dapat disang linier dan digantung pada casing sebelumnya dengan liner hanger. Kemudian dikakukan penyemenan liner dan langkah terahir adalah membuka zona produktif dengan perforasi baru. Pada langkah kedua ini biaya work over akan lebih besar dibandingkan dengan langkah pertama. Untuk itu penilihan langkah kedua ini dilakukan apabila pada interval perforasi benar-benar sudah tidak ada lagi minyaknya.

5.2. Kesimpulan

Dari uraian pada pembahasan diatas, dapat diambil beberapa kesimpulan, bahwa ada 2 cara penanganan sumur tua yang telah berproduksi 100% air, yaitu:

1. Melakukan plug semen dan perforasi baru diatasnya jika zona produksi masih mensisakan zona minyak yang ekonomis
2. Melakukan plug semen dan side track untuk menembus zona prospek diatasnya, dan melakukan perforasi pada zona prospek minyak.
VI. DAFTAR PUSTAKA

