INTEGRASI PANAS STEAM BREAKTHROUGH DAN BOILER DI SURFACE FACILITY PADA PERENCANAAN PROYEK INJEKSI UAP LAPANGAN BATANG

MARSETYO, MUHAMMAD MUFLIKH (2022) INTEGRASI PANAS STEAM BREAKTHROUGH DAN BOILER DI SURFACE FACILITY PADA PERENCANAAN PROYEK INJEKSI UAP LAPANGAN BATANG. Other thesis, UPN Veteran Yogyakarta.

[thumbnail of ABSTRAK.pdf] Text
ABSTRAK.pdf

Download (107kB)
[thumbnail of COVER.pdf] Text
COVER.pdf

Download (99kB)
[thumbnail of DAFTAR ISI.pdf] Text
DAFTAR ISI.pdf

Download (308kB)
[thumbnail of DAFTAR PUSTAKA.pdf] Text
DAFTAR PUSTAKA.pdf

Download (110kB)
[thumbnail of LEMBAR PENGESAHAN.pdf] Text
LEMBAR PENGESAHAN.pdf

Download (166kB)
[thumbnail of Tesis All Muflikh_213201018_Revisi_Final.pdf] Text
Tesis All Muflikh_213201018_Revisi_Final.pdf
Restricted to Repository staff only

Download (5MB)

Abstract

Lapangan Batang telah diproduksikan selama 46 tahun namun recovery
factor (RF) hanya sekitar 14.73% pada 31 Mar 2020. Minyak yang dihasilkan
berupa minyak berat dengan 22,1o API. Selama ini produksi minyak dilakukan
menggunakan injeksi uap secara huff & puff dengan kualitas 70-80% pada
temperatur 400-500 oF dan tekanan ~300 psig. Produksi secara huff & puff kurang
optimum dan untuk meningkatkan RF diperlukan metode injeksi uap. Dalam
perencanaan injeksi uap diketahui akan terjadi steam breakthrough disumur
produksi. Steam breakthrough terproduksi perlu ditangani untuk diubah menjadi
kondensat air dan minyak terikut tidak mencemari lingkungan.
Permasalahan steam breakthrough dapat ditangani dengan memanfaatkan
panasnya untuk menaikkan panas fluida kerja air umpan Boiler. Sistem tersebut
terdiri dari pipa steam breakthrough dari sumur ke heat exchanger, Heat exchanger
sebagai media transfer panas kedua fluida, pipa fluida kerja dari heat exchanger ke
Boiler. Steam breakthrough berasal dari Sumur P3 dan P4 dengan total laju alir
volumetrik 3520 BCWEPD, laju alir massa 51304,25 lb/hr, tekanan dan temperatur
rata – rata 184,0 psig dan 44,25,8 oF. Laju alir volumetrik fluida kerja 3500
BCWEPD, laju alir massa 51012,7 lb/hr, tekanan 300 psig dan temperatur 89,6oF.
Jarak dari sumur breakthrough ke heat exchanger dengan panjang 3510 ft. Jarak
dari heat exchanger ke Boiler sepanjang 100 m.
Fasilitas pemanfaatan steam breakthrough terdiri dari pipa dari sumur ke
heat exchanger memiliki inside diameter 6,065 in dengan pressure drop 7,6 psi dan
hilang panas 5
oF. Heat exchanger tipe plate dengan luas transfer panas 900 ft2
dan
efisiensi 94,88%, pipa fluida kerja dari heat exchanger ke Boiler dengan inside
diameter 4,026 in dengan pressure drop 0,9 psi dan hilang panas 0,1 oF. Boiler
dengan temperatur fluida kerja masuk 89,6 oF memerlukan panas pembakaran
sebesar 1.476 MMBtu/hari dan biaya produksi Rp 214 juta/hari. Boiler dengan
tambahan heat exchanger memiliki temperatur fluida kerja masuk Boiler 349 oF
dan memerlukan panas pembakaran sebesar 1.035 MMBtu/hari serta biaya
produksi Rp 150 juta/hari. Pada analisa keekonomian didapatkan biaya investasi
heat exchanger sebesar Rp 4,70 milyar, biaya investasi Pipa sebesar Rp 5,09 milyar,
total biaya investasi sebesar Rp 36,3 milyar, keuntungan sebesar Rp 64.07 milyar
per hari maka didapatkan POT selama 1,5 tahun, NPV senilai Rp 20,90 milyar, IRR
sebesar 40% dan ROI sebesar 0,93.
Kata Kunci: Steam breakthrough, Heat exchanger, Boiler, pemanfaatan panas.

Item Type: Thesis (Other)
Additional Information: Steam breakthrough, Heat exchanger, Boiler, pemanfaatan panas
Uncontrolled Keywords: Al Kooheji, H., and Gluscevic, A., 2017, Production optimization through Casing Vapor Recovery System for Gas Locking & gas Interface Challenges in Beam Pumps for Highly Fractured Tight Carbonates Reservoirs, Tatweer Petroleum, Bahrain. Al Munos, J., E., S., 2004, A Simulation Study of Steam and Steam-Propane Injection Using a Novell Smart Horizontal Producer to Enhance Oil Production, A Thesis, Texas A&M. Al Yousef, Z., et al., 2014, An Overview of Steam Injection Projects in Fractured Carbonate Reservoirs in the Middle East, Journal of Petroleum Science Research (JPSR) Volume 3 Issue 3, Science and Engineering Publishing Company. Bautista, L., S., et al., 1994, Water-Alternating-Steam Process (WASP) Alleviates Downdip Steam Migration in Cymric Field, Society of Petroleum Engineer, Inc., Oklahoma, USA. Braun, J., E., and Peavy, M., A., 1990, Control of Waste Well Casing Vent Gas from Thermally Enhanced Oil Recovery Operation, Prosiding of The First International Symposium Oil and Gas Exploration and Production Waste Management Practice, New Orleans, Louisiana. Bob H., 2008, Heat Exchanger, CHEE 470 Fall 2008, Queens University. Cao Y., and et., al, 2021, Design Optimization of Plate-Fin Heat Exchanger in a Gas Turbine and Supercritical Carbon Dioxide Combined Cycle with Thermal Oil Loop, https//www.mdpi.com/journal/applsci Capocelli Mauro, et Al., 2020, Reuse of Waste Geothermal Brine: Process, Thermodynamic and Economic Analysis, MDPI, Basel, Switzerland. Chandran V., J., and Raja T., 2014, Analysis of Fin and Tube Heat Exchanger for Liquid to Liquid Heat Transfer Applications, International Journal of Engineering Research & Technology (IJERT), India. Couper, J., R., et al., 2010, Chemical Process Equipment, 3rd edition, Elsevier, United Kingdom. Dutt, A., and Mandal, A., 2012, Modified analytical model for prediction of steam flood, Journal of Petroleum Exploration and Production Technology, www.springerlink.com. 185 Elbaloula, H., A., et al., 2020, Feasibility study and numerical simulation to design the steam fooding pilot test patterns, Journal of Petroleum Exploration and Production Technology, www.springerlink.com. Fabio A., et al., 2015, Modelling and Design Plate Heat Exchanger, https://www.researchgate.net/publication/300102578_Modeling_and_Design_ of_Plate_Heat_Exchanger. Gael, BT., et al., 1994, Reservoir Management in the Duri Steamflood, Society of Petroleum Engineer, Inc., Oklahoma, USA. Gentile, L., and Larner, E., 2017, Casing Vapour Recovery Optimization and Heavy Oil Maximization through Seasonal Effects, Society of Petroleum Engineer, Inc., California, USA. Gunderson, Pl., L., 2013, Compositional Simulations of Producing Oil-Gas Ratio Behaviour in Low Permeable Gas Condensate Reservoir, A Thesis, Petroleum/ Reservoir Engineering, University of Stavenger, Stavenger, Norway. Guo K., 2015, Optimisation of Plate/Plate-Fin Heat Exchanger Design, A Dissertasion Centre for Process Integration School of Chemical Engineering and Analytical Science, Centre for Process Integration School of Chemical Engineering and Analytical Science, The University of Manchester, United Kingdom. Hassan, S., M., 2015, Optimization of cyclic steam stimulation (CSS) using (CMG) software to increase the recovery factor, A Dissertation, Petroleum & Gas Department, University of Khartoum. Heat Exchanger Data Book (HEDB), 2015, CHC603 Heat Transfer Operation – II, India Janaun J., et al., 2016, Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application, IOP Publishing Ltd, Sabah, Malaysia. John, E., 2008, Design and Rating Shell and Tube Heat Exchanger, United Kingdom, http://www.pidesign.co.uk/ Jones, J., 2003, Casing Vapor Recovery System: An Open or Shut Case, Society of Petroleum Engineer, Inc., California, USA. Jones, J., 1981, Steam Drive Model for Hand-Held Programmable Calculators, Santa Fe Energy Co. Kevin M., L., 2006, Brian, Increasing Heat Exchanger Performance, Technical Paper, Bryan Research & Engineering, Inc., Texas, USA. Kumar, M., and Ziegler, V., M., 1993, Injection Schedules and Production Strategies for Optimizing Steamflood Performance, SPE, Inc., USA 186 Maneeintr, K., et al., 2019, Experiment and simulation on heavy oil production with steam flooding in heterogeneous reservoir, 3rd International Conference on Manufacturing Technologies (ICMT), IOP Publishing. Mehranfar, R., 2014, Lesson learned from Well to Field Level in Developing Heavy�Oil Reservoirs Using Thermal Recovery: Case Studies, Society of Petroleum Engineer, Inc., Medellin, Columbia. Melvin, F., and McDonalad, 1971, Once-Through Steam Generation, Tecbhnical Paper - XVI Nuclear Congress, Rome, Italy. Mokheimer, E., M., A., et al., 2019, A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation, Journal of Energy Resources Technology. Naqwi, S., A., B., 2012, Enhanced Oil Recovery of Heavy Oil by Using Thermal and Non-Thermal Methods, A Thesis, Dalhousie University Halifax, Nova Scotia. Panaritis & Kimel, 1965, Review of One-Through Steam Generators, SPE, Houston, USA Rai, A., J., and Sachan, V., 2014, An Experimental Srudy of Heat Transfer in a Plate Heat Exchanger, International Journal of Advanceed Research in Engineering and Technology (IJARET), India. Santi et., al., 2017, Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving, The 2nd International Joint Conference on Science and Technology (IJCST). Shizawi, W.A, et all, 2019, Double Barrier Strategy for Heavy Oil Producer Well in the South of Oman, SPE, Kanada. Sierra, D., P., M., et al., 2009., Development of an Analytical Model for Steamflood in Stratified Reservoirs of Heavy Oil, Ciencia, Tecnología y Futuro Vol. 3. Silva, L., D., S., 2016, Study on Pressure Drop and Liquid Volume Fraction of the Oil-Gas Flow in a Vertical Pipe Using CFX and the Beggs and Brill Correlation: Viscosity Effects, Brazilian Journal Oil and Gas, Brazil. Zeidan., A., A., et al., 2018, Implementing WRFM Well, Reservoir, Facility Management and Smart Field Best Practices for EOR Optimization, Society of Petroleum Engineer, Inc., Kuwait City, Kuwait. Zohuri B., 2017, Heat Exchanger Types and Classifications, Springer International Publishing, Switzerland. Japan International Cooperation Agency, 2013, Design of Thermal Power Facilities. PHE Siak, 2016, Batang Field Formation Evaluation Report
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering, Science and Mathematics > School of Engineering Sciences
Depositing User: A.Md Sepfriend Ayu Kelana Giri
Date Deposited: 04 Oct 2022 06:33
Last Modified: 04 Oct 2022 06:33
URI: http://eprints.upnyk.ac.id/id/eprint/31256

Actions (login required)

View Item View Item