PEMODELAN PEMBANGKIT LISTRIK HYBRID FLASH-BINARY PADA LAPANGAN PANAS BUMI ADN SUMUR GN-01, GN-02, GN-03

TESIS

Disusun Oleh: ACHMAT ADNAN GANES 213190015

PROGRAM STUDI MAGISTER TEKNIK PERMINYAKAN FAKULTAS TEKNOLOGI MINERAL UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" YOGYAKARTA 2022

PEMODELAN PEMBANGKIT LISTRIK HYBRID FLASH-BINARY PADA LAPANGAN PANAS BUMI ADN SUMUR GN-01, GN-02, GN-03

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Teknik Pada Program Studi Magister Teknik Perminyakan UPN "Veteran" Yogyakarta

> Disusun Oleh : ACHMAT ADNAN GANES 213190015

> > Menyetujui

Pembimbing I

Dr. Ir. Drs. H. Herianto, MT NIP. 19590621 198603 1 001 **Pembimbing II**

5

Dr. Ir. Harry Budiharjo, M.T NIP. 19630904 199203 1 001

Mengetahui Koordinator Program Studi Magister Teknik Perminyakan

Dr. Ir. Hj. Dyah Rini Ratnaningsih, M.T NIP. 19600129 198503 2 001

LEMBAR PERSETUJUAN

Tesis Berjudul :

PEMODELAN PEMBANGKIT LISTRIK HYBRID FLASH-BINARY PADA LAPANGAN PANAS BUMI ADN SUMUR GN-01, GN-02, GN-03

ACHMAT ADNAN GANES 213190015

Mengetahui :

Pembimbing II

Dr. Ir. Harry Budiharjo, M.T

NIP. 19630904 199203 1 001

Dr. Ir. Drs. Herianto, M.T NIP. 19590621 198603 1 001

Penguji I

mbimbing I

eq

Dr. Ir. Dedy Kristanto, M.T NIP. 19651229 199003 1 001

Penguji II

Dr. Ir. Dyah Rini Ratnaningsih M.T NIP. 19600129 198503 2 001

Menyetujui,

Ketua Jurusan Teknik Perminyakan

Dr. Boni Swadesi, S.T, M.T NIP. 1971 1207 202121 2 003

HALAMAN PERNYATAAN KEASLIAN KARYA ILMIAH

Dengan ini saya,

Nama	: ACHMAT ADNAN GANES
NIM	: 213190015
Judul	: PEMODELAN PEMBANGKIT LISTRIK HYBRID FLASH- BINARY PADA LAPANGAN PANAS BUMI ADN SUMUR GN-01, GN-02, GN-03

Menyatakan keseluruhan isinya Tesis yang saya buat sebagai karya saya sendiri dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar serta saya menyatakan bahwa dalam rangka Menyusun, konsultasi dengan dosen pembimbing hingga menyelesaikan Tesis ini tidak melakukan penjiplakan terhadap karya orang atau pihak lain baik secara lisan maupun tertulis, baik secara sengaja maupun tidak disengaja.

Saya menyatakan bahwa apabila dikemudian hari terbukti bahwa Tesis saya ini mengandung unsur penjiplakan dari pihak lain, maka sepenuhnya menjadi tanggung jawab saya, di luar tanggung jawab dosen pembimbing saya. Saya sanggup bertanggung jawab secara hukum dan bersedia dibatalkan atau dicabut gelar saya oleh otoritas atau Rektor Universitas Pembangunan Nasional "Veteran" Yogyakarta, dan diumumkan kepada khalayak ramai.

Yogyakarta, 10-Juli 2022

HALAMAN PERSEMBAHAN

Tesis ini saya persembahkan untuk :

- 1. Putri saya Keysha Filzah Shaqueena
- 2. Keluarga besar, Ibu dan Bapak atas doa dan dukungan tiada hentinya

KATA PENGANTAR

Assalaamualaikum warrahmatullahi wabarakatuh

Puji dan syukur kami panjatkan kepada Allah SWT atas segala rahmat-Nya sehingga penulis mampu menyelesaikan tesis ini. Penulis mengucapkan terima kasih kepada semua pihak yang telah memberikan dukungan baik secara moral maupun material, sehingga penyusunan tesis ini dapat selesai dengan baik.

- Prof. Dr. Mohammad Irhas Effendi, SE, M.Si selaku Rektor UPN "Veteran" Yogyakarta.
- Dr. Ir. Sutarto, MT selaku Dekan Fakultas Teknologi Mineral UPN "Veteran" Yogyakarta.
- Dr. Boni Swadesi, ST, MT selaku Ketua Jurusan Teknik Perminyakan UPN "Veteran" Yogyakarta.
- Dr. Ir. Hj. Dyah Rini Ratnaningsih, MT selaku Koordinator Program Studi Magister Teknik Perminyakan.
- 5. Dr. Ir. Drs. Herianto, MT. PhD, selaku Dosen Pembimbing I.
- 6. Dr. Ir. Harry Budiharjo, MT., selaku Dosen Pembimbing II..
- 7. Jawon squad mahasiswa bimbingan S1.
- 8. Sahabat teman seperjuangan Magister Perminyakan angkatan 3.
- 9. Seluruh pegawai MTM UPN, terima kasih atas segala pelayanannya yang memudahkan penulis dalam menyelesaikan tesis ini.
- 10. Semua pihak yang telah membantu penulis dalam menyelesaikan tesis ini yang tidak bisa disebutkan satu per satu. Semoga Allah membalas kebaikan kepada kalian semua.

Wassalamualaikum Warahmatullahi Wabarakatuh.

Yogyakarta, 10 Juli 2022 Penulis

RINGKASAN

Lapangan ADN memiliki 3 sumur yang menghasilkan fluida panas bumi 2 fasa, yaitu steam/fasa uap dan brine/fasa cair. Dari fluida panas bumi tersebut lebih di dominasi oleh uap atau vapor dominated yang dapat menggerakkan turbin uap sehingga menghasilkan energy listrik. Untuk lebih mengoptimalkan produksi energy listrik maka dimanfaatkan kembali air dari buangan separator yang masih bersuhu tinggi untuk memanaskan fluida kerja dengan system binary cycle yang akan menggerakkan turbin gas sehingga diperoleh energy listrik tambahan. Sumur GN-01 mempunyai tekanan sebesar 1118 kPa, temperature sebesar 185°C, laju alir sebesar 10,8 kg/s atau 38880 kg/jam, fasa uap 75% dan fasa liquid 25%. Untuk sumur GN-02 mempunyai tekanan sebesar 1195 kPa, temperature sebesar 188°C, laju alir sebesar 10 kg/s atau 36000 kg/jam, fasa uap 60%, dan fasa liquid 40%. Sedangkan sumur GN-03 mempunyai tekanan kepala sumur sebesar 1195 kPa, temperature sebesar 188°C laju alir sebesar 55%, dan fasa liquid 45%.

Metodologi dalam melakukan perencanaan pembangkit *binary cycle* skala kecil pada sumur eksplorasi panas bumi yang pertama dengan Pengumpulan data produksi fluida brine berupa tekanan, temperature, laju alir massa, dan fasa. Selanjutnya mencari P, T, Laju alir massa, dan Fasa secara konvensional di flowline, manifold, separator, turbin uap. Sedangka untuk *binary cycle* berupa heat exchanger, dan sumur injeksi. Setekah itu Menghitung besarnya energy listrik yang dihasilkan secara konventional. Dan Menghitung besarnya energy listrik yang dihasilkan secara konventional Melakukan pemilihan peralatan yang akan digunakan secara konventional Melakukan pemilihan peralatan yang akan digunakan agar siklus *binary cycle* ini dapat beroprasi dengan baik

Analisa pembangkit listrik metode *binary cycle* menghasilkan energi listrik sebesar 3516 kW atau 3,516 MW. dengan memanfaatkan brine keluaran separator menghasilkan besarnya energi listrik dengan Fluida kerja *iso-butane* energi listrik yang dihasilkan sebesar 344,4 kW atau 0,3444 MW.Jumlah total elektrik power yang dihasilkan dari hybrid flash binary sebesar 3,860 MW dan Pemanfaatan sumur GN-01, GN-02, dan GN-03 sebagai pembangkit listrik hybrid dengan metode konvensional dan binary cycle menggunakan fluida kerja iso-butane diharapkan untuk dilakukan. Hal ini dikarenakan dapat menambah pasokan energi listrik

Keyword : Steam, Brine, Vapor Dominated, Binary Cycle.

DAFTAR ISI

HALAM	AN JUDUL	i
HALAMAN PENGESAHAN		
HALAM	AN PERNYATAAN KEASLIAN KARYA ILMIAH	iii
HALAM	AN PERSEMBAHAN	iv
KATA PI	ENGANTAR	v
RINGKA	SAN	vi
ABSTRA	CT	vii
DAFTAR	ISI	viii
DAFTAR	GAMBAR	Х
DAFTAR	TABEL	xi
BAB I.	PENDAHULUAN	1
	1.1. Latar Belakang	1
	1.2. Rumusan Masalah	2
	1.3. Batasan Masalah	2
	1.4. Maksud Penulisan	2
	1.5. Sistematika Penulisan	3
BAB II.	TINJAUAN UMUM SUMUR "X"	4
	2.1. Letak Geografis	4
	2.2. Struktur Geologi	5
	2.3. Stratigrafi	6
	2.4. Data Sumur	8
BAB III.	STUDI PUSTAKA (LITERATURE REVIEW)	9
BAB IV.	DASAR TEORI DAN METODOLOGI PENELITIAN	12
BAB V.	ANALISA DAN HASIL	57
BAB VI.	PEMBAHASAN	130
BAB VII.	KESIMPULAN	141
DAFTAR PUSTAKA		

DAFTAR GAMBAR

Gambar

Gambar 2.1.	Letak Geografis Lapangan ADN	4
Gambar 2.2.	Struktur Geologi Lapangan ADN	5
Gambar 2.3.	Lithologi Lapangan ADN	6
Gambar 2.4.	Distribusi Panas Pada Lapangan ADN	7
Gambar 4.1.	Skema Pembangkitan Separated Geothermal Steam	11
Gambar 4.2.	Kelarutan Quartz (kiri) dan Silika Amorphous (kanan)	
	Terhadap Fungsi Temperatur di Air Murni	16
Gambar 4.3.	Konfigurasi Pembangkitan Tipe Single Flash Steam	19
Gambar 4.4.	Hasil Perhitungan Biaya Steam Turbin	19
Gambar 4.5.	Skema Binary Cycle	20
Gambar 4.6.	Skema Organic Rankine Cycle	22
Gambar 4.7.	Skema Kalina Cycle	23
Gambar 4.8. Gambar 4.9.	Diagram T-s Binary Cycle Menggunakan hidrokarbon sebagai Fluida Kerja Diagram P-h Binary Cycle Menggunakan hidrokarbon	29
Gambar 4.10.	sebagai Fluida Kerja Skema Diagram Komponen Dasar Pembangkit Binary	30
	Cycle	33
Gambar 4.11.	Pump Housing	35
Gambar 4.12.	Bagian-Bagian Plate Heat exchang39	
Gambar 4.13.	Skema Aliran pada Heat exchanger	40
Gambar 4.14.	Grafik Performa Plate Heat exchanger	42
Gambar 4.15.	Diagram Heat Transfer Antara Brine Dengan Fluida Kerja	43
Gambar 4.16.	Komponen Turbin Binary Cycle	45
Gambar 4.17.	Siklus Turbine Gas	46
Gambar 4.18.	Diagram Skema Untuk Turbin	47

Gambar	н	alaman
Gambar 4.19.	Shell and Tube Kondensor	49
Gambar 4.20.	Diagram Alir Perencanaan Pembangkit Listrik Pada Lapangan Panas Bumi ADN	52
Gambar 5.1.	Simulasi Pipa Transport pada Sumur GN-01 hingga Inlet Manifol	58
Gambar 5.2.	Simulasi Pipa Transport pada Sumur GN-02 hingga Inlet Manifold	61
Gambar 5.3.	Simulasi Pipa Transport pada Sumur GN-03 hingga Inlet Manifold	63
Gambar 5.4.	Dimensi Separator	66
Gambar 5.5.	Pemodelan Separator	66
Gambar 5.7.	Pemodelan Aliran Steam dari Separator melalui Pipa ke Inlet Turbin	68
Gambar 5.8.	Analisa Turbin	69
Gambar 5.9.	Pemodelan Turbin	69
Gambar 5.10.	Pemodelan Pipa Transport dari Outlet Turbin Menuju Inlet Kondensor	72
Gambar 5.11.	Analisa Udara Pada Kondensor	73
Gambar 5.12.	Pemodelan Pipa Proses Dari Outlet Separator Menuju Inlet Heat Exchanger	75
Gambar 5.13.	Pemodelan Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat Exchanger	77
Gambar 5.14.	Permodelan Heat Exchanger	78
Gambar 5.15.	Pemodelan Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet Turbin Cas	80
Gambar 5.16.	Analisa Turbin Gas Propane	80 81

Gambar Halaman Gambar 5.17. Pemodelan Turbin Gas Propane..... 81 Gambar 5.18. Pemodelan Pipa Proses..... 83 Gambar 5.19. Analisa Udara Pada Kondensor..... 84 Gambar 5.20. Pemodelan Kondensor..... 85 Gambar 5.21. Pemodelan Pipa Proses..... 86 Gambar 5.22. Pemodelan Siklus Binary Cycle Fluida Propane..... 86 88 Gambar 5.23. Grafik Termodinamika Fluida Kerja Propane..... Gambar 5.24. Pemodelan Pipa Proses Dari Outlet Feed Pump Menuju 90 Inlet Heat Exchanger..... Gambar 5.25. Permodelan Heat Exchanger..... 91 Gambar 5.26. Pemodelan Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet Turbin Gas..... 93 Gambar 5.27. Analisa Turbin Gas Iso-Butane..... 94 Gambar 5.28. Pemodelan Turbin Gas Iso-butane..... 94 96 Gambar 5.29. Pemodelan Pipa Proses..... Gambar 5.30. Analisa Udara Pada Kondensor..... 96 Gambar 5.31. Pemodelan Kondensor 96 99 Gambar 5.32. Pemodelan Pipa Proses.....

Gambar	Н	alaman
Gambar 5.33.	Pemodelan Siklus Binary Cycle Fluida Iso-butane	99
Gambar 5.34.	Grafik Termodinamika Fluida Kerja Iso-butane	100
Gambar 5.35. Gambar 5.36.	Pemodelan Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat Exchanger Permodelan Heat Exchanger	102 103
Gambar 5.37. Gambar 5.38.	Pemodelan Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet Turbin Gas Analisa Turbin Gas Butane	105 106
Gambar 5.39.	Pemodelan Turbin Gas Butane	106
Gambar 5.40.	Pemodelan Pipa Pr oses	108
Gambar 5.41.	Analisa Udara Pada Kondensor	109
Gambar 5.42.	Pemodelan Kondensor	110
Gambar 5.43.	Pemodelan Pipa Proses	111
Gambar 5.44.	Pemodelan Siklus Binary Cycle Fluida Butane	111
Gambar 5.45.	Grafik Termodinamika Fluida Kerja Butane	113
Gambar 5.46. Gambar 5.47.	Pemodelan Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat Exchanger Pemodelan Heat Exchanger	115 116
Gambar 5.48. Gambar 5.49.	Pemodelan Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet Turbin Gas Analisa Turbin Gas-IsoPentane	118 119
Gambar 5.50.	Pemodelan Turbin Gas Iso-Pentane	119

Gambar	Hal	aman
Gambar 5.51. Pemodelan Pipa r	oses Menggunkan Software Aspen	121
Gambar 5.52. Analisa Udara Pada	a Kondensor	122
Gambar 5.53. Pemodelan Konder	1sor	123
Gambar 5.54. Pemodelan Pipa Pr	oses	124
Gambar 5.55. Pemodelan Siklus	Binary Cycle Fluida Iso-Pentane	125
Gambar 5.56. Grafik Termodinar	nika Fluida Kerja Iso-Pentane	126
Gambar 5.57. Alur Pemodelan Pe	embangkit Listrik Lapangan ADN	129

DAFTAR TABEL

Tabel IV-1. Kecepatan Aliran Fluida yang Direkomendasikan	15
Tabel IV-2. Termodinamika Fluida Kerja untuk Binary Cycle	28
Tabel IV-3. Asumsi Siklus Binary Cycle	31
Tabel IV-4 Spesifikasi Setiap Produk Untuk Feed Pump	37
Tabel IV-5 Harga Fouling Factor Plate Heat exchanger	42
Tabel IV-6 Koefisien U Fluida Kerja	43
Tabel IV-7 Spesifikasi Plate Heat exchanger Untuk Setiap Produknya	45
Tabel IV-8 Spesifikasi Gas Turbin Untuk Setiap Produk	49
Tabel IV-9 Spesifikasi Setiap Produk Untuk Kondensor	54
Tabel V-1 Analisa Wellhead GN-01	57
Tabel V-2Pipa Transport dari Sumur GN-01 hingga Inlet Manifold	58
Tabel V-3 Analisa Pipa Transport dari Sumur GN-01 hingga	
Inlet Manifold	58
Tabel V-4 Analisa Wellhead GN-02	59
Tabel V-5 Pipa Transport dari Sumur GN-02 hingga Inlet Manifold	60
Tabel V-6 Analisa Pipa Transport dari Sumur GN-02 hingga	
Inlet Manifold	60
Tabel V-7 Analisa Wellhead GN-03	61
Tabel V-8 Pipa Transport dari Sumur GN-03 hingga Inlet Manifold	62
Tabel V-9 Analisa Pipa Transport dari Sumur GN-03 hingga	
Inlet Manifold	62
Tabel V-10 Analisa Inlet Manifold	63
Tabel V-11 Manifold	64
Tabel V-12 Analisa Fluida dari Inlet Manifold hingga Inlet Separator	65
Tabel V-13 Analisa Separator	65

Tabel V-14 Pipa Proses Dari Separator Ke Turbin	67
Tabel V-15 Analisa Fluida dari Outlet Separator Menuju Inlet Turbin	67
Tabel V-16 Analisa Brine Inlet Turbin dan Outlet Turbin	68
Tabel V-17 Pipa Transport dari Outlet Turbin Menuju Inlet Kondensor	70
Tabel V-18 Analisa Fluida dari Outlet Turbin Menuju Inlet Kondensor	70
Tabel V-19 Analisa Brine Pada Kondensor	72
Tabel V-20 Pipa Proses Dari Outlet Separator Menuju Inlet	
Heat Exchanger	74
Tabel V-21 Analisa Brine dari Outlet Separator Menuju	
Inlet Heat Exchanger	74
Tabel V-22 Analisa Feed Pump	71
Tabel V-23 Pipa Proses Dari Outlet Feed Pump Menuju	
Inlet Heat Excahnger	76
Tabel V-24 Analisa Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat	
Exchanger	77
Tabel V-25 Analisa Heat Exchanger	78
Tabel V-26 Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet	
Turbin Gas	79
Tabel V-27 Analisa Pipa Proses Dari Outlet Heat Exchanger Menuju	
Inlet Turbin Gas	79
Tabel V-28 Analisa Propane Inlet Turbin dan Outlet Turbin	80
Tabel V-29 Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor.	82
Tabel V-30 Analisa Pipa Proses Dari Outlet Turbin Gas Menuju	
Inlet Kondensor	82
Tabel V-31 Analisa Fluida Propane Kondensor	84
Tabel V-32 Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump .	85
Tabel V-33 Data Tekanan dan Temperatur di Setiap Peralatan	

Menggunakan Fluida kerja Propane	
Tabel V-34 Analisa Feed Pump	
Tabel V-35 Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat	
Excahnger	
Tabel V-36 Analisa Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat	
Exchanger	
Tabel V-37 Analisa Heat Exchanger	
Tabel V-38 Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet	
Turbin Gas	
Tabel V-39 Analisa Pipa Proses Dari Outlet Heat Exchanger Menuju	
Inlet Turbin Gas	
Tabel V-40 Analisa Iso-butane Inlet Turbin dan Outlet Turbin	
Tabel V-41 Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor	
Tabel V-42 Analisa Pipa Proses Dari Outlet Turbin Gas	
Menuju Inlet Kondensor	
Tabel V-43 Analisa Fluida Iso-butane Kondensor	
Tabel V-44 Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump	
Tabel V-45 Analisa Pipa Proses Dari Outlet Kondensor Menuju Inlet	
Feed Pump	
Tabel V-46 Data Tekanan dan Temperatur di Setiap Peralatan	
Menggunakan Fluida kerja Iso-Butane	1
Tabel V-47 Analisa Feed Pump	1
Tabel V-48 Pipa Proses Dari Outlet Feed Pump Menuju Inlet	
Heat Excahnger	1
Tabel V-49 Analisa Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat	
Exchanger	1
Tabel V-50 Analisa Heat Exchanger	

Tabel V-51 Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet
Turbin Gas
Tabel V-52 Analisa Pipa Proses Dari Outlet Heat Exchanger Menuju
Inlet Turbin Gas
Tabel V-53 Analisa Butane Inlet Turbin dan Outlet Turbin
Tabel V-54 Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor
Tabel V-55 Analisa Pipa Proses Dari Outlet Turbin Gas Menuju
Inlet Kondensor
Tabel V-56 Analisa Fluida Butane Kondensor
Tabel V-57 Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump
Tabel V-58 Analisa Pipa Proses Dari Outlet Kondensor Menuju
Inlet Feed Pump
Tabel V-59 Data Tekanan dan Temperatur di Setiap Peralatan
Menggunakan Fluida kerja Butane
Tabel V-60 Analisa Feed Pump
Tabel V-61 Pipa Proses Dari Outlet Feed Pump Menuju Inlet
Heat Excahnger
Tabel V-62 Analisa Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat
Exchanger
Tabel V-63 Analisa Heat Exchanger
Tabel V-64 Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet
Turbin Gas
Tabel V-65 Analisa Pipa Proses Dari Outlet Heat Exchanger Menuju
Inlet Turbin Gas
Tabel V-66 Analisa Iso-Pentane Inlet Turbin dan Outlet Turbin
Tabel V-67 Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor
Tabel V-68 Analisa Pipa Proses Dari Outlet Turbin Gas Menuju

Inlet Kondensor	120
Tabel V-69 Analisa Fluida Iso-Pentane Kondensor	122
Tabel V-70 Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump	123
Tabel V-71 Analisa Pipa Proses Dari Outlet Kondensor Menuju	
Inlet Feed Pump	124
Tabel V-72 Data Tekanan dan Temperatur di Setiap Peralatan	
Menggunakan Fluida kerja Iso-Pentane	125
Tabel V-73 Electric Power yang Dihasilkan Secara Konvensional	126
Tabel V-74 Electric Power yang Dihasilkan Menggunakan	
Metode Binary Cycle	127

BAB I PENDAHULUAN

1.1. Latar Belakang

Sumber daya energi yang begitu besar dan beraneka ragam selain dari energi fosil, potensi energi terbarukan juga tersebar di seluruh wilayah Indonesia diantaranya yaitu energi panas bumi. Potensi panas bumi di Indonesia termasuk yang terbesar di dunia dengan potensi sumber daya sebesar 28,579 MWe dari total potensi panas bumi yang dimiliki oleh Indonesia, baru sebesar 2,130 MWe atau sekitar 8% pemanfaatan energi panas bumi sebagai pembangkit tenaga listrik. Dengan potensi yang dimiliki Indonesia tersebut, pemanfaatan panas bumi bisa lebih ditingkatkan agar lebih bermanfaat. Ketergantungan terhadap energi fosil saat ini masih relatif tinggi, lebih dari 90% penggunaan energi nasional berasal dari sumber energi fosil. Energi fosil merupakan energi yang tidak terbarukan sehingga cadangannya semakin lama semakin menipis. Panas bumi sebagai sumber daya alam yang ramah lingkungan dan terbarukan merupakan salah satu sumber energi alternatif yang dapat dikembangkan untuk menghasilkan listrik dan mendukung pertumbuhan pembangunan ketenagalistrikan di Indonesia. Indonesia memiliki potensi panas bumi yang melimpah dengan 331 titik potensi yang tersebar dari Sabang sampai Merauke (ESDM, 2017).

Pada umumnya fluida panas bumi yang dihasilkan mengandung 2 fasa, yaitu steam/fasa uap dan brine/fasa cair. Pada umumnya konfigurasi pembangkit listrik secara konvensional mengalirkan fasa uap yang terpisahkan dari separator menuju ke turbin uap, sementara fasa cair akan di dinginkan dan di ijeksikan kembali kedalam sumur ijeksi, yang mana masih terdapat potensi energy panas pada fasa cair yang dapat dimanfaatkan kembali, pada penulisan ini akan memanfaatkan energy panas dari fasa cair yang telah terpisahkan dari separator untuk memanaskan fluida kerja sebagai pembangkit listrik turbin gas. Fasa uap dari fluida produksi digunakan untuk pembangkit listrik secara konvensional dengan mengalirkan uap yang telah dipisahkan pada separator menuju ke turbin uap.

Sementara itu, fasa air akan dimanfaatkan sebagai sebagai fluida pemanas pada *binary cycle* untuk mengahasilkan energy listrik tambahan. *Binary cycle* adalah suatu metode yang dapat memungkinkan pemanfaatan brine, sistem *binary cycle* merupakan salah satu metode pembangkit listrik dimana yang bertindak sebagai penggerak turbin adalah uap dari fluida kerja dan bukan dari fluida sumur (brine). Brine hanya akan berfungsi sebagai pemanas fluida kerja tersebut. Fluida kerja yang dimaksud adalah senyawa kimia yang mempunyai titik didih lebih rendah dari titik didih air. Suatu lapangan dapat dilaksanakan penerapan *binary cycle* apabila temperatur, tekanan, dan laju alir massa brine masih cukup tinggi.

1.2. Rumusan Penulisan

- 1. Jumalah energi listrik yang dihasilkan secara konvensional
- 2. Fluida kerja yang digunakan untuk binary cycle
- 3. Jumlah energi listrik yang dihasilkan menggunkan metode binary cycle
- 4. Jumlah total energi listrik hybrid flash binary

1.3. Batasan Penulisan

Terdapat beberapa batasan masalah pada penulisan tesis ini adalah:

- 1. Tidak memperhitungkan kandungan silica
- 2. Perancangan alat tidak medetail, sehingga hanya berkenaan dengan kapasitas yang menunjang system pembangkit listrik ini
- 3. Perhitungan kehilangan tekanan dan temperature sepanjang pipa dianggap tidak ada belokkan dan elevasi,

1.4. Maksud Penulisan

1. Maksud dari tesis ini adalah mengetahui kelayaan pembangunan pembangkit listrik tenaga panas bumi di lapangan ADN.

1.5. Tujuan Penulisan

- Mengetahui besarnya energy listrik yang dihasilkan dari sumur lapangan ADN secara konvensional
- 2. Mengetahui fluida kerja yang digunakan dalam binary cycle
- 3. Mengetahui besarnya energy listrik yang dihasilkan dari sumur lapangan ADN secara *binary cycle*
- 4. Mengetahui jumlah total energy listrik hybrid flash binary

1.6. Sistematika Penulisan

Secara garis besar, sistematika penulisan Tesis ini dibagi menjadi enam bab, yaitu :

• BAB I Pendahuluan

Mencakup latar belakang penelitian, rumusan masalah, asumsi dan batasan masalah, maksud dan tujuan penelitian, hipotesa, dan sistematika penulisan

• BAB II Tinjauan Umum Lapangan ADN

Mencakup lokasi penelitian, geologi dan stratigrafi regional lokasi penelitian, serta sejarah pemboran dan produksi lapangan yang digunakan dalam penelitian.

• BAB III Tinjauan Pustaka

Mencakup *review* dari penelitian-penelitian terdahulu yang berkaitan dengan ruang lingkup penelitian yang telah dikaji, meliputi *review* dari penelitian terdahulu terhadap analisa Geomekanika

BAB IV Dasar Teori dan Metodologi Penelitian

Mencakup diagram alir penelitian dan menjelaskan teori berserta konsep dasar, proses dari penelitian.

• BAB V Analisa Data dan Studi Kasus

Bab ini akan menjelaskan bagaimana analisa dan pembahasan hasil yang didapatkan berdasarkan metode yang telah digunakan pada analisa ini.

• BAB VI Hasil dan Pembahasan

Mencakup rangkuman penjelasan dari metodologi yang diggunakan, proses pengolahan data serta hasil akhir yang diperoleh.

• BAB VII Kesimpulan

Memberikan kesimpulan hasil Analisa yang telah dilakukan, dan memberikan saran untuk melakukan pengembangan selanjutnya.

BAB II TINJAUAN UMUM SUMUR

2.1. Letak Geografis

Lapangan ADN terletak di sepanjang sisi timur dari berbagai pusat vulkanik sepanjang hampir 30 km yang meliputi gunung berapi aktif Gunung Papandayan (terakhir meletus pada November 2002) dan Gunung Guntur (terakhir meletus pada tahun 1840). Lapangan ADN berada pada ketinggian 1750–2000 meter di atas permukaan laut, dan terletak sekitar 9 kilometer barat daya lapangan panas bumi Kamojang yang memproduksi dan 10 km timur lapangan panas bumi Wayang Windu (Gambar 2.1).

Gambar 2.1. Letak Geografis Lapangan ADN (Rejeki, Sri., dkk. 2010)

Lapangan ADN secara spasial berasosiasi dengan stratovolcano andesit yang tererosi, Gunung Kendang. Vulkanik yang ditemukan di bagian reservoir sebagian besar berkomposisi menengah hingga mafik, tetapi formasi yang lebih muda yang ditemukan di bagian tengah daerah terdiri dari lava andesit hornblende, riolit obsidian, dan tufa abu terkait. Struktur geologi utama, yang diidentifikasi sebagai kelurusan pada citra penginderaan jauh dan foto udara, termasuk patahan Kendang, Gagak, Cibeureum, Cipanday dan Ciakut. Struktur geologi lainnya terutama disimpulkan dari keselarasan peristiwa MEQ dan distribusi masuk. Tren struktur terutama di arah NE-SW dan NW-SE (Gambar 2.2.).

2.2. Struktur Geologi

Model geologi dibangun dengan menggabungkan informasi litologi dari data permukaan dan sumur bersama dengan interpretasi data resistivitas dan gravitasi. Model geologi awalnya dikembangkan untuk mendukung penilaian Unit 2. Model tersebut telah diperbarui dengan mengintegrasikan informasi baru yang diperoleh dari kampanye pengeboran 2007-2008, data MT 2004, gempa mikro, geokimia dan data kinerja reservoir. Studi terpadu ini digunakan sebagai dasar dalam mengembangkan model geologi 3D yang diperbarui, termasuk penyempurnaan stratigrafi reservoir, sifat petrofisika dan batas reservoir.

Gambar 2.2. Struktur Geologi Lapangan ADN (Rejeki, Sri., dkk. 2010)

Studi fasies vulkanik permukaan dan bawah permukaan menunjukkan bahwa Lapangan ADN merupakan bagian dari stratovolcano andesit tua yang telah runtuh ke timur dan ditindih oleh material vulkanik yang diendapkan dari letusan yang lebih muda. Fasies litologi telah diklasifikasikan menurut model fasies vulkanik yang disajikan oleh Bogie dan McKenzie (1998). Distribusi jenis batuan menunjukkan bahwa lapangan ADN dilatarbelakangi oleh tumpang tindih produk vulkanik yang berasal dari beberapa sumber vulkanik. Tiga belas unit vulkanik yang berbeda telah diidentifikasi berdasarkan komposisi litotipe yang sama. Di bagian reservoir yang lebih rendah, lava tebal dan intrusi dari magma tholeiitik hingga kalk alkali mendominasi bagian tengah lapangan. Ini mewakili fasies pusat dari stratovolcano basaltik-andesit. Piroklastik tebal mendominasi margin reservoir, mewakili fasies proksimal-medial. Reservoir terdiri dari dua sekuens utama ini (Gambar 2.3.). Sekuen tersebut ditumbuhi oleh interbedded lava piroklastik dan andesit, dengan aliran lava yang lebih tebal di bagian barat dibandingkan bagian tengah dan timur. Urutan ini mungkin berasal dari sumber vulkanik yang berbeda (Peristiwa II) (Gambar 2.3.).

2.3. Stratigrafi

Litologi dominan dalam reservoir diidentifikasi sebagai Fasies A, yang mewakili kompleks tebal yang terdiri dari:

lava dan batuan intrusi. Fasies A didominasi oleh batuan piroklastik dengan lava subordinat. Distribusi permeabilitas dan porositas sangat dikendalikan oleh litologi, dan dengan demikian pemetaan distribusi lava/ kompleks intrusi merupakan aspek penting dari model geologi. Tujuh sumur baru yang dibor pada tahun 2007-2008 memberikan informasi litologi penting di bagian barat daya dan barat laut lapangan mengenai luasan lava/kompleks intrusi. Seperti yang ditunjukkan pada (Gambar 4).

Gambar 2.3. Lithology di Lapangan ADN (Rejeki, Sri., dkk. 2010)

Gambar 2.4. Distribusi Panas Pada Lapangan ADN (Rejeki, Sri., dkk. 2010)

Untuk lebih mendefinisikan dimensi Fasies A, data sumur baru diintegrasikan dengan interpretasi gravitasi baru. Data gravitasi menunjukkan

tinggi gravitasi yang berarah N-NE. Bidang produksi terletak di sepanjang puncak gravitasi tinggi ini.

2.4. Data Sumur

1.	Nama Sumur	: GN-01
	Tekanan kepala sumur	: 1118 kPa
	Temperatur kepala sumur	: 185 °C
	Laju alir kepala sumur	: 10,8 kg/s
		: 38880 kg/jam
	Fasa uap	: 75 %
	Fasa liquid	: 25 %
2.	Nama Sumur	: GN-02
	Tekanan kepala sumur	: 1195 kPa
	Temperatur kepala sumur	: 188 °C
	Laju alir kepala sumur	: 10 kg/s
		: 36000 kg/jam
	Fasa uap	: 60 %
	Fasa liquid	: 40 %
3.	Nama Sumur	: GN-03
	Tekanan kepala sumur	: 1195 kPa
	Temperatur kepala sumur	: 188 °C
	Laju alir kepala sumur	: 6,8 kg/s
		: 24880 kg/jam
	Fasa uap	: 55 %
	Fasa liquid	: 45 %

BAB III STUDI PUSTAKA (*LITERATURE REVIEW*)

Energi panas bumi (geothermal energy) adalah energi alternatif yang sangat potensial untuk dikembangkan dimasa depan terutama untuk digunakan sebagai energi pembangkit listrik. Indonesia mempunyai sumber panas bumi mencapai 40% potensi di dunia dan termasuk sumber energi yang terbarukan (renewable) dan energi yang ramah lingkungan dalam tahap produksinya. Lapangan panas bumi Dieng mulai dikembangkan pada tahun 1990 (KESDM, 2017). Indonesia masuk dalam tiga besar negara yang memproduksi listrik dengan energi panas bumi (Bertani, 2011). Untuk mengkonversikan energi panas bumi menjadi energi listrik bukanlah hal yang mudah dan murah untuk dilakukan, sehingga diperlukan cara yang effisien untuk dapat memanfaatkan energy yang tersedia. Saat ini, terdapat tiga jenis pembangkit listrik tenaga panas bumi yaitu flash steam, dry steam, dan binary ORC (Organic Rankine Cycle) (Dipippo, 2007). Fluida panas bumi yang digunakan untuk pembangkit listrik system single flash steam memerlukan temperature diatas 182oC (Assad, 2013). Untuk Binary ORC energi fluida panas bumi ditransfer ke fluida kerja melalui heat exchanger. Fluida kerja menerima panas dan menguap, kemudian menuju turbin sebelum di kondensasikan dan kembali ke evaporator yang dilakukan oleh feed pump (Caceres, 2017). Saat ini, pembangkit biner adalah jenis pembangkit listrik jenis panas bumi yang paling banyak digunakan deengan 203 unit yang beroperasi pada desember 2004, menghasilkan 1245 MW di 15 negara. Mereka mendirikan lebih dari 35% unit geothermal, namun hanya menyumbang 10.4% dari total daya yang dihasilkan. Jadi, rata-rata unit hanya menyumbang 6 MW, namun untuk desain lanjutan dapat menyumbang daya sebesar 15-22 MW (Dipippo, 2012). Contohnya, perencanaan fluida kerja n-butana dengan temperature kepala sumur sebesar 120oC dapat menghasilkan energi listrik sebesar 141 kW (Teguh, 2012). Contoh lainnya, digunakan n-pentana untuk melakukan simulasi pada temperature sumur sekitar 165 C dan tekanan 8.001 bar menghasilkan elektrik power sebesar

1173 kW (Nurhilal, 2015). Selain itu, unit 5 yang berada di lapangan geothermal Miravalles dengan mendisain ulang rate pada fluida pemanasnya memberikan kenaikan efisiensi termal sebesar 13% (Moya, 2006). *Binary plant* dengan *dry cooling system* untuk sumur dengan temperatur yang rendah dengan dominasi air cocok digunakan karena tidak memerlukan air tambahan. Sehingga, polutan dan efek rumah kaca hamper tidak terjadi (Franco, 2009).

Prinsip kerja dari binary cycle adalah brine dari sumur produksi akan dialirkan kesalah satu pipa pada heat exchanger untuk menguapkan fluida kerja yang memiliki titik didih yang rendah seperti i-Butana, n-Pentana, dan i-Pentana. Pada proses ini terjadi transfer energi panas dari fluida pemanas ke fluida kerja. Pada proses ini diperlukan heat exchanger dengan efisiensi yang bagus agar tidak terjadi pembuangan termal yang terlalu besar (Mota, 2015). Uap yang dihasilkan akibat pemanasan fluida kerja oleh heat exchanger dialirkan untuk memutar turbin dan selanjutnya menggerakkan generator untuk menghasilkan listrik. Binary cycle power plant dapat meningkatkan kapasitas pembangkit pada lapangan *wet steam* karena dapat menggunakan fase liquid dari *wet steam*. Sedangkan, pada eksploitasi reservoir bertemperatur rendah ke sedang memungkinkan untuk direncanakannya pembangkit panas bumi skala kecil berkisar dari 50 kW ke 5 MW (Frick et.al, 2015). Dalam kenyataannya perencanaan binary cycle tidak selalu dilakukan sama seperti perencanaannya karena perlu mempertimbangkan kareakteristik dan perilaku desain peralatan pabriknya (Frick et.al, 2010).

Binary cycle adalah sebuah proses termodinamika dimana sumber utamanya adalah fluida panas yang digunakan untuk memanaskan fluida kerja melalui heat exchanger (Dippippo, 2012). Umumnya, lapangan bertemperatur tinggi dieksploitasi untuk menghasilkan listrik, menggunakan teknologi dry steam dan flash steam. Untuk lapangan bertemperatur sedang hingga rendah, binary cycle power plant menghasilkan performa yang bagus. Saat ini, binary cycle umum digunakan untuk menghasilkan listrik pada lapangan panas bumi bertemperatur rendah. Proses penguapan fluida kerja sistem ini biasanya disebut siklus tertutup pada sistem terpisah dan tidak ada kontak langsung antara fluida pemanas dengan fluida kerja. Fluida panas bumi juga tidak berkontak langsung dengan bagian yang bergerak seperti turbin dan alat yang berputar lainnya di pembangkit. Sehingga hal tersebut dapat mengurangi efek negatif dari endapan scale dan erosi yang umumnya terjadi pada pembangkit panas bumi konvensional (Parada, 2013).

BAB IV

DASAR TEORI DAN METODOLOGI PENELITIAN

Pembangkit Listrik Tenaga Panas Bumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU). Hanya pada PLTU, uap dibuat di permukaan menggunakan boiler, sedangkan pada PLTP uap berasal dari bawah permukaan bumi, yaitu dari reservoir panas bumi yang diproduksi melalui sejumlah sumur yand dibor hingga kedalaman 2-3 km di bawah permukaan bumi. Apabila fluida di kepala sumur berupa fasa uap, uap tersebut dapat dialirkan langsung ke turbin, dan kemudian turbin akan mengubah energi panas bumi menjadi energi gerak yang akan memutar generator sehingga menghasilkan energi listrik. Apabila fluida panas bumi keluar dari kepala sumur berupa campuran fluida dua fasa (fasa uap dan fasa cair), terlebih dahulu dilakukan proses pemisahan pada fluida. Hal ini dimungkinkan dengan melewatkan fluida ke dalam separator sehingga fasa uap akan terpisah dengan fasa cair.

Gambar 4.1. Skema Pembangkitan Separated Geothermal Steam (Moon and Zarrouk, 2012)

Fraksi uap yang dihasilkan dari separator inilah yang kemudian dialirkan ke turbin. Apabila fluida panas bumi keluar dari kepala sumur sebagai campuran

fluida dua fasa (fasa uap dan fasa cair), maka terlebih dahulu dilakukan proses pemisahan pada fluida. Hal ini dimungkinkan dengan melewatkan fluida ke dalam separator sehingga fasa uap akan terpisahkan dari fasa cairnya. Fraksi uap yang dihasilkan dari separator inilah yang kemudian dialirkan ke turbin. Karena uap yang digunakan adalah hasil pemisahan, maka system konversi energi ini dinamakan siklus uap hasil pemisahan.

Proses pembangkitan listrik seperti pada Gambar 4.2. memperlihatkan dari lapangan panas bumi yang menghasilkan fluida dua fasa, yaitu campuran uap dan air beserta fasilitas permukaannya. Fluida dari sumur dipisahkan menjadi fasa uap dan air di dalam separator kemudian uapnya dialirkan ke turbin. Uap dari turbin setelah dimanfaatkan untuk menghasilkan listrik kemudian dialirkan ke menara pendingin atau *cooling tower*. Kondensat dari cooling tower selanjutnya ada yang diinjeksikan kembali ke bawah permukaan melalui sumur injeksi kondensat (*condensate injection wells*) dan ada pula yang dipompakan kembali ke kondensor untuk meng-kondensasikan uap yang keluar dari turbin.

4.1. Analisa Kehilangan Tekanan dan Temperatur

Agar dapat mengoptimalkan kualitas brine yang keluar dari separator, maka diperlukan adanya analisa mengenai kehilangan temperatur dan tekanan pada pipa dan valve. Perhitungan tersebut diperlukan karena dapat terjadi kehilangan tekanan yang cukup besar. Nantinya, penggunaan aplikasi Pipesim diperlukan untuk menghitung kehilangan tekanan, temperatur, dan kualitas uap fluida dalam pipa. Sedangkan kehilangan tekanan pada valve dihitung menggunakan persamaan E.S.D.U. (Saptadji, 2001):

Dimana \emptyset 2 adalah faktor pengali dua fasa dan ΔPLO adalah kehilangan tekanan satu fasa untuk fasa cair yang mengalir pada laju alir massa yang sama dengan laju alir massa pada campuran dua fasanya. ΔPLO dapat dihitung menggunakan persamaan berikut (Saptadji, 2001):

$$\Delta P_{LO} = \frac{G_1^2 \times C_k}{2\rho_L}$$

Dengan anggapan bahwa valve yang digunakan bertipe gate dan berdiameter 25.4 mm, maka harga Ck sebesar 0.8 dan Ø2 dapat dihitung menggunakan persamaan (Saptadji, 2001):

$$\phi_{LO}^{2} = \left[1 + x \left\{\frac{\rho_{L}}{\rho_{G}}\right\}^{1/6} - 1\right] \times \left[1 + x \left\{\frac{\rho_{L}}{\rho_{G}}\right\}^{5/6} - 1\right]$$

Dimana:

$$\rho_L$$
 = Densitas cairan (kg/m³)

 ρ_G = Densitas uap (kg/m³)

 $G = Flux massa (kg/s.m^2)$

 ΔP_{LO} = Kehilangan tekanan (N/m² atau Pa)

 C_k = koefisien *valve*

Sebelum menghitung besarnya kehilangan tekanan dan temperatur pipa dua fasa, maka diperlukan untuk menentukan besarnya diameter pipa yang akan digunakan. Untuk menentukan besarnya diameter yang digunakan, dapat dilakukan dengan mengasumsikan diameter pipa sementara untuk mendapatkan kecepatan brine yang sesuai. Untuk aliran dua fasa, kecepatan aliran yang ideal adalah 20-30 m/s (Nugroho, 2019). Sedangkan, untuk aliran satu fasa, maksimum kecepatan aliran untuk air sebesar 3 m/s, agar mencegah erosi pada pipa (IPS, 1996). Kecepatan fluida didalam pipa dan tubing lainnya yang direkomendasikan dapat dilihat pada Tabel III-1.

Tabel IV-1. Kecepatan Aliran Fluida yang Direkomendasikan(Ludwig, E. E., 1999)

The velocities are suggestive only and are to be used to approxi- mate line size as a starting point for pressure drop calculations.			The final line size should be such as to give an economical balance between pressure drop and reasonable velocity.		
Fluid	Suggested Trial Velocity	Pipe Materiai	Fluid	Suggested Trial Velocity	Pipe Material
Acetylene (Observe	101923	2 N	Sodium Hydroxide		
pressure limitations)	4000 fpm	Steel	0-30 Percent	6 fps	Steel
Air, 0 to 30 psig	4000 fpm	Steel	30-50 Percent	5 fps	and
Ammonia	areared 1		50-73 Percent	4	Nickel
Liquid	6 fps	Steel	Sodium Chloride Sol'n.		a starting of the starting of
Gas	6000 fpm	Steel	No Solids	5 fps	Steel
Benzene	6 fps	Steel	With Solids	(6 Min	Charles of the Property of the
Bromine	and and			15 Max.)	Monel or nickel
Liquid	4 fps	Glass	1=3. (com/200102)	7.5 fps	
Gas	2000 fpm	Glass	Perchlorethylene	6 fps	Steel
Calcium Chloride	4 fps	Steel	Steam		
Carbon Tetrachioride	6 fps	Steel	0-30 psi Saturated*	4000-6000 fpm	Steel
Chlorine (Dry)			30-150 psi Satu-	100000000000000000000000000000000000000	10.010025
Liquid	5 fps	Steel, Sch. 80	rated or super-		
Gas	2000-5000 fpm	Steel, Sch. 80	heated*	6000-10000 fpm	
Chloroform	050235725		150 psi up		
Liquid	6 fps	Copper & Steel	superheated	6500-15000 fpm	
Gas	2000 fpm	Copper & Steel	*Short lines	15,000 fpm	
Ethylene Gas	6000 fpm	Steel		(max.)	
Ethylene Dibromide	4 fps	Glass	Sulfuric Acid	CHIMMEN C	Service and the service of the servi
Ethylene Dichloride	6 fps	Steel	88–93 Percent	4 fps	S. S316, Lead
Ethylene Glycol	6 fps	Steel	93–100 Percent	4 fps	Cast Iron & Steel,
Hydrogen	4000 fpm	Steel			Sch. 80
Hydrochloric Acid	0.0000		Sulfur Dioxide	4000 fpm	Steel
Liquid	5 fps	Rubber Lined	Styrene	6 fps	Steel
Gas	4000 fpm	R. L., Saran,	Trichlorethylene	6 fps	Steel
		Haveg	Vinyl Chloride	6 fps	Steel
Methyl Chloride			Vinylidene Chloride	6 fps	Steel
Liquid	6 fps	Steel	Water	andarenne i	10000000
Gas	4000 fpm	Steel	Average service	3-8 (avg. 6) fps	Steel
Natural Gas	6000 fpm	Steel	Boiler feed	4-12 fps	Steel
Oils, lubricating	6 fps	Steel	Pump suction lines	1-5 fps	Steel
Oxygen	1800 fpm Max.	Steel (300 psig Max.)	Maximum economi-	compared and	3233.32
(ambient temp.)	4000 fpm	Type 304 SS	cal (usual)	7-10 fps	Steel
(Low temp.)			Sea and brackish		R. L., concrete,
Propylene Glycol	5 1ps	Steel	water, lined pipe	5-8 fps 3	asphalt-line, saran

Perhitungan dimensi pipa ini menggunakan standar ASME. Tahapan dalam menentukan dimensi pipa adalah sebagai berikut:

1. Menghitung volume spesifik campuran (Vm) antara steam dengan brine dengan menggunakan persamaan (Saptadji, 2001):

 $Vm = x \times Vv + (1 - x) \times Vl$

2. Menentukan Di (diameter dalam) sementara. Kecepatan aliran dalam pipa tergantung pada ukuran diameter pipa, laju alir massa, tekanan, dan

karakteristik fluida. Untuk menghitung kecepatan, dapat digunakan persamaan berikut (Menon, 2005):

 $V = \frac{mass\,flow}{area\,\times density}$

Karena area aliran dalam pipa adalah lingkaran, maka persamaannya menjadi:

$$V = \frac{m \times Vm}{\frac{1}{_4} \times \pi \times Di^2}$$

Untuk mencari Di sementara, maka persamaannya diubah menjadi:

$$D_i^2 = \frac{m \times Vm}{\frac{1}{4} \times \pi \times V}$$

Keterangan:

V = Velocity (m/s)

m = Massa fluida (kg/s)

Vm = Volume spesifik campuran (m3/kg)

Di = Diameter dalam (m)

- Menentukan dimensi atau schedule pipa berdasarkan Di sementara yang telah dihitung. Berdasarkan ASME B36.10M, pipa jenis XS (Xtra Strong) cocok digunkan untuk pembangkit panas bumi karena dapat digunakan pada kondisi temperatur dan tekanan tinggi.
- 4. Menghitung tebal minimum kemudian divalidasi dengan schedule pipa yang telah didapat. Menurut ASME 31.1, ketebalan dinding minimum yang diperlukan untuk tekanan desain dan suhu tidak boleh melebihi tegangan yang diperbolehkan dari bahan yang digunakan. Tebal minimum dapat dihitung menggunakan (ASME, 2018):

$$t_{\rm m} = \frac{P \times Do}{2 \left((Sh \times E \times W) + (P \times Y) \right)}$$

Keterangan:

tm= Ketebalan pipa yang diperlukanP = Tekanan (psig)Do= Diameter luar pipa (m)

$\mathbf{S}_{\mathbf{h}}$	= tegangan material yang diizinkan pada suhu desain (psi)
W	= Faktor berkurangnya kekuatan sambungan las
E	= Faktor pengelasan
Y	= Koefisien untuk pipa T < 482°C menggunakan 0.4

5. Menghitung kecepatan aliran fluida dalam pipa menggunakan persamaan (3-6)

Analisa Silica Scaling Index (SSI)

Hampir semua mineral mempunyai kelarutan yang tinggi di dalam air karena temperatur air meningkat. Sebaliknya, ketika temperatur air menurun, mineral yang terlarut menjadi kurang terlarut dan mengendap di larutan. Pengendapan kalsium karbonat dapat menjadi masalah di sumur produksi panas bumi. Salah satu mineral yang selalu ditemui dalam fluida panas bumi adalah silika, SiO2. Silika memiliki banyak bentuk struktur, dari amorphous hingga kristalin tinggi, seperti quartz. Masing-masing bentuknya punya sifat kelarutanya sendiri dan semuanya menunjukkan peningkatan kelarutan karena adanya peningkatan temperatur, seperti yang terlihat pada **Gambar 3.2**.

Gambar 4.2. Kelarutan Quartz (kiri) dan Silika Amorphous (kanan) Terhadap Fungsi Temperatur di Air Murni (DiPippo, 2012)

Kelarutan silika tidak hanya berupa fungsi terhadap temperatur fluida, tetapi juga terhadap salinitas dan pH. Secara kualitatif, untuk temperatur dan pH tertentu, semakin besar salinitasnya (contohnya molalitas tinggi), maka semakin rendah kelarutannya untuk quartz dan silika amorphous dalam larutan. Kinetika pengendapan berperan penting dalam potensi pengendapan scaling di pembangkit panas bumi. Jika pengendapan bisa diperlambat, maka memungkinkan untuk menggunakan fluida dan menghentikannya sebelum scaling terjadi. Jika pengendapan bisa dipercepat, memungkinkan untuk memaksa fluida melepaskan mineral penyebab scaling dan mengontrolnya sebelum masuk ke pembangkit, sehingga dapat membersihkan fluida tanpa perlu khawatir terjadi pengendapan lebih jauh. Terdapat lima parameter yang mempengaruhi laju pengendapan silika, antara lain (Ellis, A.J and W.A.J. Mahon, 1977):

- 1. Derajat inisial supersaturasi (contohnya konsentrasi actual SiO2).
- 2. Temperatur
- 3. Salinitas atau molalitas larutan
- 4. pH larutan
- 5. Keberadaan atau ketidakberadaan material koloid atau partikel yang mengandung silika.

Pada power plant, pengendapan silika sangat mungkin terjadi. Dapat dihitung dengan memperkirakan konsentrasi quartz berdasarkan temperatur reservoir menggunakan persamaan (DiPippo, 2012):

$$\begin{aligned} Qc(t) &= 41.598 + 0.23932 t_{res} - 0.011172 t_{res}^2 + 1.1713 \times \\ 10^{-4} t_{res}^3 - 1.9708 \times 10^{-7} t_{res}^4 \end{aligned} \tag{3-9}$$

Dimana, temperatur t dalam oC dan konsentrasi quartz Q dalam mg/kg atau ppm. Pada separator, dengan mengasumsikan sisa silika dalam fasa liquid, konsentrasi silika di brine akan meningkat berdasarkan:

$$SI = \frac{Qc(t)}{1-x}$$
Dimana, tres adalah temperatur reservoir dalam oC dan x adalah kualitas dari fluida panas bumi di separator. Untuk kelarutan silika amorphous dapat digunakan korelasi Fournier dan Marshall, sebagai berikut:

$$log_{10}s = -6.116 + 0.01625T - 1.758 \times 10^{-5}T^{2} + 5.257 \times 10^{-9}T^{3}$$

Dimana T adalah outlet temperatur brine dalam Kelvin dan s adalah kelarutan silika dan harus dikali oleh 58400 untuk merubahnya menjadi ppm. SSI adalah perbandingan konsentrasi silkia di brine dan kelarutan silika, jika SSI > 1, yang brine terpisahkan dalam kondisi supersaturated terhadap silika amorphous (scaling silika terbentuk). Untuk binary cycle power plant, digunakan persamaan berikut:

$$SSI = \frac{S_I}{s}$$

4.2. Single Flash Steam

Siklus *single flash* steam memiliki kemiripan dengan siklus separated steam cycle. Perbedaan pada system ini adalah fluida di kepala sumur dalam kondisi air jenuh (saturated liquid) sehingga digunakanlah flasher agar fluida dalam kondisi air jenuh menguap pada tekanan yang lebih rendah di flasher. Banyaknya uap yang dihasilkan bergantung pada tekanan flasher. Semakin rendah tekanan flasher, maka fraksi uap akan semakin tinggi. Fraksi uap yang dihasilkan kemudian dialirkan ke turbin, sedangkan brine dialirkan ke sumur injeksi. Skema diagram pembangkitan single flash plant dapat dilihat pada **Gambar 4. 3**.

Gambar 4.3. Konfigurasi Pembangkitan Tipe Single Flash Steam (Moon and Zarrouk, 2012)

Estimasi harga steam turbine untuk kapasitas pembangkit 20 MW akan semakin ekonomis apabila jumlah unit yang dipesan lebih banyak. Harga per 1 kW untuk 1-unit steam turbine 20 MW adalah USD 317/kW. Sedangkan untuk harga untuk 2-unit steam turbine 20 MW (2x20 MW) sebesar USD 202/kW (NREL, 2018).

Hasil Perhitungan Biaya Steam Turbin Kapasitas 20 MW

(NREL, 2018)

Investasi modal hulu dibagi menjadi dua investasi modal tangible dan intangible. Danar (2010) mengasumsikan bahwa modal investasi tidak berwujud adalah 30% dari biaya sumur, tanah, akses jalan, dan pekerjaan lapangan sedangkan sisanya adalah modal investasi berwujud. Modal investasi hilir terdiri dari: 1. Biaya Rekayasa Detail Pembangkit Listrik, 2. Biaya Pengadaan / Konstruksi Pembangkit Listrik, 3. Biaya Komisioning

4.3. Binary Cycle

Binary cycle adalah sebuah proses thermodinamika dimana sumber utamanya adalah fluida panas yang digunakan untuk memanaskan fluida kerja melalui *heat* exchanger (DiPippo, 2007). Binary cycle adalah pembangkit tenaga listrik sistem tertutup yang sesuai untuk lapangan panas bumi yang bertemperatur rendah hingga sedang. Dalam binary cycle, fluida produksi tidak digunakan untuk menggerakkan turbin, melainkan menggunakan fluida organik yang memiliki temperatur didih di bawah temperatur kritis air yang dipanaskan dengan fluida pemanas menggunakan heat exchanger sehingga fluida kerja akan menguap dan digunakan untuk menggerakkan turbin. Berikut ini merupakan skema proses yang terjadi pada binary cycle.

Gambar 4.5. Skema *Binary Cycle* (Ahmet, Mustafa, & Tugrul, 2014)

Binary cycle pada panas bumi terdiri atas dua siklus, yaitu siklus primer yang terdiri dari fluida panas bumi, dan siklus sekunder dimana fluida kerja organik bersirkulasi. Pengembangan dari jenis binary cycle adalah dengan menggunakan heat exchanger. Fungsi dari alat ini adalah untuk meningkatkan temperatur fluida kerja ketika akan memasuki turbin. Selain itu, fluida kerja yang keluar dari heat exchanger akan memiliki temperatur yang lebih tinggi dibandingkan brine yang keluar dari sumur produksi. Brine dari sumur produksi dialirkan menuju heat exchanger dan digunakan sebagai pemanas untuk menguapkan fluida kerja organik dan keluar menuju sumur injeksi. Pada saat yang bersamaan, fluida kerja organik memasuki heat exchanger dan fasenya berubah akibat terjadinya pertukaran panas antara fluida kerja dan brine.

Fluida kerja yang keluar dari turbin mengalami penurunan tekanan namun masih memiliki temperatur yang cukup tinggi dan dialirkan ke kondensor sehingga berubah fase menjadi fluida cair. Selanjutnya fluida kerja cair dialirkan menggunakan pompa menuju *heat exchanger*. Fluida kerja pada bagian ini akan bertukar panas dengan fluida pemanas yang keluar dari separator. Pada titik ini fluida kerja telah mengalami peningkatan temperatur dan tekanan yang selanjutnya diuapkan kembali menuju turbin.

Dasar-dasar perhitungan dalam perencanaan *binary cycle* adalah menentukan fluida kerja, menganalisis siklus termodinamika fluida kerja, menentukan laju alir massa fluida kerja, laju alir massa *cooling water*, menghitung luas permukaan *plate* untuk *heat exchanger* dan kondensor, menghitung spesifik kerja pompa, dan menentukan besarnya energi yang dihasilkan serta menghitung efisiensi termal siklus. Data-data yang diperlukan dalam menganalisis penerapan *binary cycle* pada lapangan panasbumi, data yang diperlukan, yaitu:

- 1. Tekanan brine keluaran separator
- 2. Temperatur brine keluaran separator
- 3. Massa alir *brine* keluaran separator

4.3.1. Jenis *Binary Cycle*

Binary cycle memiliki dua jenis yang berbeda menurut fluida kerja yang digunakan. Adapun jenis dari *binary cycle* yaitu:

4.3.1.1. Organic Rankine Cycle (ORC)

Organic rankine cycle merupakan sistem binary cycle dengan fluida kerja yang digunakan merupakan senyawa hidrokarbon. Senyawa hidrokarbon ini nantinya akan dipanaskan oleh fluida produksi di dalam *heat exchanger*. Setelah dipanaskan, fluida kerja yang sudah menjadi uap akan diteruskan ke turbin untuk dapat menghasilkan energi listrik. Adapun proses yang terjadi pada ORC ini dapat dilihat pada **Gambar 4.2.** berikut ini:

Gambar 4.6. Skema Organic Rankine Cycle (Dipippo, 2008)

Dari skema proses *Organic Rankine Cycle*, dapat dilihat fluida kerja menerima panas dari *heat exchanger* (5-6) dan akhirnya menguap setelah dipanaskan (6-1) sebelum memasuki turbin dan generator untuk menghasilkan energi listrik. Setelah panas dari fluida kerja meningkat, sehingga terjadi di antara proses 5 dan 1, uap bertekanan tinggi tersebut akan mengembang di dalam turbin (1-2). Setelah mengembang, fluida organik tersebut diteruskan ke kondenser

untuk didinginkan dan dikondensasi (2-4) dan selanjutnya dipompa kembali (4-5) di dalam sistem tertutup ini, untuk selanjutnya akan diuapkan kembali.

Siklus binary cycle mengasumsikan tekanan dari *outlet feed pump* hingga *inlet* turbin memiliki nilai sama dan tekanan dari *outlet* turbin hingga *inlet feed pump* memiliki nilai yang sama .Sedangkan *temperature* dari *outlet heat exchanger* hingga *inlet* turbin memiliki nilai yang sama ,*temperature outlet* turbin hingga *inlet* kondensor memiliki nilai yang sama , dan *temperature* dari *outlet* kondensor =hingga *inlet heat exchanger* memiliki nilai yang sama.

4.3.1.2. Kalina Cycle

Kalina *cycle* merupakan sistem *binary cycle* dengan fluida kerja yang digunakan merupakan campuran air dan ammonia. Pada umumnya *kalina cycle* diaplikasikan pada lapangan dengan temperatur di bawah 140°C. Penggunaan *kalina cycle* merupakan pengembangan dari ORC, maksud dari penggunaan air dan ammonia yaitu percampuran tersebut dipercaya dapat memiliki temperatur yang mirip dengan fluida panasbumi. Proses yang terjadi pada *kalina cycle* dapat dilihat pada **Gambar 4.3**. di bawah ini

Fluida kerja (*ammonia-water*) meninggalkan evaporator sebagai campuran jenuh. Kualitas campuran yang dihasilkan merupakan fungsi dari kadar ammonia

yang digunakan, temperatur sumber panas, dan tekanan dari fluida kerja. Setelah fluida campuran keluar dari *evaporator*, selanjutnya menuju turbin.

Fungsi dari separator fasa adalah untuk memisahkan fluida produksi menjadi dua fasa yang berbeda. Jumlah uap jenuh dari fluida kerja yang dihasilkan merupakan campuran ammonia yang melewati separator ke keadaan 1. Uap jenuh berlanjut ke turbin yang mengalami ekspansi isentropik dan menghasilkan tenaga. Uap jenuh akan mengembang menjadi campuran jenuh dan keluar dari turbin, campuran jenuh ini dapat dilihat pada keadaan 2. Fraksi massa yang tidak teruapkan, akan keluar dalam bentuk cairan jenuh dari keadaan 3. Pada fasa cairan jenuh, fraksi ammonia yang dikandung lebih sedikit dibandingkan dengan uap jenuh. Cairan jenuh panas selanjutnya diproses ke mixer at absorber bertekanan rendah dengan menggunakan throttling valve, yang dicampurkan dengan fluida campuran jenuh dari turbin yang bertekanan sama. Pada keadaan 5, fluida campuran yang terbaru meninggalkan mixer dan melewati condenser dan temperatur diturunkan sehingga fluida kerja kembali menjadi saturated liquid. Pada keadaan 6, saturated liquid meninggalkan kondenser. Selanjutnya pada keadaan 7 fluida kerja ditekan hingga tekanan maksimumnya dengan pompa. Lalu fluida kerja yang sudah dingin memasuki preheater dan menyerap panas seperti pada keadaan 8. Selanjutnya fluida campuran yang keluar dari preheater memasuki evaporator kembali

4.3.2. Analisa Tekanan dan Temperatur Fluida Pemanas

Untuk menghitung P dan T pada inlet *Heat exchanger* perlu diketahui terlebih dahulu ΔP dan ΔT pada pipa dari kepala sumur sampai *heat exchanger* dengan persamaan:

P IBHE = P separator - ΔP separator - HE

T IBHE = T separator - ΔT separator - HE

Keterangan :

P_{IBHE} = Tekanan brine pada inlet *heat exchanger*

T _{IBHE}	= Temperatur brine pada inlet <i>heat exchanger</i>			
$\Delta P_{wellhead-HE}$	= Kehilangan tekanan pada pipa dari kepala sumur – heat			
	exchanger			
$\Delta T_{wellhead-HE}$	= Kehilangan temperatur pada pipa dari kepala sumur –			
	heat			

exchanger

Setelah diketahui besarnya P dan T pada inlet *heat exchanger*, selanjutnya mencari Δ P dan Δ T pada inlet *heat exchanger* dengan outle *heat exchanger* dengan persamaan:

 $\Delta P_{\text{HE}} = P_{\text{inlet HE}} - P_{\text{outet HE}}$

$\Delta T_{\rm HE} = T_{\rm inlet\,HE} - T_{\rm outet\,HE}$

Keterangan :

PInletHE	= Tekanan brine pada inlet <i>heat exchanger</i>
T _{InletHE}	= Temperatur brine pada inlet <i>heat exchanger</i>
PoutletHE	= Tekanan brine pada inlet <i>heat exchanger</i>
ToutletHE	= Temperatur brine pada inlet <i>heat exchanger</i>
$\Delta P_{\rm HE}$	= Kehilangan tekanan pada inlet <i>heat exchanger</i> - outlet
	heat exchanger
$\Delta T_{\rm HE}$	= Kehilangan temperatur pada inlet <i>heat exchanger</i> – outlet
	heat exchanger

Setelah mengetahui besarnya temperature yang masuk kedalam *heat exchanger*, sehingga peneliti dapat menentukan fluida kerja yang memiliki temperature kritis dibawah temperature fluida pemanas.

4.3.3. Fluida Kerja

Pemilihan fluida kerja untuk *binary cycle* sangat penting karena berpengaruh terhadap efisiennya uap yang dihasilkan, ukuran *power plant* yang dibutuhkan, desain turbin, stabilitas *power plant*, keamanan, performa, ekonomi dan efeknya terhadap lingkungan. Kihara dan Fukunaga (1975) dan West, dkk. (1979)

merekomendasikan beberapa kriteria minimal yang dapat digunakan untuk menseleksi fluida kerja, antara lain:

a. Ketersediaan Properti Fluida

Fluida kerja bisa berupa senyawa non organik (air, ammonia, karbondioksida) atau senyawa organik (hidrokarbon, halokarbon). Fluida jenis organik dipilih karena properti fisika dan termodinamika fluida tersebut telah banyak diketahui dan mudah diperoleh.

b. Tekanan Kondensasi

Tekanan kondensasi pada titik kondensasi awal dalam kondenser harus seminimal mungkin untuk meminimalisir harga kondenser per unit permukaan transfer panas, akan tetapi harus lebih besar dari pada tekanan atmosfer. Fluida dengan tekanan kondensasi kurang dari tekanan atmosfer akan beroperasi pada kondisi vakum sehingga menyebabkan kemungkinan terjadinya kebocoran udara masuk ke dalam sistem. Oleh karena itu fluida dengan tekanan kondensasi di bawah 1 bar abs, akan dieliminasi dari pemilihan fluida kerja.

c. Temperatur Kritis

Semua fluida yang mempunyai temperatur kritis kurang dari temperatur kondensasi terendah 37°C (dengan asumsi depresi temperatur 27°C dan selisih temperature yang dapat diserap 10°C) akan dieliminasi dari pemilihan fluida kerja. Selain itu, fluida yang selalu berada pada kondisi fase uap superheated akan dieliminasi karena fluida ini akan relatif memerlukan pompa dengan daya tinggi.

d. Berat Molekul

Berat molekul fluida akan mempengaruhi desain turbin. Hasil eksperimen oleh para ahli turbin menunjukkan bahwa untuk menghasilkan power output yang sama, meningkatnya berat molekul akan meningkatkan mass flowrate (laju alir) yang diperlukan, menurunkan tip speed turbin dan menurunkan kecepatan suara di dalam fluida.

e. Bentuk Kurva Uap Jenuh

Untuk menghindari superheat yang berlebihan dalam kondenser dan kondensasi pada saat keluar turbin, uap jenuh fluida kerja harus berada hampir vertikal pada diagram suhu-entropi. Superheat tidak diinginkan karena koefisien transfer panas pada daerah superheat lebih kecil dari pada daerah penguapan dan kondensasi. Kondisi fluida kerja pada saat keluar dari turbin ditentukan oleh kemiringan kurva uap jenuh pada diagram T-s (temperatur – entropi). Fluida yang mempunyai kurva vertikal pada uap jenuhnya cenderung akan mempunyai efisiensi tinggi Fluida yang berada pada kondisi campuran cair dan uap (yaitu berada di sebelah kiri kurva uap jenuh) akan menyebabkan masalah korosi, sedangkan uap superheated (yaitu berada di sebelah kanan kurva uap jenuh) akan menyebabkan naiknya heat rejection di dalam kondenser.

f. Stabilitas Termal

Stabilitas termokimia diindikasikan oleh temperatur penguraian, dimana fluida melebihi batas temperatur penguraian yang telah ditentukan, akan diabaikan.

g. Pertimbangan Keselamatan

Fluida yang beracun dan mudah terbakar diabaikan, kecuali jika fluida tersebut menunjukkan keuntungan/kelebihan pada bagian lain.

h. Karakteristik Perpindahan Panas (Heat Transfer)

Sifat perpindahan panas fluida secara signifikan mempengaruhi ukuran dari *heat exchanger*. Korelasi perpindahan panas secara konveksi pada fluida satu fasa digunakan untuk proses *screening* awal.

Dalam hal temperatur kritis, fluida kerja yang digunakan harus memiliki temperatur kritis di bawah temperatur kritis air. Dalam memilih fluida kerja yang tepat, dapat dilihat pada **Tabel IV-1** berikut ini.

Fluid	Formula	Critical temp. (°C)	Critical pressure (bar)	Molar mass (kg/kmol)	Toxicity	Flammability	ODP*	GWP**
Propane	C_3H_8	96.95	42.36	44.09	Low	very high	0	3
i-Butane	i-C ₄ H ₁₀	135.9	36.85	58.12	Low	very high	0	3
n-Butane	C4H10	150.8	37.18	58.12	Low	very high	0	3
i-Pentane	i-C5H12	187.8	34.09	72.15	Low	very high	0	3
n-Pentane	C5H12	193.9	32.40	72.15	Low	very high	0	3
R-12	CCl_2F_2	112.0	41.14	120.9	non-toxic	non-flam.	1.0	4,500
R-114	$C_2Cl_2F_4$	145.7	32.89	170.9	non-toxic	non-flam.	0.7	5,850
R134a	CH ₂ FCF ₃	101.0	40.59	102.0	Low	non-flam.	0	1,430
R254fa	$C_3H_3F_5$	154.0	36.51	134.0	Low	non-flam.	0	1030
Ammonia	NH ₃	133.6	116.27	17.03	Toxic	Lower	0	0
Water	H_2O	374.1	220.89	18.02	non-toxic	non-flam.	0	-

Tabel IV-2 Termodinamika Fluida Kerja untuk Binary Cycle (DiPippo, 2007)

Berdasarkan dari kriteria – kriteria tersebut, telah banyak fluida kerja yang telah diuji. Dan hasilnya, fluida tersebut dapat dikelompokkan menjadi 4 grup: Karbondioksida, Amonia, Halokarbon, dan Hidrokarbon (Zeyghami, 2015). Dalam proses *screening* awal, penggunaan Karbondioksida dan Ammonia diabaikan, karena:

- Walaupun secara termal stabil, namun Ammonia beracun dan mudah terbakar.
- Temperatur kritis dari Karbondioksida sangat rendah (31^oC)

Penggunaan hidrokarbon sebagai fluida kerja lebih menguntungkan daripada halokarbon. Keuntungannya yaitu:

- Dibandingkan hidrokarbon, sifat termodinamika halokarbon menghasilkan unit tenaga yang lebih rendah.
- Halokarbon menghasilkan uap beracun dan gas beracun tidak berwarna. Hidrokarbon mudah terbakar, tetapi relatif aman bagi lingkungan.

- Stabilitas termal dari senyawa alifatik hidrokarbon adalah pada 149°C, pada kondisi fluida kerja 37.8 bar abs. Sedangkan halokarbon akan terurai pada kondisi ini.
- Dari segi ekonomi, hidrokarbon lebih murah daripada halokarbon. Berdasarkan alasan-alasan diatas, dapat disimpulkan bahwa hidrokarbon lebih dipilih sebagai fluida kerja dari *binary cycle*. Saat ini, banyak pembangkit *binary* yang telah menggunakan hidrokarbon sebagai fluida kerja.

Pada studi ini, fluida kerja yang digunakan yaitu *Propane*. Hal ini dikarenakan *Propane* mempunyai temperatur kritis dan tekanan kritis yang tinggi (di atas tekanan dan temperatur *brine*) sehingga masih aman untuk digunakan. Selain itu, *Propane* mempunyai tekanan kondensasi yang tinggi, sehingga tidak membutuhkan waktu yang lama untuk proses kondensasi setelah keluar dari turbin. Penggunaan fluida kerja hidrokarbon lebih aman dan ramah lingkungan dibandingkan dengan halocarbon.

4.3.4. Termodinamika Fluida Kerja

Metode sederhana untuk menjelaskan *binary cycle* adalah dengan mengikuti diagram T-s dan diagram P-h. untuk diagram T-s dapat dilihat pada **Gambar 4.4.**

Diagram T-s *Binary Cycle* Menggunakan hidrokarbon sebagai Fluida Kerja (Parada, 2013)

Dari gambar diatas dapat dilihat grafik hubungan antara temperatur dengan entropi. Pada titik 1 ke titik 2 terjadi kenaikan temperature di *heat exchanger* namun belum melewati titik kritis dari fluida kerja, sehingga besarnya entropi mengikuti garis boiling point dari fluida kerjanya. Sedangkan titik 2 hingga 3 terjadi perubahan fasa pada fluida kerja dari liquid menjadi sepenuhnya uap. Dari titik 3-4 terjadi ekspansi isentopic pada turbin menyebab kan temperatur menurun, namun masih berada pada fasa gas. Pada titik 4-5-6 terjadi penurunan temperatur din kondensor ke temperatur awal, sehingga entropinya mengikuti garis boiling pointnya lagi. Dan dari 6 ke 1 temperatur konstan karena hanya diberikan tekanan pada *feedpump. Thermodynamic state* dari fluida kerja dapat dilihat pada silkus kedua diagram P-h **Gambar 4.5**.

Gambar 4.9. Diagram P-h *Binary Cycle* Menggunakan hidrokarbon sebagai Fluida Kerja (Parada, 2013)

Dari gambar diatas dapat dilihat grafik hubungan antara tekanan dan entalpi, titik 1-2-3 terjadi kenaikkan temperature dengan tekanan konstan hingga berubah fasa menjadi uap dan terjadi kenaikan entalpi pada fluida hidrokarbon. Selanjutnya dari titik 3 ke 4 terjadi ekspansi pada turbin, menyebabkan terjadi penurunan tekanan dan entalpi. Untuk titik 4-5-6 terjadi di kondensor dengan tekanan konstan dan nilai entalpi yang turun. Retakhir pada titik 6 ke 1 terjadi penambahan tekanan di *feedpump*.

Kedua gambar tersebut menunjukkan bahwa *binary cycle* terdiri dari empat proses (Parada, 2013), seperti ditunjukkan pada **Tabel IV-2**.

No	Asumsi
6 – 1	Isentropik pada <i>feed pump</i> pada P _{pompa} sebesar 10 bar
1 - 2 - 3	Tekanan konstan dan terjadi penambahan panas di heat exchanger
3 – 4 - 5	Ekspansi isentropic pada turbin, yaitu terjadi penekanan pada turbin
4-5-6	Tekanan konstan reinjeksi pada kondensor sebesar 1.1 bar

Tabel IV-3Asumsi Siklus Binary Cycle (Parada, 2013)

Keterangan:

1	= Feed pump
2	= Inlet heat exchanger
3	= outlet heat exchanger
4	= <i>inlet</i> turbin
5	= <i>outlet</i> turbin
6	= inlet condensor

Pada siklus kedua, fluida kerja masuk ke pompa pada *state* 6 sebagai *saturated liquid* dan secara isentropik pada tekanan *operating evaporator*. Temperatur fluida kerja meningkat selama proses kompresi isentropik, karena adanya sedikit penurunan pada spesifik volume fluida kerja. Fluida kerja masuk ke *preheater* sebagai *compressed liquid* dan meninggalkan *evaporator* sebagai *saturated vapour* pada *state* 3. Pada proses pemanasan-penguapan, dalam *preheater* fluida kerja dibuat hingga mencapai titik didihnya. *Preheater* dan *evaporator* adalah *heat exchanger* panas yang datang dari fluida panasbumi ditransfer ke fluida kerja pada tekanan konstan. *Evaporator* adalah bagian fluida kerja menguap pada temperatur konstan. Kondisi saturated ini memastikan bahwa tidak ada tetesan *liquid* yang masuk ke turbin. *Saturated* vapor pada *state* 3 masuk ke turbin, *vapor* tersebut akan berekspansi secara isentropik dan menghasilkan kerja dengan cara memutar turbin yang menyambung dengan generator listrik. Tekanan dan temperatur dari *vapor* yang turun akibat proses ini digambarkan

pada *state* 4, *vapor* masuk ke kondensor. Pada *state* ini, *vapor* biasanya *superheated*. Pada kondensor, *vapor* terkondensasi sebagai *saturated liquid* dan masuk ke *feed pump*. Efisiensi turbin dan *feed pump* digunakan untuk menentukan kerja pada kedua komponen

Dalam menentukan sifat thermodinamika fluida kerja, perlu ditentukan *state* fluida kerja dengan menggunakan diagram thermodinamika *Propane*. Pada penulisan ini, ada enam *state* yang menggambarkan tiap alat pada *binary cycle*.

Adapun state tersebut terperinci sebagai berikut:

1 : *State* turbin

Mencari entalpi dan entropi berdasarkan tekanan outlet turbin.

2s : Isentropik State I

$$S_{2s} = S_1, P = P_{cond}$$

2 : State keluaran turbin

Efisiensi turbin,
$$h_2 = h_1 = \eta_t (h_1 - h_2)$$
 (1)

3 : State Masukan Turbin

Saturasi uap pada Pcond

4 : State Heat Exchanger

Pada P_{cond}, saturasi liquid

5s : Isentropik State 4

$$S_{5s} = S_4, P_{5s} = 2.75 \text{ MPa},$$

$$h_{5s} \approx h_4 + v_4 (P_{5s} - P_4)$$
(2)

5 : State Pompa

$$h_5 = h_4 + \frac{(h_{5s} - h_4)}{\eta_n} \tag{3}$$

6 : State Saturasi Liquid

Saturasi liquid pada P = 2.75 MPa

4.3.5. Massa Aliran Fluida

Dalam penentuan komponen *binary cycle*, perlu untuk mengetahui massa alir fluida kerja yang dibutuhkan terlebih dahulu. Banyaknya fluida kerja yang

dibutuhkan bergantung pada massa alir *brine* dari separator dan kapasitas panas yang terkandung. Adapun rumus untuk mendapatkan massa alir fluida kerja yaitu:

$$Mwf = \frac{m_b \cdot c_b (T_a - T_b)}{h_1 - h_6}$$
(4)

Keterangan:

Mwf = massa Alir Fluida Kerja (kg/s)
Cb = koefisien panas (kJ/kg K)
Ta = Temperatur *Brine* Masuk *Heat Exchanger* (K)
Tb = Temperatur *Brine* Keluar *Heat Exchanger* (K)
h1 = Enthalpi Fluida Kerja Masuk *Heat Exchanger* (kJ/kg)
h6 = Enthalpi Fluida Kerja Keluar *Heat Exchanger* (kJ/kg)

4.3.6. Komponen Binary Cycle

Komponen pada *binary cycle* terdiri dari *heat exchanger* (*preheater* dan *evaporator*), kondensor, *feedpump* dan turbin gas. Gambar di bawah ini merupakan skema dari *binary cycle* yang digunakan:

Gambar 4.10. Skema Diagram Komponen Dasar Pembangkit *Binary Cycle* (Nord O.L., dkk. 2017)

Untuk membuat siklus binary cycle diperlukannya perencanaan peralatan dengan baik agar pada siklus ini tidak terjadi masalah.

4.3.6.1 Pipa Alir

Untuk menentukan besarnya diameter yang digunakan, dicoba dengan beberapa diameter pipa alir untuk mendapatkan kecepatan brine yang sesuai.

Lyle membuat suatu rekomendasi kecepatan fluida yang mengalir dalam pipa alir. Besarnya pemuaian panjang pipa bergantung pada koefisien muai panjang meterial pipa, diameter pipa dan panjang pipa. Untuk menghitung besarnya pemuaian panjang pipa alir yang terjadi digunakan persamaan seperti penentuan panjang liner akibat panas. Persamaan yang digunakan untuk menentukan diameter dalam pipa yang diperlukan yaitu:

$$V \qquad = \frac{m \cdot vm}{\frac{1}{4}x \pi x Di^2} \tag{5}$$

Keterangan:

V

= Velo	ocity Fluida, m/s
m	= massa aliran fluida, kg/s
vm	= viscocity, cp
Di	= Diameter dalam pipa, inch
А	= penambahan ketebalan sebagai keamanan, mm

4.3.6.2 Feed Pump

Pada sistem *binary cycle*, pompa dibutuhkan untuk memompa fluida kerja masuk ke *heat exchanger*. Feed pump merupakan salah satu jenis pompa sentrifugal. Fungsinya adalah menghisap fluida kerja hasil kondensasi kemudian didorong ke *heat exchanger* untuk diuapkan kembali.feedpump telah banyak digunakan pada skala umum di bidang industry yang mana telah memenuhi kemampuan untuk memberikan tekanan tertentu dan pada kondisi temperature tertentu (Leith et al. 2015) Dapat dilihat komponen utama pada feed pump pada **Gambar 3.15.**

Gambar 4.11. *Pump housing* (DENSO, 2008)

Dari gambar diatas terlihat komponen utama dari pompa berupa air bleeder screw, airbleeder nipple, oil hole, adapter screw, cylinder contack surface, grooved pin, control rack insertion hole, tappet guide grove, feed pump set stud, nipple (for over flow), chamber, pump housing

Kerja *feed pump* uang digunakan dihitung dengan menggunakan persamaan:

 $Wp = m_{wf} (h_5 - h_4) = m_{wf} (h_{5s} - h_4) / \eta_p$ (6)

Keterangan:

 $M_{wf} \hspace{0.5cm} = massa \hspace{0.1cm} a \hspace{0.1cm} liran \hspace{0.1cm} fluida \hspace{0.1cm} kerja, \hspace{0.1cm} kg/s$

 h_5 = entalpi fluida kerja pada state 5, kJ/kg

 h_4 = entalpi fluida kerja pada state 4, kJ/kg

Spesifik kerja yang digunakan *feed pump* ditentukan dengan persamaan:

$$wp = h_5 - h_4 \tag{7}$$

Keterangan:

 h_5 = entalpi fluida kerja pada state 5, kJ/kg

 h_4 = entalpi fluida kerja pada state 4, kJ/kg

Menggunakan tipe pompa sentrifugal, pompa ini dapat digunakan pada aliran $25 - 160 \text{ m}^3/\text{h}$ dan total *head* hingga 270 m. Horsepower yang dibutuhkan untuk

mengalirkan fluida kerja ditentukan dengan menggunakan persamaan:

$$HP \qquad = \frac{Q x P}{1714 x \eta_p} \tag{8}$$

Keterangan:

Q = Laju alir fluida kerja (gpm)

P = Kehilangan tekanan (psi)

 $\eta p = Efisiensi pompa = 75\%$

sehingga, setelah mengetahui horse power yang dibutuhkan selanjutnya dapat menentukan feed pump yang akan dipilih. Sedangkan untuk produk-produk feed pump dengan spesifikasi yang dipasarkan dapat dilihat pada **Table IV-7**.

Table IV-4.Spesifikasi Setiap Produk Untuk Feed Pump (Akshat Enterprise)

Brand	CRI	CRI
Model	Multistage pump	MVC-2/15T1
Туре	High pressure	Boil feed pump
Head (meter)	200	300
Hp (HP)	Up to 5	Up to 20
Max laju alir (m ³ /hr)	10	90
Poewer range (kW)	0.22	45
Pressure (bar)	12.5	20
Max Temperature (°C)	100	150

Dari tabel diatas terlihat berbagai model dan spesifikasi kondensor yang ditawarkan oleh pasar. Untuk itu perlu dipilih spesifikasi kondensor yang cocok untuk digunakan pada siklus binary cycle ini.

4.3.6.3 Heat Exchanger

Heat exchanger merupakan alat penukar kalor dari fluida panas bumi ke fluida kerja. Dimana pada *heat exchanger* ini, terdiri dari *preheater, evaporator, recuperator,* dan *condenser*. Namun terdapat pula *heat exchanger* yang merupakan suatu gabungan dari *preheater, evaporator, recuperator,* dan *condenser*. Alat penukar kalor adalah alat yang digunakan untuk memindahkan energi termal (enthalpy) antara dua fluida atau lebih, antara permukaan solid dan fluida, atau antara partikel solid dan fluida, pada kondisi temperatur yang berbeda dalam keadaan kontak thermal. Prinsip kerja *heat exchanger* ada dua yaitu memanaskan suatu fluida dingin atau mendinginkan fluida yang panas. Proses perpindahan panas tersebut dapat dilakukan secara langsung atau tidak. Maksudnya adalah:

- 1. *Heat exchanger* yang langsung, ialah fluida yang panas akan bercampur langsung dengan fluida dingin (tanpa ada pemisah) dalam suatu bejana atau ruangan tertentu.
- 2. *Heat exchanger* yang tidak langsung, adalah fluida panas tidak berhubungan langsung (*indirect contact*) dengan fluida dingin. Jadi proses perpindahan kalornya itu mempunyai media perantara, seperti pipa, pelat atau peralatan jenis lainnya.

Salah satu jenis *heat exchanger* yang sering dipakai pada dunia panasbumi adalah *plate heat exchanger*. Ada beberapa faktor yang menjadi kelebihan dari jenis ini jika dibandingkan dengan *shell-and-tube heat exchanger* (Mota et al., 2015), yaitu:

1. Performa termal yang bagus

Plate heat exchanger mempunyai kemampuan pada temperatur *approach*sebesar 10 ⁰F, dibandingkan dengan jenis *shell and tube* yaitu 20⁰F. Sebagai tambahan, koefisien *heat transferred* secara keseluruhan (U) untuk jenis PHE adalah sampai dengan tiga kali lipat jenis *shell and tube*.

- Tersedianya variasi bahan alloy yang tahan korosi
 Berdasarkan konstruksi dari heat exchanger terdiri dari lempeng yang tipis, konstruksi stainless steel atau high alloy, secara signifikan lebih murah daripada jenis shell and tube dengan material yang sama.
- Mudah perawatannya (*flexibility*) Konstruksi dari *heat exchanger* mudah dibongkar, dan seluruh areanya bisa di inspeksi dan dibersihkan. Terdapat banyak jenis pola *plate*,

sehingga memungkinkan kombinasi yang banyak sehingga didapatkan *heat exchanger* yang optimum.

- Ekspandabilitas dan *multiplex capability* Bentuk mula dari *heat exchanger* dapat dikembangkan. Dua atau lebih *heat exchanger* dapat digabungkan dalam satu *frame*, dengan demikian dapat meminimalkan tempat yang digunakan dan menekan biaya.
- 5. Design kompak (*Compactness*)

Performa termal yang baik dari *heat exchanger* dan desain ruangnya menghasilkan sistem peralatan yang kompak. Ruang yang disediakan pada *plate heat exchanger* secara umum dapat bekerja 10 - 50 % lebih baik dari pada jenis *shell and tube* pada kerja yang sama

Binary cycle dalam panas bumi membutuhkan ukuran *heat exchanger* yang berbeda sesuai dengan karakteristik setiap lapangan. Setiap *heat exchanger* mempunyai kapabilitas yang berbeda dalam kemampuan memanaskan fluida kerja dan jumlah pertukaran panas yang menggambarkan ukuran peralatan di dalam *heat exchanger*.

Pada **Gambar 4.7.** menunjukkan bagian-bagian dari *plate heat exchanger*. Dari gambar tersebut, pada dasarnya PHE terdiri dari beberapa *plate* yang dirangkai diantara dua *heavy end covers*. Seluruhnya dikunci dengan *tie bolts*. Masing-masing *plate* dikaitkan pada batang penunjang atas dan diatur oleh batang penunjan bawah. Untuk *single pass*, penghubung sisi fluida dingin dan panas ditempatkan pada *fixed end cover*.

Gambar 4.12. Bagian-Bagian *Plate Heat exchanger* (Mota et al., 2015)

Pada **Gambar 4.8.** Menunjukkan skema aliran fluida saat melewati *heat exchanger*. Fluida panas dan dingin mengalir secara berlawanan arah dan jalurnya dikendalikan dengan penempatan *plate gasket*. Dengan memvariasikan posisi dari *gasket*, air dapat disalurkan melewati sebuah *plate or past it*. *Gasket* dipasang sedemikian rupa sehingga fluida tidak bercampur. Sebagai tambahan, sisi keliling dari seluruh *gasket* berhubungan langsung dengan udara luar. Akibatnya, jika terjadi kebocoran akan mudah terindikasi.

Gambar 4.13. Skema Aliran pada *Heat exchanger* (Franco & Vaccaro, 2017)

Sebagai perbandingan dengan *shell and tube unit*, *plate heat exchanger* adalah peralatan yang relatif *low pressure and temperature*. Saat ini, kebanyakan design dari pabrikan mempunyai batas $T = 400^{0}F$ dan P = 300 psig. Diatas harga tersebut, kita harus mendesain alternatif *heat exchanger* yang sesuai. Sebenarnya, yang menjadi pembatas dari *heat exchanger* merupakan fungsi dari material yang dipilih untuk *gasket* dan *plates*. Masing-masing *plate area* bervariasi, mulai dari 0.3 sampai 21.5 ft² dengan maksimum *heat transfer area* untuk *single heat exchanger* saat ini, sekitar 13,000 ft². Ukuran minimum *plate* menempatkan batas lebih rendah pada aplikasi *plate heat exchanger*. Pada unit terbesar, mampu mengalirkan sebanyak 600 gpm dan unit terkecil dapat dipakai dengan laju kurang lebih 5 gpm. Ukuran dari lubang berkisar dari ¾ sampai 4 inch.

Heat exchanger jenis *plate*, menunjukkan superioritas *thermal performance* dalam perbandingannya dengan *shell and tubes heat exchanger*. *Plate heat exchanger* mampu bekerja pada air ke air sampai pada beda temperatur terendah 2⁰F dan secara keseluruhan juga, *heat transfer coefficient* tertinggi 1200 Btu/h ft^{2 0}F. Sebagai perbandingan, *shell and tube heat exchanger* hanya mampu kurang lebih sebesar 10^{0} F dan *heat transfer coefficient*-nya dibatasi kira-kira 150 – 275 Btu/h ft² ⁰F.

Tabel IV-3. menunjukkan harga *fouling factor* pada *plate heat exchanger*. Pada fluida panasbumi biasanya digunakan jenis *sea water – ocean* senilai 0.00015. Fouling factor adalah hambatan perpindahan panas karena adanya endapan-endapan didalam HE sehingga perlu untuk dibersihkan secara teratur.

Fluid	Fouling Factor (ft.ºF.hr/Btu)
Distilled water	0,00005
Soft water	0,0001
Hard water	0,00025
Treated cooling tower water	0,0002
Sea water – ocean	0,00015
River water	0,00025
Engine Jacket	0,0003

Tabel IV-5.

Harga Fouling Factor Plate Heat exchanger (Lineau, Paul J. et. al, 1989)

Dua fluida yang masuk dalam *heat exchanger* mengalir secara berlawanan arah. Hasilnya hampir mendekati kondisi *counterflow* sempurna. Untuk perencanaan *heat exchanger* perlu menghitung *Log mean temperature difference* dihitung dari beda temperatur antara masuk dan keluar dari dua fluida yang mengalir di *heat exchanger*. Persamaannya yaitu(mota et al. 2015):

$$LTMD = \frac{(T_a - T_1) - (T_b - T_5)}{\ln\left(\frac{T_a - T_1}{T_b - T_5}\right)}...(3-6)$$

Keterangan:

 $\begin{array}{ll} Ta - T_1 & = t_1 = t_{out \ 1} - t_{in \ 2} \\ T_b - T_5 & = t_2 = t_{in \ 1} - t_{out \ 2} \end{array}$

Secara keseluruhan *heat transferred coefficient* dapat ditentukan dari grafik pada Gambar 4.9.

Gambar 4.14. Grafik Performa *Plate Heat exchanger* (Lineau, Paul J. et. al, 1989)

Nilai koefisien panas yang terhantar (U) berbeda untuk setiap fluida kerja.

Nilai U untuk setiap fluida kerja tertera pada tabel dibawah :

Tabel IV-6 Koefisien U Fluida Kerja (DiPippo, 2012)

Fluids	Overall heat tran	ransfer coefficient \overline{U}	
	Btu/h · ft ² · °F	$W/m^2 \cdot K$	
Ammonia (condensing) – Water	150-250	850-1400	
Propane or Butane (condensing) - Water	125-135	700-765	
Refrigerant (condensing) - Water	80-150	450-850	
Refrigerant (evaporating) - Brine	30-150	170-850	
Refrigerant (evaporating) - Water	30-150	170-850	
Steam – Gases	5-50	30-285	
Steam – Water	175-600	1000-3400	
Steam (condensing) – Water	175-1050	1000-6000	
Water – Air	5-10	25-50	
Water – Brine	100-200	570-1135	
Water – Water	180-200	1020-1140	

Dengan mengasumsi $\Delta T_{pp} = 5$ K (spesifikasi alat yang umum digunakan),

maka:

 $T_B = T_6 + 5 \text{ K}$ (3-10)

Keterangan:

U = overall heat transfer coefficient, Btu/h $ft^{20}F$

- A = luas permukaan *heat exchanger*, ft^2
- Cmin = *Minimum heat capacity rate*
- $\Delta Tm = Larger temperature change, {}^{0}F$
- $\Delta Tlm = LMTD, {}^{0}F$
- $\Delta Tpp = temperature pinch point, ^{o}F$

Diagram *heat transfer* antara *brine* dengan fluida kerja dapat dilihat pada Gambar4.15.

Gambar 4.15. Diagram *Heat Transfer* Antara *Brine* Dengan Fluida Kerja (DiPippo, 2012)

Untuk mengetahui besarnya temperatur *brine* yang keluar dari *heat exchanger*, dapat dilakukan dengan melakukan interpolasi dari **Gambar 4.10**. Sehingga didapatkan persamaannya, sebagai berikut (DiPippo, 2012):

Rasio tinggi dari *heat transfer* yang dihasilkan bukan hanya dari konfigurasi *heat exchanger*, tapi juga bentuk dari masing-masing *plate*. Indeks yang berfungsi untuk membandingkan efektifitas dari *plate – shell and tube* adalah dengan metode NTU (*Number of Transfer Units*). NTU adalah sebuah parameter tanpa satuan, yang umum dipakai dalam merancang *heat exchanger*, dan didefinisikan dalam persamaan (Holman, 2010):

$$NTU = \frac{U \times A}{C_{\min}} = \frac{\Delta T_m}{\Delta T_{lm}} \dots (3-$$

7)

Diperlukan perhitungan besarnya kerja yang dilakukan oleh *heat exchanger* dengan menggunakan persamaan ini (AIHTI, 2017)

$$Q = 500 \times (T_A - T_B)$$
.....(3-8)

Sehingga dengan memodifikasi persamaan (3-14), maka luas penampang *heat exchanger* dapat diketahui.

$$A = \frac{Q}{U \times LMTD \times C_f} \dots (3-9)$$

Untuk *heat exchanger* meggunakan model plate karena lebih unggul dari pada model shell-and-tube.Terdapat bebrbagai model plate *heat exchanger* yang dipasarkan, dapat dilihat pada **Table IV-4**.

Table IV-7

Spesifikasi *Plate Heat exchanger* Untuk Setiap Produknya (PT. Metalindo Prima Engineering)

Model	BH30	BH60B	BS60H	BH100B
Туре	M3	M6	TS6M	M10M
Vertical port distance (mm)	357	640	380	719
Horizontal port distance (mm)	60	140	203	225
Max. T (°C)	180	180	180	180
Max. P (bar)	16	16	16	16
Max q (kg/s)	4	16	20	50

Dari tabel diatas terlihat berbagai model dan spesifikasi *heat exchanger* yang ditawarkan oleh pasar. Untuk itu dipilih spesifikasi pada *heat exchanger* yang cocok untuk digunakan pada siklus binary cycle ini.

4.3.6.4 Turbin Uap

Turbin adalah suatu mesin penggerak dimana energi fluida kerja, dalam hal ini adalah uap, dipergunakan langsung untuk memutar roda turbin. Bagian turbin yang berputar dinamakan roda turbin. Roda turbin ini terletak didalam rumah turbin. Roda turbin memutar poros yang menggerakan atau memutar bebannya, yang dalam hal ini adalah generator listrik.

Pada dasarnya, dikenal dua jenis turbin : turbin dengan tekanan keluaran sama dengan tekanan udara luar (*Atmospheric Exhaust/Back Pressure Turbine*) selanjutnya disebut turbin tanpa kondenser dan turbin dengan condenser (*Condensing Unit Turbine*).

Production well

Gambar 4.16. Atmospheric Exhaust/Back Pressure Turbine (Nenny, 2012)

Pada turbin tanpa kondenser fluida yang keluar dari turbin langsung dibuang ke udara, sedangkan pada turbin dengan kondenser fluida yang keluar dari turbin dialirkan ke kondenser untuk dikondensasikan.

Gambar 4.18. Double Flow Turbine (Nenny, 2012)

Persamaan untuk menghitung daya turbin adalah sebagai berikut :

 $W = \eta m (h_1 - h_2)$ (3-10)

Dimana :

W = kerja/daya'turbiri (kW)
m = massa (kg/s)
h₁ = entalpi uap yang masuk kedalam turbin (kJ/kg)
h₂ = entalpi uap yang meninggalkan turbin (kJ/kg)

4.3.6.5 Turbin Gas

Turbin berfungsi mengubah energi termodinamika uap dari fluida kerja ke energi mekanik melalui turbin *shaft*, *shaft* akan disambungkan dengan generator sehingga listrik dapat diproduksi dapat dilihat pada **Gambar 4.19**.

Gambar 4.19. Komponen Turbin *Binary Cycle* (Teguh & Himawan, 2010)

Prinsip kerja turbin gas fluida masuk kedalam turbin dan fluida keluar dari turbin terjadi kehilangan entalpi(Δ h) yang dirubah oleh turbin untuk menjadi energi mekanik dengan memutar poros , selanjutnya energi mekanik dirubah oleh generator menjadi energi listrik. Semakin besar putaran turbin, maka semakin besar pula energi listrik yang dihasilkan generator, dengan mengalikan laju alir massa dengan entalpi yang hilang (Δ h). Untuk lebih jelasnya dapat melihat **Gambar 4.20.**

Siklus Turbine Gas

Komponen utama dari turbin terdiri dari *shaft*, *disc*, *blade*, *nozzle*, *stator*, dan *exhaust pipe*. Ukuran turbin yang dipakai dalam *binary cycle* haruslah kecil untuk menekan biaya, karena jika tidak, akan membutuhkan *heat exchanger* tambahan dan akan berakibat biaya yang lebih besar dari pada sistem konvensional (*flashing steam*). Turbin yang umum digunakan adalah *isentropic turbine*.

Siklus *binary* yang menggunakan fluida kerja hidrokarbon secara signifikan mengurangi ukuran dan jumlah *turbine exhaust*, akibatnya mengurangi biaya turbin. Pada hakekatnya, uap bertekanan tinggi menghasilkan karakteristik densitas uap yang tinggi (atau volume spesifik yang rendah). Ukuran turbin juga dipengaruhi oleh konversi efisiensi termal uap terhadap mekanika kerja putaran. Ukuran turbin juga ditentukan dari diameter *blade* dan karakteristik operasionalnya berkaitan juga pemilihan fluida kerja yang tepat dengan karakteristik dari sumber panas. Untuk *inlet* turbin dan *outlet* turbin dapat dilihat pada **Gambar 4.21**.

Gambar 4.21. Diagram Skema untuk Turbin (Parada, 2013)

Analisis termodinamika turbin *binary cycle* menggunakan asumsi yang sama dengan turbin *steam*. **Gambar 4.21.** menunjukkan diagram skema turbin yang nantinya digunakan untuk menghitung tenaga yang dihasilkan. Titik 3 adalah turbin*inlet* uap dan titik 4 adalah turbin *outlet*. Turbin ideal dalam keadaan *isentropic*, yang artinya entropi pada titik *inlet* sama dengan titik *outlet*. Perubahan entalpi uap pada turbin *real* adalah perubahan entalpi pada turbin *ideal* dikali efisiensi turbin isentropik. Kerja yang dihasilkan dari *real* turbin adalah perubahan entalpi dikali dengan laju alir massa fluida kerja melalui turbin.

Untuk menghitung *power* yang dihasilkan dapat menggunakan persamaan (DiPippo, 2012):

$$W_t = m_{wf} \times (h_3 - h_4)$$
.....(3-11)

Keterangan:

Wt = tenaga yang dihasilkan, kWe

mwf = laju alir fluida kerja, kg/s

- h_3 = entalpi pada inlet turbin, kj/kg
- h_4 = entalpi pada outlet turbin, kJ/kg

Komponen utama dari turbin terdiri dari shaft, disc, blade, nozzle, stator, dan exhaust pipe. Turbin yang umum digunakan adalah isentropic turbine. Untuk spesifikasi pada setiap jenis turbin dapat dilihat pada **Table IV-5**.

Gas Turbin Model	LS-500FTD	LS-350GFT	YDNC-500	Saturn 20
Company	<u>Weifang</u> <u>Yidaneng</u> <u>Power Co., Ltd.</u>	<u>Weifang</u> <u>Yidaneng</u> <u>Power Co.,</u> <u>Ltd.</u>	<u>Weifang</u> <u>Yidaneng</u> <u>Power Co.,</u> <u>Ltd.</u>	Solar turbin Caterpillar Company
Merk	Ronsun	Ronsun	YDNPOWER	
Max.Nominal out put (kW)	560	280	500	1185
Max.Thermal efficiency (%)	22.5	21	23.4	24.6
Length (m)	4.015	4.1	5.1	4.7
Width (m)	1.45	1.55	2.5	1.9
Height (m)	2.435	2.1	2.3	2
Weight (kg)	7200	3550	7500	6805
Inlet Pressure (bar)	6.5	4.5	6	8.5

 Table IV-8

 Spesifikasi Gas Turbin Untuk Setiap Produk

Dari tabel diatas terlihat berbagai model dan spesifikasi Turbin gas yang ditawarkan oleh pasar. Untuk itu dipilih spesifikasi pada turbin gas yang cocok untuk digunakan pada siklus binary cycle ini.

4.3.6.6 Kondensor

Pada prinsipnya kondensor mempunyai prinsip kerja yang sama dengan *heat exchanger*, namun perbedaanya adalah yang dimanfaatkan dari *heat exchanger* merupakan fluida panas yang dihasilkan sedangkan pada kondensor tujuan utamanya adalah untuk menurunkan temperature tinggi (T_{kritis}) ke temperature rendah($T_{boiling}$) pada fluida kerja. Untuk mendesain kondensor diperlukan temperature *inlet* dan temperatur *outlet* untuk fluida kerja dan fluida pemanasnya, untuk lebih jelasnya dapat dilihat pada **Gambar 4.22**.

Gambar 4.22. Shell-and-Tube Kondensor (Cegalia et al.2015)

Dari gambar diatas, terlihat terjadi heat transfer antara fluida kerja dengan fluida pendingin. Sehingga, terjadi penurunan temperature fluida kerja hingga menjadi fasa cair dan keluar melalui outlet kondensor. Sedangkan, unutk fluida pendingin terjadi kenaikkan temperature pada outlet kondensor. Transfer panas kondensor antara fluida kerja dengan cooling fluid dapat dilihat dari persamaan berikut :

Menghitung *Log mean temperature difference* dihitung dari beda temperatur antara masuk dan keluar dari dua fluida yang mengalir di kondensor. Persamaannya yaitu (Mota et al. 2015):

Keterangan:

 $\begin{array}{ll} T_a - T_1 & = t_1 = t_{out \ 1} - t_{in \ 2} \\ T_b - T_5 & = t_2 = t_{in \ 1} - t_{out \ 2} \end{array}$

Rasio tinggi dari heat transfer yang dihasilkan bukan hanya dari konfigurasi *heat exchanger*, tapi juga bentuk dari masing-masing plate. Indeks

yang berfungsi untuk membandingkan efektifitas dari plate – shell and tube adalah dengan metode NTU (Number of Transfer Units). NTU adalh sebuah parameter tanpa satuan, yang umum dipakai dalam merancang kondensor, dan didefinisikan dalam persamaan (Mota et al. 2015):

$$NTU = \frac{U \times A}{C_{\min}} = \frac{\Delta T_m}{\Delta T_{lm}} \qquad (3-13)$$

Keterangan:

U = overall heat transfer coefficient, Btu/h ft^{2} ⁰F

A = luas permukaan kondensor, ft^2

Cmin = Minimum heat capacity rate

 $\Delta Tm = Larger temperature change, {}^{0}F$

 $\Delta Tlm = LMTD, {}^{0}F$

Maka luas penampang kondensor dapat diketahui (Mota et al. 2015):

$$A = \frac{Q}{U \times LMTD \times C_f} \qquad (3-14)$$

Untuk spesifikasi setiap produknya dapat dilihat pada Table IV-6.

Table IV-9Spesifikasi Setiap Produk Untuk Kondensor(Shyam Engineering Work, Rohini Aircon Private Limited)

Model	SHE	WCC	WCC
Туре	-	A10	A30
Fasa	Liquid	Liquid	Liquid
Power range(kW)	0.22	7.5	110
Max pressure (bar)	3.5	10	30
Liquid rate (kg/s)	10	10	10

Dari tabel diatas terlihat berbagai model dan spesifikasi kondensor yang ditawarkan oleh pasar. Untuk itu perlu dipilih spesifikasi kondensor yang cocok untuk digunakan pada siklus binary cycle ini

4.2. Effisiensi Thermal

Energi thermal yang berasal dari fluida panas bumi akan diubah menjadi energi mekanik pada turbin untuk dijadikan energi listrik oleh generator. Besarnya
panas yang dapat dimanfaatkan pada suatu siklus merupakan pengertian dari effisiensi thermal.

Besarnya effisiensi thermal dapat diketahui dengan persamaan:

 $W = Wt - Wp / Q \dots (4-15)$

Keterangan:

W	= Energi listrik (kW)
\mathbf{W}_{t}	= Spesifik Kerja turbin (kW)
\mathbf{W}_{p}	= Spesifik Kerja Pompa (kW)
Q	= Heat Transfer (kJ/kg)

4.8. Metodologi Penelitian

Metodologi dalam melakukan perencanaan pembangkit *binary cycle* skala kecil pada sumur eksplorasi panas bumi adalah sebagai berikut:

- 1. Pengumpulan data produksi fluida brine berupa tekanan, temperature, laju alir massa, dan fasa.
- 2. Analisa fluida brine

Mencari P, T, Laju alir massa, dan Fasa secara konvensional di flowline, manifold, separator, turbin uap. Sedangka untuk *binary cycle* berupa heat exchanger, dan sumur injeksi.

- 3. Energi listrik yang dihasilkan
 - a. Menghitung besarnya energy listrik yang dihasilkan secara konventional.
 - b. Menghitung besarnya energy listrik yang dihasilkan secara *binary cycle*.
- 4. Perencanaan peralatan
 - a. Melakukan pemilihan peralatan yang akan digunakan secara konventional
 - b. Melakukan pemilihan peralatan yang akan digunakan agar siklus *binary cycle* ini dapat beroprasi dengan baik.

Untuk lebih jelasnya dapat dilihat pada Gambar 4.23.

Gambar 4.23. Diagram Alir Perencanaan Pembangkit Listrik Pada Lapangan Panas Bumi ADN

BAB V

ANALISA DAN HASIL

5.1. Analisa Sumur

Untuk perencanaan pembangkit listrik panas bumi diperlukan analisa setiap sumurnya, yang bermula di *wellhead* setiap sumur mengalir didalam pipa transport hingga *manifold*, dan dari *manifold* ke separator.

5.1.1. Analisa Sumur GN-01

Data *wellhead* GN-01 setelah di masukkan akan menunjukkan data-data lain seperti *molar flow, std. ideal liq. Vol. flow, Molar entalphy, Molar entrophy, Heat flow,* dan lainnya. Data-data yang dimaksud dapat dilihat pada **Tabel V-1.**

Stream Name	GN-01
Vapour / Phase Fraction	0,7500
Temperature [C]	185,0
Pressure [kPa]	1118
Molar Flow [kgmole/h]	2158
Mass Flow [kg/h]	3,888e+004
Std Ideal Liq Vol Flow [m3/h]	38,96
Liq Vol Flow @Std Cond [m3/h]	38,31
Fluid Package	Basis-1
Utility Type	

Tabel V-1. Analisa Wellhead GN-01

Selanjutnya melakukan pipa transport dari kepala sumur hingga *manifold*. Hal ini dilakukan karena adanya kehilangan tekanan dan temperature sepanjang pipa transport. Dalam analisa ini jarak antara *wellhead* himgga *inlet manifold* sejauh 300 m, dengan mengasumsikan tidak adanya belokkan maupun elevasi pada pipa transport. Pada **Tabel V-2** terdapat analisa pipa yang akan digunakan.

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	300,0
Elevation Change	0,0000
Outer Diameter	273,1
Inner Diameter	242,9
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-2. Pipa Transport dari Sumur GN-01 hingga Inlet Manifold

Dari data pipa transport diatas, selanjutnya dianalisa besarnya kehilangan tekanan dan temperature pada *inlet manifold/outlet* pipa transport **Tabel V-3** dibawah ini.

Tabel V-3. Analisa Pipa Transport dari Sumur GN-01 hingga Inlet Manifold

Name	GN-01	GN-1 OUTLET
Vapour	0,7500	0,7500
Temperature [C]	185,0000	180,1459
Pressure [kPa]	1118	1002
Molar Flow [kgmole/h]	2158,1895	2158,1895
Mass Flow [kg/h]	38880,0000	38880,0000
LiqVol Flow [m3/h]	38,9585	38,9585

Dari tabel diatas terlihat adanya beberapa perubahan nilai parameter seperti tekanan dari 1118 kPa menjadi 1002 kPa dan temperature dari 185°C menjadi 180,1459°C. Namun, ada juga beberapa parameter yang konstan seperti *mass flow* dan fasa uap fluida. Pada **Gambar 5.1.** dibawah ini menunjukkan simulasi pipa transport.

Gambar 5.1.

Simulasi Pipa Transport pada Sumur GN-01 hingga Inlet Manifold

Dari gambar diatas, *Wellhead* GN-01 dilambangkan dengan tanda anak panah biru dengan nama GN-01. Sedangkan untuk *inlet manifold* dilambangkan dengan tanda anak panah biru dengan nama GN-1 OUTLET.

5.1.2. Analisa Sumur GN-02

Dengan memasukkan data yang ada pada *software*, kemudian didapatkan nilai-nilai untuk parameter lainnya yang dapat dilihat pada **Tabel V-4** dibawah ini.

Stream Name	GN-02
Vapour / Phase Fraction	0,6000
Temperature [C]	188,0
Pressure [kPa]	1195
Molar Flow [kgmole/h]	1998
Mass Flow [kg/h]	3,600e+004
Std Ideal Liq Vol Flow [m3/h]	36,07
Liq Vol Flow @Std Cond [m3/h]	35,47
Fluid Package	Basis-1
Utility Type	

Tabel V-4. Analisa Wellhead GN-02

Setelah menganalisa *wellhead* GN-02, selanjutnya melakukan perencanaan pipa transport menuju ke *inlet manifold*. Jarak pipa transport dari sumur GN-02 hingga ke *inlet manifold* sejauh 1000 m dan juga mengasumsikan tidak adanya elevasi maupun belokan sepanjang pipa. Untuk lebih jelasnya dapat dilihat **Tabel V-5** dibawah ini.

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	1000
Elevation Change	0,0000
Outer Diameter	323,8
Inner Diameter	288,9
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-5. Pipa Transport dari Sumur GN-02 hingga Inlet Manifold

Dari data pipa diatas, terlihat diameter luar pipa sebesar 12,75" dan diameter dalam pipa sebesar 11,37". Selanjutnya dilakukan simulasi untuk mengetahui besarnya perubahan parameter di *inlet manifold* yang dapat dilihat pada **Tabel V-6**.

Tabel V-6. Analisa Pipa Transport dari Sumur GN-02 hingga Inlet Manifold

Name	GN-02	GN-02 OUTLET
Vapour	0,6000	0,6000
Temperature [C]	188,0000	184,2828
Pressure [kPa]	1195	1101
Molar Flow [kgmole/h]	1998,3236	1998,3236
Mass Flow [kg/h]	36000,0000	36000,0000
LiqVol Flow [m3/h]	36,0726	36,0726

Dari tabel diatas, terlihat perubahan nilai tekanan dari 1195 kPa menjadi 1101 kPa dan temperature dari 188°C menjadi 184,2828°C. Namun, parameter berupa fasa fluida dan *mass flow* konstan. Pada **Gambar 5.2.** menunjukkan simulasi pipa transport dari sumur GN-02 hingga *inlet manifold*.

Gambar 5.2. Simulasi Pipa Transport pada Sumur GN-02 hingga *Inlet Manifold*

Dari gambar diatas, *Wellhead* GN-02 dilambangkan dengan tanda anak panah biru dengan nama GN-02. Sedangkan untuk *inlet manifold* dilambangkan dengan tanda anak panah biru dengan nama GN-02 OUTLET.

5.1.3. Analisa Sumur GN-03

Analisa sumur GN-03 dengan menggunakan *software Aspen Hysys* menghasilkan beberapa parameter yang dapat dilihat pada **Tabel V-7.** dibawah ini:

Tabel	V-7. Analisa	Wellhead	GN-03
1 40 01	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		011 00

Stream Name	GN-03
Vapour / Phase Fraction	0,5500
[emperature [C]	188,0
Pressure [kPa]	1195
Molar Flow [kgmole/h]	1359
Mass Flow [kg/h]	2,448e+004
Std Ideal Liq Vol Flow [m3/h]	24,53
Liq Vol Flow @Std Cond [m3/h]	24,12
Fluid Package	Basis-1
Utility Type	

Dari tabel diatas, terlihat beberapa parameter seperti tekanan sebesar 1195 kPa, temperature sebesar 188°C, dan nilai *mass flow* sebesar 24480 kg/h atau 6,8 kg/s. Selanjutnya melakukan perencanaan pipa transport dari sumur GN-03 hingga *inlet manifold* dengan estimasi jarak sejauh 700 m dan mengasumsikan

tidak adanya elevasi maupun belokan sepanjang pipa. Pada **Tabel V-8** dapat menunjukkan perencanaan pipa transport yang akan digunakan.

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	700,0
Elevation Change	0,0000
Outer Diameter	323,8
Inner Diameter	288,9
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-8. Pipa Transport dari Sumur GN-03 hingga Inlet Manifold

Dari data diatas, terlihat nilai diameter dalam dari pipa sebesar 11,37" dan diameter luar pipa sebesar 12,75". Kemudian, melakukan simulasi pada *software* untuk mengetahui perubahan parameter sepanjang pipa transport hingga *inlet manifold*. Ada beberapa parameter yang berubah maupun konstan, yang dapat dilihat pada **Tabel V-9** dibawah ini.

Tabel V-9. Analisa Pipa Transport dari Sumur GN-03 hingga Inlet Manifold

Name	GN-03	GN-03 OUTLET
Vapour	0,5500	0,5500
Temperature [C]	188,0000	187,0565
Pressure [kPa]	1195	1171
Molar Flow [kgmole/h]	1358,8600	1358,8600
Mass Flow [kg/h]	24480,0000	24480,0000
LiqVol Flow [m3/h]	24,5294	24,5294

Dari gambar diatas terlihat beberapa parameter yang berubah maupun konstan. Selain tabel diatas, terdapat **Gambar 5.3** yang menunjukkan simulasi pipa transport dari sumur ke *inlet manifold*.

Gambar 5.3. Simulasi Pipa Transport pada Sumur GN-03 hingga *Inlet Manifold*

Dari gambar diatas, *wellhead* GN-02 dilambangkan dengan tanda anak panah biru dengan nama GN-02. Sedangkan untuk *inlet manifold* dilambangkan dengan tanda anak panah biru dengan nama GN-02 OUTLET.

5.1.4. Analisa Inlet Manifold hingga Inlet Separator

Selanjutnya menganalisa aliran fluida dari tiga pipa transport untuk dijadikan satu aliran pada manifold, yang selanjutnya dialirkan ke separator dua fasa. Pada **Tabel V-10** dibawah ini, terdapat parameter-parameter dari tiga pipa transport menjadi satu di manifold.

Name	GN-1 OUTLET	GN-02 OUTLET	GN-03 OUTLET	INLET MANIFOLI
Vapour	0,7500	0,6000	0,5500	0,6548
Temperature [C]	180,1	184,3	187,1	180,1
Pressure [kPa]	1002	1101	1171	1002
Molar Flow [kgmole/h]	2158	1998	1359	5515
Mass Flow [kg/h]	3,888e+004	3,600e+004	2,448e+004	9,936e+004
Std Ideal Liq Vol Flow [m3/h]	38,96	36,07	24,53	99,56

Tabel V-10. Analisa Inlet Manifold

Dari tabel diatas terlihat, nilai parameter *inlet manifold* setelah aliran dijadikan satu berupa fasa fluida 65,48% berwujud uap, temperature sebesar 180,1°C, tekanan sebesar 1002 kPa, mass flow sebesar 99360 kg/jam atau 27,6 kg/s, dan parameter-parameter lainnya. Selanjutnya dari *inlet manifold*, dialirkan

ke inlet separator dengan jarak 100m dan mengasumsikan tidak adanya elevasi maupun belokan sepanjang pipa. Untuk lebih jelasnya dapat dilihat **Tabel V-11** Dibawah ini.

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	100,0
Elevation Change	0,0000
Outer Diameter	406,4
Inner Diameter	363,5
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-11. Manifold

Dari tabel diatas menunjukkan diameter dalamnya sebesar 14,31" dan diameter luarnya sebesar 16" dengan bahan material *Mild Steel*. Selanjutnya, menganalisa aliran fluida dari *inlet manifold* hingga *inlet separator*, seperti yang terlihat pada **Tabel V-12** dibawah ini.

Tabel V-12. Analisa Fluida dari Inlet Manifold hingga Inlet Separator

Name	INLET MANIFOLD INLET SEPARATOF
Vapour	0,6548 0,6551
Temperature [C]	180,1475 178,8963
Pressure [kPa]	1002 974,1
Molar Flow [kgmole/h]	5515,3731 5515,3731
Mass Flow [kg/h]	99360,0000 99360,0000
LiqVol Flow [m3/h]	99,5605 99,5605

Dari data diatas terlihat terjadinya penurunan tekanan dari 1002 kPa menjadi 974,1 kPa, penurunan temperature dari 180,1475 °C menjadi 178,8963

°C. Selain itu, ada pula parameter yang konstan seperti *mass flow, molar flow,* dan *Liq. Vol. Flow.*

5.2. Analisa Separator

Separator pada perencanaan ini digunakan untuk memisahkan fasa liquid dengan fasa uap dari fluida yang diproduksikan. Fasa uap pada panasbumi seringkali disebut *steam*, sedangkan untuk fasa liquidnya adalah *brine*. Separator yang digunakan adalah *vertical separator*, untuk hasil keluaran dari separator dapat dilihat pada **Tabel V-13**.

Tabel	V-13.	Analisa	Se	parator
-------	-------	---------	----	---------

Name	INLET SEPARATO	BRINE	STEAM
Vapour	0,6551	0,0000	1,0000
Temperature [C]	178,9	176,6	175,8
Pressure [kPa]	974,1	924,1	874,1
Molar Flow [kgmole/h]	5515	1880	3635
Mass Flow [kg/h]	9,936e+004	3,387e+004	6,549e+004
Std Ideal Liq Vol Flow [m3/h]	99,56	33,93	65,63

Dari tabel diatas, nilai keluaran separator ada dua berupa 100% *steam* dan 100% *brine*. Untuk beberapa parameter *steam* berupa tekanan sebesar 874,1 kPa, temperature sebesar 175,8 °C, dan *mass flow* sebesar 65493,76 kg/h atau 18.19 kg/s. sedangkan untuk beberapa parameter *brine* keluaran separator berupa tekanan sebesar 974,1 kPa, temperature 176,6°C, dan mass flow sebesar 33866,243 kg/h atau 9,407 kg/s. Pada simulator ini, total volume yang dapat ditampung sebesar 100 m³ atau 100.000 L, sehingga diperlukan desain separator seperti pada **Gambar 5.4**.

Vessel Dime	nsions		
Base Elevati	ion Relative to Gro	und Level	0,0000 m
Diameter	4,395 m	Height/Length	6,592 m

Gambar 5.4. Dimensi Separator

Dari gambar diatas, terlihat diameter dari separator sepanjang 4,395 m dan tinggi sebesar 6,592 m. Setelah dilakukan analisa separator, selanjutnya *steam* dialirkan melalui pipa ke turbin uap. Sedangkan untuk *brine* dialikan melalui pipa ke *heat exchanger*. Untuk lebih jelasnya dapat dilihat **Gambar 5.5**.

Gambar 5.5. Pemodelan Separator pada *Software Aspen Hysys*

5.3. Analisa Pembangkit Listrik Panas Bumi

Dalam analisa pembangkit listrik ini digunakan *steam* yang telah dipisahkan oleh separator yang kemudian dialirkan menuju turbin untuk menghasilkan energi listrik.

5.3.1. Analisa Steam pada Pipa Proses dari Separator menuju Turbin

Steam dialirkan melalui pipa sepanjang 50 m dengan diameter luar sebesar 10,75" dan diameter dalamnya 10,02". Untuk lebih jelasnya dapat dilihat **Tabel V-14** dibawah ini.

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	50,00
Elevation Change	0,0000
Outer Diameter	273,1
Inner Diameter	254,5
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-14. Pipa Proses dari Separator ke Turbin

Setelah dilakukan analisa pada pipa transport yang menghubungkan antara separator dan turbin. Maka dari *software* akan menghasilkan perubahan beberapa parameter, seperti tekanan dari 874,1 kPa menjadi 834,3 kPa, temperatur yang sebelumnya sebesar175,8286 °C menjadi 175,2034 °C. namun ada juga beberapa parameter yang tidak mengalami perubahan seperti fasanya masih tetap 100% *steam* dan *mass flow* sebesar 65493,7568 kg/h. Untuk lebih jelasnya dapat dilihat pada **Tabel V-15.** dibawah ini.

Tabel V-15. Analisa Fluida dari Outlet Separator Menuju Inlet Turbin

Name	STEAM	INLET TURBIN
Vapour	1,0000	1,0000
Temperature [C]	175,8286	175,2034
Pressure [kPa]	874,1	834,3
Molar Flow [kgmole/h]	3635,4922	3635,4922
Mass Flow [kg/h]	65493,7568	65493,7568
LiqVol Flow [m3/h]	65,6259	65,6259

Selain analisa *steam*, dilakukan juga pemodelan menggunakan software yang dapat dilihat pada **Gambar 5.6.** dibawah ini.

Gambar 5.7. Pemodelan Aliran *Steam* dari Separator melalui Pipa ke *Inlet* Turbin

Setelah dilakukan analisa sepanjang pipa yang menghubungkan separator dan turbin, selanjutnya melakukan analisa pada turbin.

5.3.2. Analisa Turbin dan Energi Listrik yang Dihasilkan

Analisa pada turbin dilakukan untuk mengetahui energi listrik yang dihasilkan. Dengan memasukkan data-data parameter yang telah dilakukan analisa sebelumnya seperti fasa, tekanan, temperature, dan *mass flow*. Kemudian, pada turbin di-*setting* agar keluaran tekanan pada software menjadi 200 kPa. Untuk lebih jelasnya dapat dilihat pada **Tabel V-16.** dibawah ini.

Tabel V-16. Analisa Brine Inlet Turbin dan Outlet Turbin

Name	INLET TURBIN	OUTLET TURBIN
Vapour	1,0000	0,9522
Temperature [C]	175,2	120,2
Pressure [kPa]	834,3	200,0
Molar Flow [kgmole/h]	3635	3635
Mass Flow [kg/h]	6,549e+004	6,549e+004
Std Ideal Liq Vol Flow [m3/h]	65,63	65,63

Dari tabel diatas terlihat fasa yang sebelumnya 100% uap, setelah keluar dari turbin terdapat liquid yang dihasilkan sebesar 7,78%. Selain itu juga, terjadi penurunan seperti tekanan dan temperature yang sebelumnya sebesar 843,3 kPa dan 175,2 °C menjadi 200 kPa dan 120,2°C.

Sedangkan untuk energi listrik yang dihasilkan dari ini dapat dilihat dari Gambar 5.8. dan Gambar 5.9.

Gambar 5.8. Analisa Turbin

Dari gambar diatas, simulasi menghasilkan energi listrik sebesar 3516 kW dengan deltaP sebesar 634,3 kPa. Selanjutnya fluida mengalir dari *outlet* turbin menuju ke kondensor untuk didinginkan.

5.3.3. Analisa Fluida Pada Pipa Transport dari *Outlet* Turbin Menuju Inlet Kondensor

Fluida dialirkan dari melalui pipa transport menuju kondensor sejauh 100 m dengan diameter luar pipa sebesar 20" dan diameter dalam pipa sebesar 17,94". Untuk lebih jelasnya dapat melihat **Tabel V-17.**

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	100,0
Elevation Change	0,0000
Outer Diameter	508,0
Inner Diameter	455,6
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-17. Pipa Transport dari Outlet Turbin Menuju Inlet Kondensor

Setelah membuat pemodelan, maka analisa pipa transport dengan menggunakan *software* dapat dilakukan dan menghasilkan nilai parameter fluida pada *inlet* kondensor. Analisa fluida menghasilkan beberapa parameter berubah seperti, fasa fluida, tekanan, dan temperature. Sedangan untuk parameter yang tidak berubah berupa *molar flow* dan *mass flow*. Untuk lebih jelasnya dapat dilihat pada **Tabel V-18.** dibawah ini.

Tabel V-18. Analisa Fluida dari Outlet Turbin Menuju Inlet Kondensor

Name	OUTLET TURBIN	INLET Condensor
Vapour	0,9522	0,9574
Temperature [C]	120,1717	113,8522
Pressure [kPa]	200,0	163,1
Molar Flow [kgmole/h]	3635,4922	3635,4922
Mass Flow [kg/h]	65493,7568	65493,7568
LiqVol Flow [m3/h]	65,6259	65,6259

Dari tabel diatas terlihat adanya pengurangan tekanan dari 200 kPa menjadi 163,1 kPa dan temperature dari 120,1717 °C menjadi 113,8522 °C. Sedangkan untuk parameter yang konstan berupa *mass flow* dan *molar flow*. Untuk pemodelan pipa dapat dilihat pada **Gambar 5.10**.

Gambar 5.10. Pemodelan Pipa Transport dari *Outlet* Turbin Menuju *Inlet* Kondensor

Setelah dilakukan analisa dan pemodelan pipa transport, selanjutnya menganalisa kondensor pada pembangkit listrik ini.

5.3.4. Analisa Kondensor

Kondensor berfungsi untuk mendinginkan fluida keluaran turbin untuk menurunkan temperaturnya, sehingga merubah fasa menjadi liquid yang akan diinjeksikan kembali. Kondensor yang digunakan pda perencanaan ini berupa *fan*/kipas, dimana media pendinginnya menggunakan udara sekitar dengan temperature rata-rata di daerah gunung darajat sebesar 25 °C. Hasil simulasi dari *software* ini dapat dilihat pada **Tabel V-19**.

Name	INLET Condensor	OUTLET KONDEN
Vapour	0,9574	0,0000
Temperature [C]	113,9	100,0
Pressure [kPa]	163,1	143,1
Molar Flow [kgmole/h]	3635	3635
Mass Flow [kg/h]	6,549e+004	6,549e+004
Std Ideal Liq Vol Flow [m3/h]	65,63	65,63

Tabel V-19. Analisa Brine pada Kondensor

Dari simulasi ini diharapkan agar temperature keluaran dari kondensor sebesar 100°C dengan fasa 100% liquid. Selain penurunan temperature, terjadi penurunan tekanan sebesar 20 kPa menjadi 143,1 kPa pada keluaran kondensor. Temperature udara pendingin yang masuk mengalami kenaikkan menjadi 86,67°C, seperti yang terlihat pada **Gambar 5.11**.

Air Outlet
1emperature: 86,67 C
<+ → + → 1
Air Intake
Temperature: 25,00 C
Pressure: 101,3 kPa

Gambar 5.11. Analisa Udara Pada Kondensor

5.4. Analisa Binary Cycle

Penulisan ini melakukan analisa *binary cycle* untuk memanfaatkan panas fluida buangan separator agar menghasilkan energi listrik tambahan di lapangan Darajat. *Brine* yang dihasilkan dari proses pemisahan pada separator memiliki temperature yang cukup untuk memanaskan fluida kerja di *heat exchanger*. Fluida kerja yang semulanya berwujud liquid berubah menjadi gas setelah dilakukan transfer panas, kemudian dialirkan menuju turbin untuk menghasilkan energi listrik. Langkah pertama yang perlu dilakukan untuk analisa *binary cycle* yaitu menganalisa *brine*.

5.4.1. Analisa Brine Keluaran Separator

Fluida brine keluaran separator dialirkan melalui pipa proses menuju ke *heat exchanger* untuk dilakukan transfer panas. Ukuran pipa yang digunakan memiliki diameter dalam sebesar 2,9" dan diameter luar sebesar 3,5" dengan jarak 20 m seperti yang terlihat pada **Tabel V-20.**

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	20,00
Elevation Change	0,0000
Outer Diameter	88,90
Inner Diameter	73,66
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-20. Pipa Proses Dari Outlet Separator Menuju Inlet Heat Exchanger

Setelah mengetahui spesifikasi pipa yang akan digunakan, selanjutnya melakukan analisa brine. Data parameter analisa dapat dilihat pada **Tabel V-21**. dibawah ini.

Tabel V-21. Analisa Brine dari *Outlet* Separator Menuju *Inlet Heat Exchanger*

Name	OUTLET SEPARAT	INLET HE
Vapour	0,0000	0,0023
Temperature [C]	176,6147	175,6102
Pressure [kPa]	924,1	902,7
Molar Flow [kgmole/h]	1879,8809	1879,8809
Mass Flow [kg/h]	33866,2432	33866,2432
LiqVol Flow [m3/h]	33,9346	33,9346

Dari tabel diatas terjadi penurunan tekanan dan temperature yang awalnya sebesar 924,1 kPa dan 176,6147°C menjadi 902 kPa dan 175,6102 °C. Sedangkan, untuk parameter seperti *mass flow* tidak terjadi perubahan (konstan) sebesar 33866,24 kg/h atau 9,41 kg/s. Untuk pemodelan pipa proses dapat dilihat **Gambar 5.12.**

Gambar 5.12. Pemodelan Pipa Proses Dari *Outlet* Separator Menuju *Inlet Heat Exchanger*

Setelah melakukan analisa brine buangan separator yang dapat dimanfaatkan, selanjutnya melakukan simulasi dengan menggunakan beberapa fluida kerja. Fluida kerja yang dianalisis adalah *propane*, *iso-butane*, *butane*, *iso-pentane*, dan *pentane*.

5.4.2. Analisa Fluida Kerja Propane

5.4.2.1. Analisa Feed Pump

Simulasi dimulai dengan menentukan nilai parameter awal propane dengan tekanan sebesar 1266 kPa, temperatur sebesar 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s dan fasa sepenuhnya liquid untuk diberikan tekanan menggunakan *feed pump* menjadi 4000 kPa. Untuk lebih jelasnya dapat dilihat pada **Tabel V-22.** dibawah ini.

Name	INLET FEEDPUMI	OUTLET FEED PU
Vapour	0,0000	0,0000
Temperature [C]	29,00	32,20
Pressure [kPa]	1266	4000
Molar Flow [kgmole/h]	734,7	734,7
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	63,95	63,95

Tabel V-22. Analisa Feed Pump

Dari tabel diatas terlihat selain adanya penambahan tekanan, terdapat kenaikan temperatur dari 29°C menjadi 32,2°C. Namun, terdapat beberapa parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Selanjutnya *propane* dialirkan menuju *heat exchanger*.

5.4.2.2. Analisa Pipa Proses Dari *Outlet Feed Pump* Menuju *Inlet Heat Exchanger*

Fluida *propane* dialirkan menggunakan pipa proses sejauh 10 m dengan diameter dalam sebesar 5,761" dan diameter luar sebesar 6,625". Untuk lebih jelasnya dapat dilihat pada **Tabel V-23.**

1
Pipe
10,00
0,0000
168,3
146,3
Mild Steel
4,572e-005
45,00
5
<empty></empty>

Tabel V-23. Pipa Proses Dari Outlet Feed Pump Menuju Inlet HeatExcahnger

Dari data pipa proses diatas, terjadi kehilangan tekanan sebesar 0,3191 kPa dan temperature sebesar 0,0000507 °C. Dikarenakan kehilangan tekanan dan temperature yang terlalu kecil, pada **Tabel V-24** dituliskan seolah-olah diabaikan.

Tabel V-24. Analisa Pipa Proses Dari Outlet Feed Pump Menuju Inlet HeatExchanger

Name	OUTLET FEED PUN	INLET HE PRPANE
Vapour	0,0000	0,0000
Temperature [C]	32,1954	32,1954
Pressure [kPa]	4000	4000
Molar Flow [kgmole/h]	734,7439	734,7439
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	63,9459	63,9459

Untuk pemodelan dapat dilihat pada Gambar 5.13. dibawah ini.

Gambar 5.13. Pemodelan Pipa Proses Dari *Outlet Feed Pump* Menuju *Inlet Heat Exchanger*

5.4.2.3. Analisa *Heat Exchanger*

Heat exchanger berfungsi sebagai media penukar panas antara fluida *brine* dengan fluida kerja. Sehingga fluida kerja dapat berubah fasa dari liquid menjadi 100% gas. Dengan data-data *inlet* HE *propane* dan *inlet* HE *brine* yang telah dilakukan analisa sebelumnya. **Tabel V-25.** menunjukkan adanya transfer panas antara *propane* dengan *brine*.

Name	INLET HE PROPAN	OUTLET HE PROP	INLET HE	OUTLET HE BRINE
Vapour	0,0000	1,0000	0,0023	0,0000
Temperature [C]	32,19	95,00	175,6	101,4
Pressure [kPa]	4000	3900	902,7	802,7
Molar Flow [kgmole/h]	734,7	734,7	1880	1880
Mass Flow [kg/h]	3,240e+004	3,240e+004	3,387e+004	3,387e+004
Std Ideal Liq Vol Flow [m3/h]	63,95	63,95	33,93	33,93

 Tabel V-25. Analisa Heat Exchanger

Dari tabel diatas terlihat terjadinya perubahan fasa fluida *propane* yang sebelumnya liquid menjadi gas seutuhnya, penurunan tekanan dari 4000 kPa menjadi 3900 kPa, dan kenaikkan temperature dari 32,2°C menjadi 95°C. Sedangkan untuk fasa fluida brine tetap liquid, tekanan berubah dari 902,7 kPa menjadi 802,7 kPa, dan temperature menurun dari 175,6°C menjadi 101,4°C. namun, terdapat parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Pemodelan heat exchanger dapat dilihat pada **Gambar 5.14.** dibawah ini.

Gambar 5.14 Pemodelan Heat Exchanger

Dari gambar diatas, fluida propane keluar melalui HE dan kemudian akan dialirkan menuju turbin melalui pipa proses. Sedangkan untuk fluida brine akan diinjeksikan kembali melalui sumur injeksi.

5.4.2.4. Analisa Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet Turbin Gas*

Fluida kerja selanjutnya dialirkan ke turbin gas melalui pipa proses dengan mengabaikan elevasi dan belokkan pada pipa. Jarak antara *heat exchanger* dengan turbin adalah 10 m, sedangkan diameter dalam pipa 5,671" dan diameter luarnya 6,625". Untuk lebih jelasnya dapat dilihat pada **Tabel V-26.**

Tabel V-26. Pipa Proses Dari Outlet Heat Exchanger Menuju InletTurbin Gas

Length - Elevation Profile	
Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	168,3
Inner Diameter	146,3
Material	Mild Steel
Roughness	4,572€-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Dari data pipa proses yang ada, kemudian dilakukan analisa sehingga menghasilkan keluaran data yang terlihat pada **Tabel V-27.**

Tabel V-27. Analisa Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet* Turbin Gas

Name	OUTLET HE PROP	INLET TURBIN PR
Vapour	1,0000	1,0000
Temperature [C]	95,0000	94,9779
Pressure [kPa]	3900	3898
Molar Flow [kgmole/h]	734,7439	734,7439
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	63,9459	63,9459

Dari tabel terdapat penurunan beberapa parameter seperti tekanan sebelumnya 3900 kPa menjadi 3898 kPa dan temperature dari 95°C menjadi 94,9779°C. Ada juga parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Sedangkan, untuk pemodelan pipa proses menuju turbin gas dapat dilihat pada **Gambar 5.15.** dibawah ini.

Gambar 5.15.

Pemodelan Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet Turbin Gas

5.4.2.5. Analisa Turbin Gas dan Energi Listrik yang Dihasilkan

Analisa turbin dilakukan untuk mengetahui besarnya energi listrik yang dihasilkan menggunakan metode *binary cycle*. Fluida *propane* dengan data parameter berupa fasa sepenuhnya gas, tekanan sebesar 3808 kPa , dan temperature sebesar 94,9779°C memasuki turbin untuk menghasilkan energi listrik. sehingga menghasilkan data-data keluaran turbin yang dapat dilihat pada **Tabel V-28.**

Name	INLET TURBIN PF	OUTLET TURBIN
Vapour	1,0000	1,0000
Temperature [C]	94,98	37,67
Pressure [kPa]	3898	1300
Molar Flow [kgmole/h]	734,7	734,7
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	63,95	63,95

Tabel V-28. Analisa Propane Inlet Turbin dan Outlet Turbin

Data keluaran turbin untuk fluida propane adalah tekanan menurun dari 3898 kPa menjadi 1300 kPa, temperature menurun dari 94,98°C menjadi 37,67°C, fasa tetap 100% uap. Selain data tersebut, diketahui besarnya energi listrik yang

dihasilkan yaitu sebesar 223,1 kW seperti yang terlihat pada Gambar 5.16.. Sedangkan untuk pemodelan turbin dapat dilihat pada Gambar 5.17.

Gambar 5.16. Analisa Turbin Gas Propane

Gambar 5.17. Pemodelan Turbin Gas *Propane*

5.4.2.6. Analisa Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor

Fluida propane keluaran dari turbin, selanjutnya dialirkan melalui pipa proses menuju ke kondensor untuk menurunkan temperaturnya. Sepanjang pipa proses tidak memperhitungkan belokan maupun elevasi dari pipa. Jarak antara outlet turbin dengan inlet kondensor sejauh 20 m dengan diameter dalam pipa sebesar 7,625" dan diameter luar sebesar 8,625". Untuk lebih jelasnya dapat dilihat **Tabel V-29.** dibawah ini.

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	20,00
Elevation Change	0,0000
Outer Diameter	219,1
Inner Diameter	193,7
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-29. Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor

Dari data pipa proses diatas, selanjutnya dilakukan analisa untuk mengetahui besarnya perubahan tekanan dan temperatur sepanjang pipa proses. Setelah dilakukan simulasi keluar data perubahan tekanan yang awalnya sebesar 1300 kPa menjadi 1298 kPa. Dan perubahan temperature dengan nilai awal 37,6712°C menjadi 37,6269°C. Sedangkan data parameter-parameter lainnya dapat dilihat **Tabel V-30**.

Tabel V-30. Analisa Pipa Proses Dari *Outlet* Turbin Gas Menuju *Inlet* Kondensor

Name	OUTLET TURBIN F	INLET KONDENSC
Vapour	1,0000	1,0000
Temperature [C]	37,6712	37,6269
Pressure [kPa]	1300	1298
Molar Flow [kgmole/h]	734,7439	734,7439
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	63,9459	63,9459

Dari tabel terlihat beberapa parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Terdapat pemodelan untuk pipa proses dari turbin menuju kondensor yang tampak pada **Gambar 5.18**.

Gambar 5.18 Pemodelan Pipa Proses

5.4.2.7. Analisa Kondensor

Kondensor berfungsi untuk menurunkan temperature fluida propane dan mengubah fasanya dari gas menjadi liquid sepenuhnya. Media pendingin yang digunakan berupa udara. Dengan mengasumsikan temperature udara sebesar 25°C dengan tekanan 121,6 kPa. Dengan memasukkan data fluida propane yang telah dianalisa sebelumnya. Selanjutnya, mengolah data yang ada menghasilkan udara keluaran kondensor naik menjadi 35,84°C. Nilai udara masuk dan udara keluar dari kondensor dapat dilihat pada **Gambar 5.19**. Selain itu nilai parameter propane di outlet kondensor mengalami perubahan, seperti fasa yang sebelumnya gas menjadi liquid, penurunan tekanan dari 1298 kPa menjadi 1278 kPa dan temperature awalnya 37,63°C menjadi 29°C. Untuk data parameter fluida propane lainnya dapat dilihat pada **Tabel V-31**.

Gambar 5.19 Analisa Udara Pada Kondensor

Tabel	V-31.	Analisa	Fluida	Propane	Kondensor	

Name	INLET KONDENSC	OUTLET KONDEN
Vapour	1,0000	0,0000
Temperature [C]	37,63	29,00
Pressure [kPa]	1298	1278
Molar Flow [kgmole/h]	734,7	734,7
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	63,95	63,95

Dari gambar dan tabel diatas, terlihat nilai parameter baik itu fluida propane maupun udara pendingin pada kondensor. Terdapat parameter fluida propane yang mengalami perubahan, namun ada pula parameter yang konstan seperti *mass flow* dan *molar flow*. Pemodelan *binary cycle* untuk kondensor dapat dilihat pada **Gambar 5.20**.

Gambar 5.20 Pemodelan Kondensor

5.4.2.8. Analisa Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump

Setelah didinginkan dari kondensor, fluida propane dialirkan menggunakan pipa proses menuju *inlet feed pump* untuk diberikan tekanan dan siklus binary cycle dapat dimulai kembali. Jarak antara kondensor dengan *feed pump* sejauh 10 m dengan mengasumsikan tidak adanya belokan dan elevasi sepanjang pipa proses. Digunakan pipa yang memiliki diameter dalam sebesar 2,9" dan diameter luarnya sebesar 3,5". Untuk lebih jelasnya dapat dilihat pada **Tabel V-32.**

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	88,90
Inner Diameter	73,66
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-32. Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump

Dari data pipa yang digunakan, terjadi perubahan nilai parameter seperti tekanan yang awalnya 1278 kPa menjadi 1266 kPa dan temperatur dari 29°C menjadi 28,997°C. Terdapat juga beberapa parameter yang konstan seperti *mass*

flow dan molar flow. Untuk data parameter yang lebih lengkap dapat dilihat pada **Tabel V-32.** dibawah ini.

Tabel V-32. Analisa Pipa Proses Dari *Outlet* Kondensor Menuju *Inlet Feed Pump*

Name	OUTLET KONDEN	INLET FEEDPUMP
Vapour	0,0000	0,0000
Temperature [C]	29,0000	28,9971
Pressure [kPa]	1278	1266
Molar Flow [kgmole/h]	734,7439	734,7439
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	63,9459	63,9459

Sedangkan pemodelan pipa dengan dapat dilihat pada Gambar 5.21.

Gambar 5.21. Pemodelan Pipa Proses

5.4.2.9. Siklus Binary Cycle Dan Analisa Thermodinamika Fluida Propane

Setelah dilakukan analisa menggunakan fluida kerja *propane* pada setiap bagian peralatan *binary cycle*. Selanjutnya, siklus *binary cycle* secara keseluruhan dapat dilihat pada **Gambar 5.22**.

Gambar 5.22 Pemodelan Siklus *Binary Cycle* Fluida *Propane*

Selanjutnya membuat grafik termodinamika fluida *propane* berdasarkan data tekanan dan temperature dari inlet dan outlet setiap peralatan. Untuk lebih jelasnya dapat dilihat pada **Tabel V-33.**

Monggunanan Franca Kerja Fropane					
No.	Letak	Tekanan (kPa)	Tekanan (MPa)	Temperatur (°C)	Temperatur (°K)
1	Inlet feed pump	1266	1,266	29	302,15
2	Outlet feedpump	4000	4	32,2	305,35
3	Inlet HE	4000	4	32,19	305,34
4	Outlet HE	3900	3,9	95	368,15
5	Inlet turbin	3898	3,898	94,98	368,13
6	Outlet turbin	1300	1,3	37,67	310,82
7	Inlet kondensor	1298	1,298	37,63	310, 78
8	Outlet kondensor	1278	1,278	29	302,15

Tabel V- 33. Data Tekanan dan Temperatur di Setiap PeralatanMenggunakan Fluida kerja Propane

Kemudian, melakukan plot pada grafik thermodinamika *propane* dengan mengasumsikan terjadinya pertambahan temperature dari outlet feed pump menuju inlet *heat exchanger* dan outlet turbin ke inlet kondensor. Sedangkan, titik untuk outlet *heat exchanger* (4) = inlet turbin (5) dan inlet feed pump (1) = outlet kondensor (8) memiliki titik yang sama dikarenakan perubahan tekanan dan temperature yang kecil. Pada **Gambar 5.23**, terlihat siklus *binary cycle* fluida kerja *propane* pada setiap peralatan.

Gambar 5.23 . Grafik Termodinamika Fluida Kerja *Propane*

5.4.3. Analisa Fluida Kerja Iso-butane

5.4.3.1. Analisa Feed Pump

Simulasi dimulai dengan menentukan nilai parameter awal iso-butane dengan tekanan sebesar 403,3 kPa, temperatur sebesar 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s dan fasa sepenuhnya liquid untuk diberikan tekanan menggunakan *feed pump* menjadi 1700 kPa. Untuk lebih jelasnya dapat dilihat pada **Tabel V-34.** dibawah ini.

Name	INLET FEEDPUMI	OUTLET FEED PU
Vapour	0,0000	0,0000
Temperature [C]	29,00	30,15
Pressure [kPa]	403,3	1700
Molar Flow [kgmole/h]	557,4	557,4
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	57,65	57,65

Tabel V-34. Analisa Feed Pump

Dari tabel diatas terlihat selain adanya penambahan tekanan, terdapat kenaikan temperatur dari 29°C menjadi 30,15°C. Namun, terdapat beberapa parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Selanjutnya *iso-butane* dialirkan menuju *heat exchanger*.

5.4.3.2. Analisa Pipa Proses Dari *Outlet Feed Pump* Menuju *Inlet Heat Exchanger*

Fluida *iso-butane* dialirkan menggunakan pipa proses sejauh 10 m dengan diameter dalam sebesar 3,826" dan diameter luar sebesar 4,5". Untuk lebih jelasnya dapat dilihat pada **Tabel V-35.**

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	114,3
Inner Diameter	97,18
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-35. Pipa Proses Dari Outlet Feed Pump Menuju Inlet HeatExcahnger

Dari data pipa proses diatas, terjadi perubahan tekanan sebesar 2,39 kPa dan temperature sebesar 0,0001 °C. Dikarenakan kehilangan tekanan dan temperature yang terlalu kecil, pada **Tabel V-36** dituliskan seolah-olah diabaikan.

Tabel V-36. Analisa Pipa Proses Dari Outlet Feed Pump Menuju Inlet HeatExchanger

Name	OUTLET FEED PUN	INLET HE I-BUTAN
Vapour	0,0000	0,0000
Temperature [C]	30,1453	30,1456
Pressure [kPa]	1700	1698
Molar Flow [kgmole/h]	557,4289	557,4289
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	57,6547	57,6547

Pemodelan dapat dilihat pada Gambar 5.24. dibawah ini.

Gambar 5.24. Pemodelan Pipa Proses Dari *Outlet Feed Pump* Menuju *Inlet Heat Exchanger*

5.4.3.3. Analisa *Heat Exchanger*

Heat exchanger berfungsi sebagai media penukar panas antara fluida *brine* dengan fluida kerja. Sehingga fluida kerja dapat berubah fasa dari liquid menjadi 100% gas. Dengan data-data *inlet* HE *iso-butane* dan *inlet* HE *brine* yang telah dilakukan analisa sebelumnya. **Tabel V-37.** menunjukkan adanya transfer panas antara *iso-butane* dengan *brine*.

Name	INLET HE I-BUT	OUTLET HE I-BUT	INLET HE	OUTLET HE BRINE
Vapour	0,0000	1,0000	0,0023	0,0000
Temperature [C]	30,15	89,00	175,6	91,77
Pressure [kPa]	1698	1598	902,7	802,7
Molar Flow [kgmole/h]	557,4	557,4	1880	1880
Mass Flow [kg/h]	3,240e+004	3,240e+004	3,387e+004	3,387e+004
Std Ideal Liq Vol Flow [m3/h]	57,65	57,65	33,93	33,93

Tabel V-37. Analisa Heat Exchanger

Dari tabel diatas terlihat terjadinya perubahan fasa fluida *iso-butane* yang sebelumnya liquid menjadi gas seutuhnya, penurunan tekanan dari 1698 kPa
menjadi 1598 kPa, dan kenaikkan temperature dari 30,15°C menjadi 89°C. Sedangkan untuk fasa fluida brine tetap liquid, tekanan berubah dari 902,7 kPa menjadi 802,7 kPa, dan temperature menurun dari 175,6°C menjadi 91,77°C. namun, terdapat parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Pemodelan heat exchanger dapat dilihat pada **Gambar 5.25.** dibawah ini.

Gambar 5.25 Pemodelan Heat Exchanger

Dari gambar diatas, fluida iso-butane keluar melalui HE dan kemudian akan dialirkan menuju turbin melalui pipa proses. Sedangkan untuk fluida brine akan diinjeksikan kembali melalui sumur injeksi.

5.4.3.4. Analisa Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet Turbin Gas*

Fluida kerja selanjutnya dialirkan ke turbin gas melalui pipa proses dengan mengabaikan elevasi dan belokkan pada pipa. Jarak antara *heat exchanger* dengan turbin adalah 10 m, sedangkan diameter dalam pipa 5,671" dan diameter luarnya 6,625". Untuk lebih jelasnya dapat dilihat pada **Tabel V-38.**

Tabel V-38. Pipa Proses Dari Outlet Heat Exchanger Menuju InletTurbin Gas

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	168,3
Inner Diameter	146,3
Material	Mild Steel
Roughness	4,572€-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Dari data pipa proses yang ada, kemudian dilakukan analisa sehingga menghasilkan keluaran data yang terlihat pada **Tabel V-39.**

Tabel V-39. Analisa Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet* Turbin Gas

Name	OUTLET HE I-BUT	INLET TURBIN I-B
Vapour	1,0000	1,0000
Temperature [C]	89,0000	88,9401
Pressure [kPa]	1598	1594
Molar Flow [kgmole/h]	557,4289	557,4289
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	57,6547	57,6547

Dari tabel terdapat penurunan beberapa parameter seperti tekanan sebelumnya 1598 kPa menjadi 1594 kPa dan temperature dari 89°C menjadi 88,9401°C. Ada juga parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Sedangkan, untuk pemodelan pipa proses menuju turbin gas dapat dilihat pada **Gambar 5.26.** dibawah ini.

Gambar 5.26. Pemodelan Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet* Turbin Gas

5.4.3.5. Analisa Turbin Gas dan Energi Listrik yang Dihasilkan

Analisa turbin dilakukan untuk mengetahui besarnya energi listrik yang dihasilkan menggunakan metode *binary cycle*. Fluida iso-butane dengan data-data fasa sepenuhnya gas, tekanan sebesar 1594 kPa , dan temperature sebesar 88,9401°C memasuki turbin untuk menghasilkan energi listrik. sehingga menghasilkan data-data keluaran turbin yang dapat dilihat pada **Tabel V-40**.

Tabel V-40. Analisa Iso-butane Inlet Turbin dan Outlet Turbin

Name	INLET TURBIN I-	OUTLET TURBIN
Vapour	1,0000	1,0000
Temperature [C]	88,94	51,06
Pressure [kPa]	1594	440,0
Molar Flow [kgmole/h]	557,4	557,4
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	57,65	57,65

Data keluaran turbin untuk fluida *iso-butane* adalah fasa tetap 100% uap, tekanan menurun dari 1594 kPa menjadi 440 kPa, temperature menurun dari 88,9401 °C menjadi 55,06°C. Selain data tersebut, diketahui besarnya energi listrik yang dihasilkan yaitu sebesar 344,4 kW seperti yang terlihat pada **Gambar 5.27.** Sedangkan untuk pemodelan turbin dapat dilihat pada **Gambar 5.28.**

Gambar 5.27. Analisa Turbin Gas *Iso-butane*

Gambar 5.28. Pemodelan Turbin Gas *Iso-butane*

5.4.3.6. Analisa Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor

Fluida iso-butane keluaran dari turbin, selanjutnya dialirkan melalui pipa proses menuju ke kondensor untuk menurunkan temperaturnya. Sepanjang pipa proses tidak memperhitungkan belokan maupun elevasi dari pipa. Jarak antara outlet turbin dengan inlet kondensor sejauh 20 m dengan diameter dalam pipa sebesar 7,625" dan diameter luar sebesar 8,625". Untuk lebih jelasnya dapat dilihat **Tabel V-41.** dibawah ini.

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	20,00
Elevation Change	0,0000
Outer Diameter	219,1
Inner Diameter	193,7
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-41. Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor

Dari data pipa proses diatas, selanjutnya dilakukan analisa untuk mengetahui besarnya perubahan tekanan dan temperatur sepanjang pipa proses. Setelah dilakukan simulasi keluar data perubahan tekanan yang awalnya sebesar 440 kPa menjadi 433,3 kPa. Dan perubahan temperature dengan nilai awal 51,06°C menjadi 50,9519°C. Sedangkan data parameter-parameter lainnya dapat dilihat **Tabel V-42**.

Tabel V-42. Analisa Pipa Proses Dari *Outlet* Turbin Gas Menuju *Inlet* Kondensor

Name	OUTLET TURBIN I	INLET KONDENSC
Vapour	1,0000	1,0000
Temperature [C]	51,0600	50,9519
Pressure [kPa]	440,0	433,3
Molar Flow [kgmole/h]	557,4289	557,4289
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	57,6547	57,6547

Dari tabel terlihat beberapa parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Terdapat pemodelan untuk pipa proses dari turbin menuju kondensor yang tampak pada **Gambar 5.29**.

Gambar 5.29 Pemodelan Pipa Proses

5.4.3.7. Analisa Kondensor

Kondensor berfungsi untuk menurunkan temperature fluida *iso-butane* dan mengubah fasanya dari gas menjadi liquid sepenuhnya. Media pendingin yang digunakan berupa udara. Dengan mengasumsikan temperature udara sebesar 25°C dengan tekanan 121,6 kPa. Dengan memasukkan data fluida *iso-butane* yang telah dianalisa sebelumnya. Selanjutnya, mengolah data yang ada menghasilkan udara keluaran kondensor naik menjadi 48,86°C. Nilai udara masuk dan udara keluar dari kondensor dapat dilihat pada **Gambar 5.29.** Selain itu nilai parameter isobutane di outlet kondensor mengalami perubahan, seperti fasa yang sebelumnya gas menjadi liquid, penurunan tekanan dari 433,3 kPa menjadi 413,3 kPa dan temperature awalnya 50,95°C menjadi 29°C. Untuk data parameter fluida *iso-butane* lainnya dapat dilihat pada **Tabel V-43.**

Gambar 5.30 Analisa Udara Pada Kondensor

Name	INLET KONDENSC	OUTLET KONDEN:
Vapour	1,0000	0,0000
Temperature [C]	50,95	29,00
Pressure [kPa]	433,3	413,3
Molar Flow [kgmole/h]	557,4	557,4
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	57,65	57,65

Tabel V-43. Analisa Fluida Iso-butane Kondensor

Dari gambar dan tabel diatas, terlihat nilai parameter baik itu fluida *iso-butane* maupun udara pendingin pada kondensor. Terdapat parameter fluida *iso-butane* yang mengalami perubahan, namun ada pula parameter yang konstan seperti *mass flow* dan *molar flow*. Pemodelan *binary cycle* untuk kondensor dapat dilihat pada **Gambar 5.31**.

Gambar 5.31 Pemodelan Kondensor

5.4.3.8. Analisa Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump

Setelah didinginkan dari kondensor, fluida iso-butane dialirkan menggunakan pipa proses menuju *inlet feed pump* untuk diberikan tekanan dan siklus binary cycle dapat dimulai kembali. Jarak antara kondensor dengan *feed pump* sejauh 10 m dengan mengasumsikan tidak adanya belokan dan elevasi sepanjang pipa proses. Digunakan pipa yang memiliki diameter dalam sebesar 2,9" dan diameter luarnya sebesar 3,5". Untuk lebih jelasnya dapat dilihat pada **Tabel V-44.**

-	
Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	88,90
Inner Diameter	73,66
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-44. Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump

Dari data pipa yang digunakan, terjadi perubahan nilai parameter seperti tekanan yang awalnya 413,3 kPa menjadi 413 kPa dan temperatur dari 29°C menjadi 28,997°C. Terdapat juga beberapa parameter yang konstan seperti *mass flow dan molar flow*. Untuk data parameter yang lebih lengkap dapat dilihat pada **Tabel V-45.** dibawah ini.

Tabel V-45. Analisa Pipa Proses Dari *Outlet* Kondensor Menuju *Inlet Feed Pump*

Name	OUTLET KONDEN:	INLET FEEDPUMP
Vapour	0,0000	0,0000
Temperature [C]	29,0000	29,0010
Pressure [kPa]	413,3	403,3
Molar Flow [kgmole/h]	557,4289	557,4289
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	57,6547	57,6547

Sedangkan pemodelan pipa dengan menggunkan dapat dilihat pada Gambar 5.32.

Gambar 5.32. Pemodelan Pipa Proses Menggunakan *Software Aspen Hysys*

5.4.3.9. Siklus Binary Cycle Fluida Iso-butane

Setelah dilakukan analisa menggunakan fluida kerja *iso-butane* pada setiap bagian peralatan *binary cycle*. Selanjutnya, siklus *binary cycle* secara keseluruhan dapat dilihat pada **Gambar 5.33**.

Gambar 5.33. Pemodelan Siklus *Binary Cycle* Fluida *Iso-butane*

Selanjutnya membuat grafik termodinamika fluida *iso-butane* berdasarkan data tekanan dan temperature dari inlet dan outlet setiap peralatan. Untuk lebih jelasnya dapat dilihat pada **Tabel V- 46**.

			-		-
No.	Letak	Tekanan (kPa)	Tekanan (MPa)	Temperatur (°C)	Temperatur (°K)
1	Inlet feed pump	403,3	0,4033	29	302,15
2	Outlet	1700	1,7	30,15	303,3

Tabel V- 46. Data Tekanan dan Temperatur di Setiap Peralatan Menggunakan Fluida kerja Iso-Butane

	feedpump				
3	Inlet HE	1698	1,698	30,15	303,3
4	Outlet HE	1598	1,598	89	362,09
5	Inlet turbin	1594	1,594	88,94	362,09
6	Outlet turbin	440	0,44	51,06	324,21
7	Inlet kondensor	433,3	0,4333	50,95	324,1
8	Outlet	113.3	0.4133	20	302.15
0	kondensor	415,5	0,4155	29	502,15

Kemudian, melakukan plot pada grafik thermodinamika *iso-butane* dengan mengasumsikan terjadinya pertambahan temperature dari outlet feed pump menuju inlet heat exchanger dan outlet turbin ke inlet kondensor. Sedangkan, titik untuk outlet heat exchanger (4) = inlet turbin (5) dan inlet feed pump (1) = outlet kondensor (8) memiliki titik yang sama dikarenakan perubahan tekanan dan temperature yang kecil. Pada **Gambar 5.**, terlihat siklus *binary cycle* fluida kerja *propane* pada setiap peralatan.

Gambar 5.34. Grafik Termodinamika Fluida Kerja *Iso-butane*

5.4.4. Analisa Fluida Kerja Butane

5.4.4.1. Analisa Feed Pump

Simulasi dimulai dengan menentukan nilai parameter awal butane dengan tekanan sebesar 291,2 kPa, temperatur sebesar 29°C, laju alir sebesar 28800 kg/h atau 8 kg/s dan fasa sepenuhnya liquid untuk diberikan tekanan menggunakan *feed pump* menjadi 1300 kPa. Untuk lebih jelasnya dapat dilihat pada **Tabel V-47.** dibawah ini.

Name	INLET FEEDPUMI	OUTLET FEED PU
Vapour	0,0000	0,0000
Temperature [C]	29,00	29,77
Pressure [kPa]	295,1	1300
Molar Flow [kgmole/h]	495,5	495,5
Mass Flow [kg/h]	2,880e+004	2,880e+004
Std Ideal Liq Vol Flow [m3/h]	49,38	49,38

Tabel V-47. Analisa Feed Pump

Dari tabel diatas terlihat selain adanya penambahan tekanan, terdapat kenaikan temperatur dari 29°C menjadi 29,77 °C. Namun, terdapat beberapa parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Selanjutnya *butane* dialirkan menuju *heat exchanger*.

5.4.4.2. Analisa Pipa Proses Dari *Outlet Feed Pump* Menuju *Inlet Heat Exchanger*

Fluida butane dialirkan menggunakan pipa proses sejauh 10 m dengan diameter dalam sebesar 3,826" dan diameter luar sebesar 4,5". Untuk lebih jelasnya dapat dilihat pada **Tabel V-48.**

Tabel V-48. Pipa Proses Dari Outlet Feed Pump Menuju Inlet HeatExcahnger

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	114,3
Inner Diameter	97,18
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Dari data pipa proses diatas, terjadi perubahan tekanan sebesar 2,298 kPa dan temperature sebesar 0,00005 °C. Untuk lebih jelasnya dapat dilihat pada **Tabel V-49.**

Tabel V-49. Analisa Pipa Proses Dari Outlet Feed Pump Menuju Inlet HeatExchanger

Name	OUTLET FEED PUN	INLET HE BUTANE
Vapour	0,0000	0,0000
Temperature [C]	29,7677	29,7681
Pressure [kPa]	1300	1298
Molar Flow [kgmole/h]	495,4924	495,4924
Mass Flow [kg/h]	28800,0000	28800,0000
LiqVol Flow [m3/h]	49,3808	49,3808

Sedangkan untuk pemodelan dapat dilihat pada Gambar 5.35.

Gambar 5.35. Pemodelan Pipa Proses Dari *Outlet Feed Pump* Menuju *Inlet Heat Exchanger*

5.4.4.3. Analisa *Heat Exchanger*

Heat exchanger berfungsi sebagai media penukar panas antara fluida *brine* dengan fluida kerja. Sehingga fluida kerja dapat berubah fasa dari liquid menjadi 100% gas. Dengan data-data *inlet* HE *butane* dan *inlet* HE *brine* yang telah dilakukan analisa sebelumnya. **Tabel V-50.** menunjukkan adanya transfer panas antara *butane* dengan *brine*.

Name	INLET HE BUT	OUTLET HE BUT	INLET HE	OUTLET HE BRINE
Vapour	0,0000	1,0000	0,0023	0,0000
Temperature [C]	29,77	88,00	175,6	93,68
Pressure [kPa]	1298	1198	902,7	802,7
Molar Flow [kgmole/h]	495,5	495,5	1880	1880
Mass Flow [kg/h]	2,880e+004	2,880e+004	3,387e+004	3,387e+004
Std Ideal Liq Vol Flow [m3/h]	49,38	49,38	33,93	33,93

 Tabel V-50. Analisa Heat Exchanger

Dari tabel diatas terlihat terjadinya perubahan fasa fluida *butane* yang sebelumnya liquid menjadi gas seutuhnya, penurunan tekanan dari 1298 kPa menjadi 1198 kPa, dan kenaikkan temperature dari 29,77°C menjadi 88°C. Sedangkan untuk fasa fluida brine tetap liquid, tekanan berubah dari 902,7 kPa menjadi 802,7 kPa, dan temperature menurun dari 175,6°C menjadi 93,68°C. namun, terdapat parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Pemodelan heat exchanger dapat dilihat pada **Gambar 5.36**. dibawah ini.

Gambar 5.36 Pemodelan Heat Exchanger

Dari gambar diatas, fluida butane keluar melalui HE dan kemudian akan dialirkan menuju turbin melalui pipa proses. Sedangkan untuk fluida brine akan diinjeksikan kembali melalui sumur injeksi.

5.4.4.4. Analisa Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet Turbin Gas*

Fluida kerja selanjutnya dialirkan ke turbin gas melalui pipa proses dengan mengabaikan elevasi dan belokkan pada pipa. Jarak antara *heat exchanger* dengan turbin adalah 10 m, sedangkan diameter dalam pipa 5,671" dan diameter luarnya 6,625". Untuk lebih jelasnya dapat dilihat pada **Tabel V-51**.

Length - Elevation Profile		
Segment	1	
Fitting/Pipe	Pipe	
Length/Equivalent Length	10,00	
Elevation Change	0,0000	
Outer Diameter	168,3	
Inner Diameter	146,3	
Material	Mild Steel	
Roughness	4,572€-005	
Pipe Wall Conductivity	45,00	
Increments	5	
FittingNo	<empty></empty>	

Tabel V-51. Pipa Proses Dari Outlet Heat Exchanger Menuju InletTurbin Gas

Dari data pipa proses yang ada, kemudian dilakukan analisa sehingga menghasilkan keluaran data yang terlihat pada **Tabel V-52**.

Tabel V-52. Analisa Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet* Turbin Gas

Name	OUTLET HE BUT	INLET TURBIN BU
Vapour	1,0000	1,0000
Temperature [C]	88,0000	87,9335
Pressure [kPa]	1198	1194
Molar Flow [kgmole/h]	495,4924	495,4924
Mass Flow [kg/h]	28800,0000	28800,0000
LiqVol Flow [m3/h]	49,3808	49,3808

Dari tabel terdapat penurunan beberapa parameter seperti tekanan sebelumnya 1198 kPa menjadi 1194kPa dan temperature dari 88°C menjadi 87,93°C. Ada juga parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Sedangkan, untuk pemodelan pipa proses menuju turbin gas dapat dilihat pada **Gambar 5.37.** dibawah ini.

Gambar 5.37. Pemodelan Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet* Turbin Gas

5.4.4.5. Analisa Turbin Gas dan Energi Listrik yang Dihasilkan

Analisa turbin dilakukan untuk mengetahui besarnya energi listrik yang dihasilkan menggunakan metode *binary cycle*. Fluida *butane* dengan data-data fasa sepenuhnya gas, tekanan sebesar 1194 kPa, dan temperature sebesar 87,93°C memasuki turbin untuk menghasilkan energi listrik. sehingga menghasilkan data-data keluaran turbin yang dapat dilihat pada **Tabel V-53**.

Name	INLET TURBIN BU	OUTLET TURBIN
Vapour	1,0000	1,0000
Temperature [C]	87,93	53,63
Pressure [kPa]	1194	330,0
Molar Flow [kgmole/h]	495,5	495,5
Mass Flow [kg/h]	2,880e+004	2,880e+004
Std Ideal Liq Vol Flow [m3/h]	49,38	49,38

Tabel V-53. Analisa Butane Inlet Turbin dan Outlet Turbin

Data keluaran turbin untuk fluida *butane* adalah fasa tetap 100% uap, tekanan menurun dari 1194 kPa menjadi 330 kPa, temperature menurun dari 87,93°C menjadi 53,63°C. Selain data tersebut, diketahui besarnya energi listrik yang dihasilkan yaitu sebesar 321,5 kW seperti yang terlihat pada **Gambar 5.38**.. Sedangkan untuk pemodelan turbin dapat dilihat pada **Gambar 5.39**.

Gambar 5.38. Analisa Turbin Gas *Butane*

Gambar 5.39. Pemodelan Turbin Gas *Butane*

5.4.4.6. Analisa Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor

Fluida *butane* keluaran dari turbin, selanjutnya dialirkan melalui pipa proses menuju ke kondensor untuk menurunkan temperaturnya. Sepanjang pipa proses tidak memperhitungkan belokan maupun elevasi dari pipa. Jarak antara outlet turbin dengan inlet kondensor sejauh 20 m dengan diameter dalam pipa sebesar 7,625" dan diameter luar sebesar 8,625". Untuk lebih jelasnya dapat dilihat **Tabel V-54.** dibawah ini.

Tabel V-54. Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor

Segment	1	
Fitting/Pipe	Pipe	
Length/Equivalent Length	20,00	
Elevation Change	0,0000	
Outer Diameter	219,1	
Inner Diameter	193,7	
Material	Mild Steel	
Roughness	4,572e-005	
Pipe Wall Conductivity	45,00	
Increments	5	
FittingNo	<empty></empty>	

Dari data pipa proses diatas, selanjutnya dilakukan analisa untuk mengetahui besarnya perubahan tekanan dan temperatur sepanjang pipa proses. Setelah dilakukan simulasi keluar data perubahan tekanan yang awalnya sebesar 330 kPa menjadi 322,7 kPa. Dan perubahan temperature dengan nilai awal 53,6252°C menjadi 53,5046°C. Sedangkan data parameter-parameter lainnya dapat dilihat **Tabel V-55**.

Name	OUTLET TURBIN E	INLET KONDENSC
Vapour	1,0000	1,0000
Temperature [C]	53,6252	53,5046
Pressure [kPa]	330,0	322,7
Molar Flow [kgmole/h]	495,4924	495,4924
Mass Flow [kg/h]	28800,0000	28800,0000
LiqVol Flow [m3/h]	49,3808	49,3808

Tabel V-55. Analisa Pipa Proses Dari *Outlet* Turbin Gas Menuju *Inlet* Kondensor

Dari tabel terlihat beberapa parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Terdapat pemodelan untuk pipa proses dari turbin menuju kondensor yang tampak pada **Gambar 5.40**.

Gambar 5.40. Pemodelan Pipa Proses

5.4.4.7. Analisa Kondensor

Kondensor berfungsi untuk menurunkan temperature fluida butane dan mengubah fasanya dari gas menjadi liquid sepenuhnya. Media pendingin yang digunakan berupa udara. Dengan mengasumsikan temperature udara sebesar 25°C dengan tekanan 121,6 kPa. Dengan memasukkan data fluida butane yang telah dianalisa sebelumnya. Selanjutnya, mengolah data yang ada menghasilkan udara keluaran kondensor naik menjadi 48,37°C. Nilai udara masuk dan udara keluar dari kondensor dapat dilihat pada **Gambar 5.41.** Selain itu nilai parameter *butane*

di outlet kondensor mengalami perubahan, seperti fasa yang sebelumnya gas menjadi liquid, penurunan tekanan dari 322,7 kPa menjadi 302,7 kPa dan temperature awalnya 50,95°C menjadi 29°C. Untuk data parameter fluida butane lainnya dapat dilihat pada Tabel V-56.

Gambar 5.41 Analisa Udara Pada Kondensor

Tabel V-56. Analisa	Fluida	Butane	Kondensor
---------------------	--------	--------	-----------

Name	INLET KONDENSC	OUTLET KONDEN:
Vapour	1,0000	0,0000
Temperature [C]	53,50	29,00
Pressure [kPa]	322,7	302,7
Molar Flow [kgmole/h]	495,5	495,5
Mass Flow [kg/h]	2,880e+004	2,880e+004
Std Ideal Liq Vol Flow [m3/h]	49,38	49,38

Dari gambar dan tabel diatas, terlihat nilai parameter baik itu fluida butane maupun udara pendingin pada kondensor. Terdapat parameter fluida butane yang mengalami perubahan, namun ada pula parameter yang konstan seperti mass flow dan molar flow. Pemodelan binary cycle untuk kondensor dapat dilihat pada Gambar 5.42.

Gambar 5.42 Pemodelan Kondensor

5.4.4.8. Analisa Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump

Setelah didinginkan dari kondensor, fluida butane dialirkan menggunakan pipa proses menuju *inlet feed pump* untuk diberikan tekanan dan *siklus binary cycle* dapat dimulai kembali. Jarak antara kondensor dengan *feed pump* sejauh 10 m dengan mengasumsikan tidak adanya belokan dan elevasi sepanjang pipa proses. Digunakan pipa yang memiliki diameter dalam sebesar 2,9" dan diameter luarnya sebesar 3,5". Untuk lebih jelasnya dapat dilihat pada **Tabel V-57.**

Tabel V-57. Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump

-	
Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	88,90
Inner Diameter	73,66
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Dari data pipa yang digunakan, terjadi perubahan nilai parameter seperti tekanan yang awalnya 302,7 kPa menjadi 295,1 kPa dan temperatur dari 29°C menjadi 29,001°C. Terdapat juga beberapa parameter yang konstan seperti *mass*

flow dan molar flow. Untuk data parameter yang lebih lengkap dapat dilihat pada **Tabel V-58.** dibawah ini.

Tabel V-58. Analisa Pipa Proses Dari *Outlet* Kondensor Menuju *Inlet Feed Pump*

Name	OUTLET KONDEN	INLET FEEDPUMP
Vapour	0,0000	0,0000
Temperature [C]	29,0000	29,0015
Pressure [kPa]	302,7	295,1
Molar Flow [kgmole/h]	495,4924	495,4924
Mass Flow [kg/h]	28800,0000	28800,0000
LiqVol Flow [m3/h]	49,3808	49,3808

Sedangkan pemodelan pipa dapat dilihat pada Gambar 5.43.

Gambar 5.43. Pemodelan Pipa Proses

5.4.4.9. Siklus *Binary Cycle* Fluida *Butane*

Setelah dilakukan analisa menggunakan fluida kerja *butane* pada setiap bagian peralatan *binary cycle*. Selanjutnya, siklus *binary cycle* secara keseluruhan dapat dilihat pada **Gambar 5.44**.

Gambar 5.44 Pemodelan Siklus *Binary Cycle* Fluida *Butane*

Selanjutnya membuat grafik termodinamika fluida *butane* berdasarkan data tekanan dan temperature dari inlet dan outlet setiap peralatan. Untuk lebih jelasnya dapat dilihat pada **Tabel V-59**.

No.	Letak	Tekanan (kPa)	Tekanan (MPa)	Temperatur (°C)	Temperatur (°K)
1	Inlet feed pump	295,1	0,2951	29	302,15
2	Outlet feedpump	1300	1,3	29,77	302,92
3	Inlet HE	1298	1,298	29,76	302,91
4	Outlet HE	1198	1,198	88	361,15
5	Inlet turbin	1194	1,194	87,93	361,08
6	Outlet turbin	330	0,33	53,63	326,78
7	Inlet kondensor	322,7	0,3227	53,5	326,65
8	Outlet kondensor	302,7	0,3027	29	302,15

Tabel V-59. Data Tekanan dan Temperatur di Setiap Peralatan Menggunakan Fluida kerja *Butane*

Kemudian, melakukan plot pada grafik thermodinamika butane dengan mengasumsikan terjadinya pertambahan temperature dari outlet feed pump menuju inlet heat exchanger dan outlet turbin ke inlet kondensor. Sedangkan, titik untuk outlet heat exchanger (4) = inlet turbin (5) dan inlet feed pump (1) = outlet kondensor (8) memiliki titik yang sama dikarenakan perubahan tekanan dan temperature yang kecil. Pada **Gambar 5.45**, terlihat siklus *binary cycle* fluida kerja *butane* pada setiap peralatan.

Gambar 5.45. Grafik Termodinamika Fluida Kerja *Butane*

5.4.5. Analisa Fluida Kerja Iso-Pentane

5.4.5.1. Analisa Feed Pump

Simulasi dimulai dengan menentukan nilai parameter awal *Iso-Pentane* dengan tekanan sebesar 114,1 kPa, temperatur sebesar 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s dan fasa sepenuhnya liquid untuk diberikan tekanan menggunakan *feed pump* menjadi 550 kPa. Untuk lebih jelasnya dapat dilihat pada **Tabel V-60.** Dibawah ini.

Name	INLET FEEDPUMI	OUTLET FEED PU
Vapour	0,0000	0,0000
Temperature [C]	29,00	29,28
Pressure [kPa]	114,1	550,0
Molar Flow [kgmole/h]	449,1	449,1
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	51,97	51,97

Dari tabel diatas terlihat selain adanya penambahan tekanan, terdapat kenaikan temperatur dari 29°C menjadi 29,28 °C. Namun, terdapat beberapa parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Selanjutnya *Iso-Pentane* dialirkan menuju *heat exchanger*.

5.4.5.2. Analisa Pipa Proses Dari *Outlet Feed Pump* Menuju *Inlet Heat Exchanger*

Fluida Iso-Pentane dialirkan menggunakan pipa proses sejauh 10 m dengan diameter dalam sebesar 3,826" dan diameter luar sebesar 4,5". Untuk lebih jelasnya dapat dilihat pada **Tabel V-61.**

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	114,3
Inner Diameter	97,18
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-61. Pipa Proses Dari Outlet Feed Pump Menuju Inlet HeatExcahnger

Dari data pipa proses diatas, terjadi perubahan tekanan sebesar 9 kPa dan temperature sebesar 0,0029 °C. Untuk lebih jelasnya dapat dilihat pada **Tabel V-62.**

Tabel V-62. Analisa Pipa Proses Dari Outlet Feed Pump Menuju Inlet HeatExchanger

Name	OUTLET FEED PUN	INLET HE I-PEN 2	Q FEEDPUMP-HE
Vapour	0,0000	0,0000	<empty></empty>
Temperature [C]	29,2628	29,2659	<empty></empty>
Pressure [kPa]	550,0	541,0	<empty></empty>
Molar Flow [kgmole/h]	449,0582	449,0582	<empty></empty>
Mass Flow [kg/h]	32400,0000	32400,0000	<empty></empty>
LiqVol Flow [m3/h]	51,9695	51,9695	<empty></empty>

Sedangkan untuk pemodelan menggunakan dapat dilihat pada **Gambar 5.46.** dibawah ini.

Gambar 5.46.

Pemodelan Pipa Proses Dari Outlet Feed Pump Menuju Inlet Heat Exchanger

5.4.5.3. Analisa *Heat Exchanger*

Heat exchanger berfungsi sebagai media penukar panas antara fluida *brine* dengan fluida kerja. Sehingga fluida kerja dapat berubah fasa dari liquid menjadi 100% gas. Dengan data-data *inlet* HE *Iso-Pentane* dan *inlet* HE *brine* yang telah dilakukan analisa sebelumnya. **Tabel V-63.** Menunjukkan adanya transfer panas antara *Iso-Pentane* dengan *brine*.

Name	INLET HE I-PEN	OUTLET HE I-PEN	INLET HE	OUTLET HE BRINE
Vapour	0,0000	1,0000	0,0024	0,0000
Temperature [C]	29,27	82,00	175,4	85,20
Pressure [kPa]	541,0	441,0	892,3	792,3
Molar Flow [kgmole/h]	449,1	449,1	1877	1877
Mass Flow [kg/h]	3,240e+004	3,240e+004	3,382e+004	3,382e+004
Std Ideal Liq Vol Flow [m3/h]	51,97	51,97	33,89	33,89

 Tabel V-63. Analisa Heat Exchanger

Dari tabel diatas terlihat terjadinya perubahan fasa fluida *Iso-Pentane* yang sebelumnya liquid menjadi gas seutuhnya, penurunan tekanan dari 541 kPa menjadi 441 kPa, dan kenaikkan temperature dari 29,28°C menjadi 82°C. Sedangkan untuk fasa fluida brine tetap liquid, tekanan berubah dari 902,7 kPa menjadi 802,7 kPa, dan temperature menurun dari 175,6°C menjadi 86,41°C. namun, terdapat parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Pemodelan heat exchanger dapat dilihat pada **Gambar 5.47.** dibawah ini.

Gambar 5.47 Pemodelan *Heat Exchanger*

Dari gambar diatas, fluida *Iso-Pentane* keluar melalui HE dan kemudian akan dialirkan menuju turbin melalui pipa proses. Sedangkan untuk fluida brine akan diinjeksikan melalui sumur injeksi.

5.4.5.4. Analisa Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet Turbin Gas*

Fluida kerja selanjutnya dialirkan ke turbin gas melalui pipa proses dengan mengabaikan elevasi dan belokkan pada pipa. Jarak antara *heat exchanger* dengan turbin adalah 10 m, sedangkan diameter dalam pipa 5,671" dan diameter luarnya 6,625". Untuk lebih jelasnya dapat dilihat pada **Tabel V-64**.

Tabel V-64. Pipa Proses Dari Outlet Heat Exchanger Menuju InletTurbin Gas

ength - Elevation Profile	
Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	168,3
Inner Diameter	146,3
Material	Mild Steel
Roughness	4,572€-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Dari data pipa proses yang ada, kemudian dilakukan analisa sehingga menghasilkan keluaran data yang terlihat pada **Tabel V-65**.

Tabel V-65. Analisa Pipa Proses Dari *Outlet Heat Exchanger* Menuju *Inlet* Turbin Gas

Name	OUTLET HE I-PEN	INLET TURBIN I-P	
Vapour	1,0000	1,0000	
Temperature [C]	82,0000	81,7877	
Pressure [kPa]	441,0	428,6	
Molar Flow [kgmole/h]	449,0582	449,0582	
Mass Flow [kg/h]	32400,0000	32400,0000	
LiqVol Flow [m3/h]	51,9695	51,9695	

Dari tabel terdapat penurunan beberapa parameter seperti tekanan sebelumnya 441 kPa menjadi 428,6 kPa dan temperature dari 82°C menjadi 81,78°C. Ada juga parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Sedangkan, untuk pemodelan pipa proses menuju turbin gas dapat dilihat pada **Gambar 5.45.** dibawah ini.

Gambar 5.48.

Pemodelan Pipa Proses Dari Outlet Heat Exchanger Menuju Inlet Turbin Gas

5.4.5.5. Analisa Turbin Gas dan Energi Listrik yang Dihasilkan

Analisa turbin dilakukan untuk mengetahui besarnya energi listrik yang dihasilkan menggunakan metode *binary cycle*. Fluida Iso-Pentane dengan datadata fasa sepenuhnya gas, tekanan sebesar 428,6 kPa, dan temperature sebesar 81,78 °C memasuki turbin untuk menghasilkan energi listrik, sehingga menghasilkan data-data keluaran turbin yang dapat dilihat pada **Tabel V-66**.

Tabel V-66. Analisa Iso-Pentane Inlet Turbin dan Outlet Turbin

Name	INLET TURBIN I-I	OUTLET TURBIN
Vapour	1,0000	1,0000
Temperature [C]	81,79	63,11
Pressure [kPa]	428,6	160,0
Molar Flow [kgmole/h]	449,1	449,1
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	51,97	51,97

Data keluaran turbin untuk fluida *Iso-Pentane* adalah fasa tetap 100% uap, tekanan menurun dari 428,6 kPa menjadi 160 kPa, temperature menurun dari 81,79°C menjadi 63,11°C. Selain data tersebut, diketahui besarnya energi listrik

yang dihasilkan yaitu sebesar 268,6 kW seperti yang terlihat pada **Gambar 5.49.** Sedangkan untuk pemodelan turbin dapat dilihat pada **Gambar 5.50.**

Gambar 5.49. Analisa Turbin Gas *Iso-Pentane*

Gambar 5.50. Pemodelan Turbin Gas *Iso-Pentane*

5.4.5.6. Analisa Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor

Fluida *Iso-Pentane* keluaran dari turbin, selanjutnya dialirkan melalui pipa proses menuju ke kondensor untuk menurunkan temperaturnya. Sepanjang pipa proses tidak memperhitungkan belokan maupun elevasi dari pipa. Jarak antara outlet turbin dengan inlet kondensor sejauh 20 m dengan diameter dalam pipa sebesar 7,625" dan diameter luar sebesar 8,625". Untuk lebih jelasnya dapat dilihat **Tabel V-67.** Dibawah ini.

Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	20,00
Elevation Change	0,0000
Outer Diameter	219,1
Inner Diameter	193,7
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Tabel V-67. Pipa Proses Dari Outlet Turbin Gas Menuju Inlet Kondensor

Dari data pipa proses diatas, selanjutnya dilakukan analisa untuk mengetahui besarnya perubahan tekanan dan sepanjang pipa proses. Setelah dilakukan simulasi keluar data perubahan tekanan yang awalnya sebesar 160 kPa menjadi 143,1 kPa. Dan perubahan temperature dengan nilai awal 63,1 °C menjadi 62,81 °C. Sedangkan data parameter-parameter lainnya dapat dilihat **Tabel V-68.**

Tabel V-68. Analisa Pipa Proses Dari *Outlet* Turbin Gas Menuju *Inlet* Kondensor

Name	OUTLET TURBIN I	INLET KONDENSC
Vapour	1,0000	1,0000
Temperature [C]	63,1085	62,8151
Pressure [kPa]	160,0	143,1
Molar Flow [kgmole/h]	449,0582	449,0582
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	51,9695	51,9695

Dari tabel terlihat beberapa parameter yang tidak mengalami perubahan seperti *mass flow* dan *molar flow*. Terdapat pemodelan untuk pipa proses dari turbin menuju kondensor yang tampak pada **Gambar 5.51**.

Gambar 5.51 Pemodelan Pipa 121

5.4.5.7. Analisa Kondensor

Kondensor berfungsi untuk menurunkan temperature fluida *Iso-Pentane* dan mengubah fasanya dari gas menjadi liquid sepenuhnya. Media pendingin yang digunakan berupa udara. Dengan mengasumsikan temperature udara sebesar 25°C dengan tekanan 121,6 kPa. Dengan memasukkan data fluida *Iso-Pentane* yang telah dianalisa sebelumnya. Selanjutnya mengolah data yang ada menghasilkan udara keluaran kondensor naik menjadi 51,97°C. Nilai udara masuk dan udara keluar dari kondensor dapat dilihat pada **Gambar 5.52.** Selain itu nilai parameter *Iso-Pentane* di outlet kondensor mengalami perubahan, seperti fasa yang sebelumnya gas menjadi liquid, penurunan tekanan dari 143,1 kPa menjadi 123.1 kPa dan temperature awalnya 62,81°C menjadi 29°C. Untuk data parameter fluida *Iso-Pentane* lainnya dapat dilihat pada **Tabel V-69.**

Gambar 5.52 Analisa Udara Pada Kondensor

Tabel V-69.	. Analisa	Fluida	Iso-Pentane	Kondensor
-------------	-----------	--------	-------------	-----------

Name	INLET KONDENSC	OUTLET KONDEN:
Vapour	1,0000	0,0000
Temperature [C]	62,82	29,00
Pressure [kPa]	143,1	123,1
Molar Flow [kgmole/h]	449,1	449,1
Mass Flow [kg/h]	3,240e+004	3,240e+004
Std Ideal Liq Vol Flow [m3/h]	51,97	51,97

Dari gambar dan tabel diatas, terlihat nilai parameter baik itu fluida *Iso-Pentane* maupun udara pendingin pada kondensor. Terdapat parameter fluida *Iso-Pentane* yang mengalami perubahan, namun ada pula parameter yang konstan seperti *mass flow* dan *molar flow*. Pemodelan *binary cycle* untuk kondensor dapat dilihat pada **Gambar 5.53**.

Gambar 5.53 Pemodelan Kondensor

5.4.5.8. Analisa Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump

Setelah didinginkan dari kondensor, fluida Iso-Pentane dialirkan menggunakan pipa proses menuju *inlet feed pump* untuk diberikan tekanan dan siklus binary cycle dapat dimulai kembali. Jarak antara kondensor dengan *feed pump* sejauh 10 m dengan mengasumsikan tidak adanya belokan dan elevasi sepanjang pipa proses. Digunakan pipa yang memiliki diameter dalam sebesar 2,9" dan diameter luarnya sebesar 3,5". Untuk lebih jelasnya dapat dilihat pada **Tabel V-70.**

Tabel V-70. Pipa Proses Dari Outlet Kondensor Menuju Inlet Feed Pump

-	
Segment	1
Fitting/Pipe	Pipe
Length/Equivalent Length	10,00
Elevation Change	0,0000
Outer Diameter	88,90
Inner Diameter	73,66
Material	Mild Steel
Roughness	4,572e-005
Pipe Wall Conductivity	45,00
Increments	5
FittingNo	<empty></empty>

Dari data pipa yang digunakan, terjadi perubahan nilai parameter seperti tekanan yang awalnya 123,1 kPa menjadi 114,1 kPa dan temperatur dari 29°C menjadi 29,0029°C. Terdapat juga beberapa parameter yang konstan seperti *mass flow dan molar flow*. Untuk data parameter yang lebih lengkap dapat dilihat pada **Tabel V-71.** Dibawah ini.

Tabel V-71. Analisa Pipa Proses Dari *Outlet* Kondensor Menuju *Inlet Feed Pump*

Name	OUTLET KONDEN:	INLET FEEDPUMP
Vapour	0,0000	0,0000
Temperature [C]	29,0000	29,0029
Pressure [kPa]	123,1	114,1
Molar Flow [kgmole/h]	449,0582	449,0582
Mass Flow [kg/h]	32400,0000	32400,0000
LiqVol Flow [m3/h]	51,9695	51,9695

Sedangkan pemodelan pipa dapat dilihat pada Gambar 5.54.

Gambar 5.54. Pemodelan Pipa Proses

5.4.5.9. Siklus Binary Cycle Fluida Iso-Pentane

Setelah dilakukan analisa menggunakan fluida kerja *Iso-Pentane* pada setiap bagian peralatan binary cycle. Selanjutnya, siklus *binary cycle* secara keseluruhan dapat dilihat pada **Gambar 5.55**.

Gambar 5.55 Pemodelan Siklus *Binary Cycle* Fluida *Iso-Pentane*

Selanjutnya membuat grafik termodinamika fluida *iso-pentane* berdasarkan data tekanan dan temperature dari inlet dan outlet setiap peralatan. Untuk lebih jelasnya dapat dilihat pada **Tabel V- 72**.

No.	Letak	Tekanan (kPa)	Tekanan (MPa)	Temperatur (°C)	Temperatur (°K)
1	Inlet feed pump	114,1	0,1141	29	302,15
2	Outlet feedpump	550	0,55	29,28	302,43
3	Inlet HE	547,8	0,5478	29,28	302,43
4	Outlet HE	447,8	0,4478	82	355,15
5	Inlet turbin	435,7	0,4357	81,79	354,94
6	Outlet turbin	160	0,16	62,82	335,97
7	Inlet kondensor	143,1	0,1431	62,53	335,68
8	Outlet kondensor	123,1	0,1231	29	302,15

Tabel V- 72 Data Tekanan dan Temperatur di Setiap Peralatan Menggunakan Fluida kerja *Iso-Pentane*

Kemudian, melakukan plot pada grafik thermodinamika iso-pentane dengan mengasumsikan terjadinya pertambahan temperature dari outlet feed pump menuju inlet heat exchanger dan outlet turbin ke inlet kondensor. Sedangkan, titik untuk outlet heat exchanger (4) = inlet turbin (5) dan inlet feed pump (1) = outlet kondensor (8) memiliki titik yang sama dikarenakan perubahan tekanan dan temperature yang kecil. Pada **Gambar 5.56,** terlihat siklus *binary cycle* fluida kerja *iso-pentana* pada setiap peralatan.

Gambar 5.56. Grafik Termodinamika Fluida Kerja *Iso-Pentane*

5.5. Electric Power yang Dihasilkan

Pada analisa ini elektrik power yang dihasilkan baik secara konvensional maupun menggunakan metode *binary cycle* dengan analisa beberapa fluida kerja dihasilkan electric power seperti pada **Tabel V-73.** Dan **Tabel V-74.** Dibawah ini

Tabel V-73 . Electric Power yang Dihasilkan Secara Konvensional

Metode	Electric Power
Konvensional	3516 kW
Fluida Kerja	Electric Power
--------------	----------------
Propane	223,1 kW
Iso-Butane	344,4 kW
Butane	321,5 kW
Iso-Pentane	268,6 kW

 Tabel V-74. Electric Power yang Dihasilkan Menggunakan Metode Binary

 Cycle

Dari kedua tabel diatas terlihat electric power yang dihasilkan secara konvensional sebesar 3516 kW atau setara dengan 3,516 MW. Sedangkan metode *binary cycle* menghasilkan electric power yang berbeda beda tergantung fluida kerja yang digunakan. Fluida kerja *propane* menghasilkan electric power yang paling rendah sebesar 223,1 kW. Untuk electric power terbesar menggunakan fluida kerja berupa *Iso-butane* sebesar 344,4 kW.

Dari analisa diatas, pemanfaatan sumur GN-01, GN-02, dan GN-03 sebagai pembangkit listrik hybrid dengan metode konvensional dan *binary cycle* menggunakan fluida kerja *iso-butane* diharapkan untuk segera dilakukan. Hal ini dikarenakan dapat menambah pasokan energi listrik dan terbilang ekonomis.

5.5.1. Perhitungan Energi Listrik Turbin Uap

Inlet Turbin :	Outlet Turbin :
T1 = 175 C	T2 = 120,2 C
P1 = 834 kPa = 8,34 bara	P2 = 200 kPa = 2 bara
M1 = 65490 kg/h = 18,19167 kg/s	M2 = 65490 kg/h = 18,19167 kg/s
h1 = 2769,995 KJ/kg	h2 = 2517,612

• W = eff.turbin x m x (h1-h2) = 0.765 x 18,19167 x (2769,995 - 2517,612) = 3516 Kwatt = 3,516 Mwatt

5.5.2. Perhitungan Energi Listrik Turbin Gas

1. Energi Listrik dengan Fluida Kerja *Propana*
Inlet Turbin : Outlet Turbin :

$$M_{wf} = 32400 \text{ kg/h} = 9 \text{ kg/s}$$
 T2 = 37,67 C = 310,82 K
T1 = 94,98 C = 368,13 K P2 = 1,3 Mpa
P1 = 3,898 Mpa h2 = 546,1 KJ/Kg
h1 = 570,889 KJ/Kg
W = M_{wf} (h1-h2)
= 9 (570,889 – 546,1)
= 223,1 KW
2. Energi Listrik dengan Fluida Kerja *Iso-Butana*
Inlet Turbin : Outlet Turbin :
 $M_{wf} = 32400 \text{ kg/h} = 9 \text{ kg/s}$ T2 = 51,06 C = 324,21 K
T1 = 88,94 C = 362,09 K P2 = 0,44 Mpa
P1 = 1,594 Mpa h2 = 592 KJ/Kg
h1 = 630,267 KJ/Kg
W = M_{wf} (h1-h2)
= 9 (630,267 – 592)
= 344,4 KW
3. Energi Listrik dengan Fluida Kerja *Butana*
Inlet Turbin : Outlet Turbin :
 $M_{wf} = 28800 \text{ kg/h} = 8 \text{ kg/s}$ T2 = 53,63 C = 326,78 K
T1 = 87,93 C = 361,08 K P2 = 0,33 Mpa
P1 = 1,194 Mpa h2 = 640 KJ/Kg
M = M_{wf} (h1-h2)
= 8 (680,1875 KJ/Kg
W = M_{wf} (h1-h2)
= 8 (680,1875 – 640)
= 321,5 KW

Inlet Turbin :

Outlet Turbin :

= 32400 kg/h = 9 kg/sT2 = 63,11 C = 336,26 K M_{wf} T1 = 81,79 C = 354,94 K = 0,16 Mpa P2 **P**1 = 0,4286 Mpa h2 = 610,933 KJ/Kg= 638 KJ/Kgh1 $W = M_{wf} (h1-h2)$ = 9 (638 - 610,933)= 243,6 KW

Gambar 5.57. Alur pemodelan pembangkit listrik lapangan ADN

BAB VI PEMBAHASAN

Lapangan panasbumi ADN memiliki beberapa sumur yang diproduksikan sumur GN-01, GN-02, dan GN-03. Sumur-sumur tersebut seperti memproduksikan dua fasa fluida berupa uap dan liquid. Selanjutnya dialiran di pipa transport menuju manifold untuk dialirkan menuju separator dan dipisahkan antara fasa uap (steam) dengan fasa liquid (brine). fasa uap dari fluida produksi digunakan untuk pembangkit listrik secara konvensional dengan mengalirkan uap yang telah dipisahkan pada separator menuju ke turbin uap. Sementara itu, fasa air akan dimanfaatkan sebagai sebagai fluida pemanas pada binary cycle untuk mengahasilkan listrik tambahan.

Metode binary cycle merupakan salah satu teknologi pembangkit panasbumi digunakan untuk pemanfaatkan brine. Binary cycle bekerja dengan memanfaatkan panas dari fluida panasbumi yang tidak ekonomis jika dimanfaatkan dengan pembangkit panasbumi konvensional. Pembangkit listrik siklus biner panasbumi dibentuk oleh dua siklus: siklus primer yang berisi fluida panasbumi, dan siklus sekunder di mana fluida kerja organik tertutup. Siklus primer dimulai dari sumur produksi dan berakhir di sumur re-injeksi. Pada siklus primer, suhu dan laju aliran fluida panasbumi yang diinginkan ditentukan oleh properti lapangan reservoir. Fluida panasbumi dapat berupa air atau uap. Pada siklus sekunder, fluida kerja diberi tekanan dari feed pump agar dapat mengalir menuju heat exchanger. Heat exchanger pada dasarnya adalah penukar panas yang berasal dari fluida panasbumi dipindahkan ke fluida kerja pada tekanan konstan hingga fluida kerja melewati titik temperatur kritis menjadi superheated. Kemudian, fluida kerja berfasa uap keluar dari heat exchanger mengalir menuju turbin. Uap didalam turbin mengembang secara isentropis dan menghasilkan energi mekanik dengan memutar poros turbin yang terhubung ke generator, dari generator merubah energi mekanik menjadi energi listrik. Setelah keluar dari turbin, fluida kerja berfasa uap bergerak menuju kondensor untuk dikondensasikan. Fluida kerja meninggalkan kondensor sebagai cairan jenuh dan memasuki *feed pump*, menyelesaikan siklus.

Lapangan ADN terletak di sepanjang sisi timur dari berbagai pusat vulkanik sepanjang hampir 30 km yang meliputi gunung berapi aktif Gunung Papandayan (terakhir meletus pada November 2002) dan Gunung Guntur (terakhir meletus pada tahun 1840). Lapangan ADN berada pada ketinggian 1750–2000 meter di atas permukaan laut, dan terletak sekitar 9 kilometer barat daya lapangan panas bumi Kamojang yang memproduksi dan 10 km timur lapangan panas bumi Wayang Windu. Data sumuran yang dibutuhkan berupa tekanan kepala sumur, temperature kepala sumur, laju alir, dan fasa fluida.

Sumur GN-01 mempunyai tekanan sebesar 1118 kPa, temperature sebesar 185°C, laju alir sebesar 10,8 kg/s atau 38880 kg/jam, fasa uap 75% dan fasa liquid 25%. Untuk sumur GN-02 mempunyai tekanan sebesar 1195 kPa, temperature sebesar 188°C, laju alir sebesar 10 kg/s atau 36000 kg/jam, fasa uap 60%, dan fasa liquid 40%. Sedangkan sumur GN-03 mempunyai tekanan kepala sumur sebesar 1195 kPa, temperature sebesar 188°C laju alir sebesar 6,8 kg/s atau 24880 kg/jam, fasa uap 55%, dan fasa liquid 45%.

Analisa dilakukan dengan memasukkan data-data parameter kepala sumuran untuk dialirkan menuju manifold hingga separator. sepanjang pipa diasumsikan tidak adanya belokkan maupun elevasi pada pipa transport. Sumur GN-01 dialirkan dari kepala sumur hingga inlet manifold sejauh 300 m dengan diameter luar pipa sebesar 273,1 mm atau 10,75" dan diameter dalam pipa sebesar 242,9 mm atau 9,56". Pada inlet manifold terjadi penurunan tekanan mulanya 1118 kPa menjadi 1002 kPa dan penurunan temperature yang awalnya 185°C menjadi 180,1459°C. Sedangkan untuk laju alir konstan sebesar 10,8 kg/s atau 38880 kg/jam, fasa uap sebesar 75% dan fasa liquidnya sebesar 25%. Sumur GN-02 dialirkan dari kepala sumur hingga inlet manifold sejauh 1000 m dengan diameter luar pipa sebesar 323,8 mm atau 12,75" dan diameter dalam pipa sebesar 288,9 mm atau 11,374". Pada inlet manifold terjadi penurunan tekanan mulanya 1195 kPa menjadi 1101 kPa dan penurunan temperature yang awalnya 188°C

menjadi 184,2828°C. Sedangkan untuk laju alir konstan sebesar 10 kg/s atau 36000 kg/jam, fasa uap sebesar 60% dan fasa liquidnya sebesar 40%. Sumur GN-03 dialirkan dari kepala sumur hingga inlet manifold sejauh 700 m dengan diameter luar pipa sebesar 323,8 mm atau 12,75" dan diameter dalam pipa sebesar 288,9mm atau 11,374". Pada inlet manifold terjadi penurunan tekanan mulanya 1195 kPa menjadi 1171 kPa dan penurunan temperature yang awalnya 188°C menjadi 187,05°C. Sedangkan untuk laju alir konstan sebesar 6,8 kg/s atau 24480 kg/jam, fasa uap sebesar 55% dan fasa liquidnya sebesar 45%. Selanjutnya, menganalisa inlet manifold dengan menggabungkan tiga data aliran menjadi aliran tunggal.

Tekanan di inlet manifold sebesar 1002 kPa, temperature sebesar 180,1°C, laju alir sebesar 27,6 kg/s atau 99360 kg/jam, fasa uap 65,48%, dan fasa liquid 34,48%. Kemudian dari inlet manifold fluida dialirkan menuju ke inlet separator dengan jarak 100 m, diameter luar manifold 406,4 mm atau 16", dan diameter luar sebesar 363,5 mm atau 14,31". Pada inlet separato terjadi penurunan tekanan mulanya 1002 kPa menjadi 974,1 kPa, penurunan temperature dari 180,1475°C menjadi 178,8963°C, fasa uap sebesar 65,51%, fasa liquid sebesar 34,49% dan laju alir sebesar 27,6kg/s atau 99360 kg/jam. Kemudian, dari separator terjadi pemisahan antara fasa uap (steam) dan fasa liquid (brine) menggunakan jenis separator verikal. Besaran nilai parameter steam keluaran tekanan sebesar 874,1 kPa, temperature sebesar 175,8°C, dan laju alir sebesa 18,19 kg/s atau 65493,76 kg/jam. Sedangkan keluaran parameter brine berupa tekanan sebesar 924,1 kPa, temperature sebesar 176,6°C, dan laju alir sebesar 9,407 kg/s atau 33866,243 kg/h.

Analisa pembangkit listrik panasbumi secara konvensional menggunakan steam dari pemisahan separator untuk dilalirkan menuju turbin sehingga menghasilkan energi listrik. Steam keluaran separator dialirkan menuju inlet turbin menggunakan pipa proses dengan jarak 50 m, diameter luar pipa sebesar 273,1 mm atau 10,75" dan diameter dalam sebesar 254,5 mm atau 10,02". Pada inlet trubi terjadi penurunan tekanan dari 874,1 kPa menjadi 834,3 kPa, penurunan temperature dari 175,8286°C menjadi 175,2034°C, laju alir sebersar 18,19 kg/s atau 65493,76 kg/jam dan fasa uap sebesar 100%. Kemudian, dilakukan analisa

pada turbin untuk mengetahui besarnya energi listrik yang dihasilkan dengan men-setting data tekanan keluaran turbin sebesar 200 kPa. Sehingga terjadi perubahan parameter pada keluaran turbin berupa tekanan sebesar 200 kPa, temperature sebesar 120,2°C, laju alir sebesar 18,19 kg/s atau 65493,76 kg/jam, fasa uap sebesar 95,22% dan fasa liquid sebesar 4,78%. Analisa pembangkit listrik secara konvensional menghasilkan energi listrik sebesar 3516 kW atau 3,516 MW. Selanjutnya fluida keluaran turbin didinginkan menggunakan kondensor untuk mengubah fasa uap menjadi liquid yang akan diinjeksikan kembali. Jarak antara turbin dan kondensor sejauh 100 m menggunakan pipa dengan diameter dalam sebesar 455,6 mm atau 17,94" dan diameter luarnya sebesar 508 mm atau 20". Selama transport terjadi perubahan tekanan di inlet kondensor yang sebelumnya sebesar 120,1717°C menjadi 113,8522°C, perubahan tekanan dari 200 kPa menjadi 163 kPa, laju alir tetap, perubahan fasa uap dari 95,22% menjadi 95,74%, dan perubahan fasa liquid dari 4,78% menjadi 4,26%. Terakhir menganalisa kondensor menggunakan dengan asumsi temperature sekitar gunung darajat sebesar 25°C. Sehingga menghasilkan data parameter keluaran kondensor berupa tekanan sebesar 143,1 kPa, temperature sebesar 100°C, laju alir sebesar 18,19 kg/s atau 65493,76 kg/jam, dan fasa 100% liquid.

Selain memanfaatkan steam dari separator, penulisan ini memanfaatkan brine keluaran separator untuk dijadikan fluida pemanas menggunakan metode *binary cycle* sehingga menghasilkan energi listrik tambahan. Pertama-tama dilakukan analisa brine keluaran separator dengan nilai tekanan sebesar 924,1 kPA, temperature sebesar 176,6147°C, laju alir sebesar 33866,24 kg/h atau 9,41 kg/s, dan fasa 100% liquid. Dari separator dialirkan menuju *heat exchanger* menggunakan pipa dengan diameter luar 88,9 mm atau 3,5", diameter luar sebesar 73,66 mm atau 2,9", dan jarak 20 m. Sehingga terjadi perubahan nilai parameter di inlet *heat exchanger* berupa tekanan sebesar 902 kPa, temperature sebesar 175,6102 °C, laju alir konstan sebesar 33866,24 kg/h atau 9,41 kg/s, dan fasa liquid sebesar 100%. Setelah dilakukan analisa brine di inlet *heat exchanger*, kemudian menganalisa fluida kerja yang akan digunakan berupa *propane, isobutane, butane, iso-pentane*, dan *pentane*.

Analisa awal fluida kerja menggunaka *propane* yang dimasukkan ke inlet feedpump dengan tekanan sebesar 1266 kPa, temperature sebesar 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s dan fasa sepenuhnya liquid. Kemudian dari inlet feedpump menuju outlet feedpump terjadi kenaikan tekanan menjadi 4000 kPa, temperature menjadi 32,2°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa sepenuhnya liquid. Selanjutnya, dari outlet *feed pump* menuju inlet *heat exchanger* menggunakan pipa dengan diameter luar sebesar 168,3 mm atau 6,625", diameter dalam sebesar 146,3 mm atau 5,761", dan jarak sejauh 10 m. Sehingga terjadi perubahan parameter berupa tekanan menjadi 3999,68 kPa = 4000 kPa, kehilangan temperature sebesar 0,0000507 °C, karena kehilangan temperature terlalu kecil sehingga dianggap masih konstan 32,2°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa 100% liquid.

Didalam *heat exchanger* terjadi transfer panas dari fluida brine ke fluida kerja *propane*, sehingga terjadi perubahan parameter di masing-masing outlet *heat exchanger*. Pada outlet brine tekanan menurun dari 902 kPa menjadi 802,7 kPa, temperature menurun dari 175,6°C menjadi 101,4°C,laju alir sebesar 33866,24 kg/h atau 9,41 kg/s, dan fasa liquid sebesar 100%. Sedangkan untuk fluida kerja *propane* terjadi penurunan tekanan dari 4000 kPa menjadi 3900 kPa, kenaikkan temperature dari 32,2°C menjadi 95°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa menjadi 100% gas. Kemudian dari outlet *heat exchanger* fluida kerja dialirkan menuju inlet turbin gas menggunakan pipa proses sejauh 10 m, diameter luar pipa sebesar 168,3 mm atau 6,625°, dan diameter dalam pipa sebesar 146,3 mm atau 5,671°. Sehingga terjadi penurunan beberapa parameter seperti tekanan sebelumnya 3900 kPa menjadi 3898 kPa dan temperature dari 95°C menjadi 94,9779°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa 100% gas.

Selanjutnya menganalisa turbin gas untuk mengetahui besarnya energi listrik yang dihasilkan menggunakan fluida kerja *propane*. Energi listrik yang dihasilkan sebesar 223,1 kW atau 0,2231 MW dengan perubahan parameter pada outlet turbin gas berupa tekanan dari 3898 kPa menjadi 1300 kPa, temperature

dari 94,98°C menjadi 37,67°C, laju alir sebesar 32400 kg/h atau 9 kg/s, dan fasa 100% sepenuhnya gas.

Dari outlet turbin gas, fluida kerja dialirkan menuju kondensor untuk dikondensasikan menggunakan pipa proses yang berjarak 20 m, dengan diameter luar sebesar 219,1 mm atau 8,625", dan diameter dalam sebesar 193,7 mm atau 7,625". Analisa pipa, dari outlet turbin gas menuju inlet kondensor terjadi perubahan tekanan dari 1300 kPa menjadi 1298 kPa, perubahan temperatur dari 37,6712°C menjadi 37,6269°C, laju alir konstan 32400 kg/h atau 9 kg/s, dan fasa 100% sepenuhnya gas. Kemudian, didalam kondensor terjadi kondensasi fasa gas menjadi fasa liquid dengan asumsi temperature lapangan ADN sebesar 25°C. dari inet kondesor menuju outlet kondensor, terjadi perubahan parameter berupa tekanan dari 1298 kPa menjadi 1278 kPa, temperature dari 37,63°C menjadi 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s, dan fasa menjadi sepenuhnya liquid. Kemudian dari outlet kondensor, fluida kerja dialirkan menggunakan pipa proses menuju ke inlet *feedpump* dengan jarak sejauh 10 m, diameter luar pipa sebesar 88 mm atau 3,5", dan diameter dalam pipa sebesar 73,66 mm atau 2,9". Sehingga, terjadi perubahan nilai parameter seperti tekanan yang awalnya 1278 kPa menjadi 1266 kPa dan temperatur dari 29°C menjadi 28,997°C, laju alir sebesar 32400 kg/h atau 9 kg/s, fasa 100% liquid. Dan fluida kerja propane menyelesaikan satu siklus *binary cycle*.

Analisa kedua menggunakan fluida kerja *iso-butane* yang dimasukkan ke inlet *feed pump* dengan tekanan sebesar 403,3 kPa, temperature sebesar 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s dan fasa sepenuhnya liquid. Kemudian dari inlet feedpump menuju outlet *feed pump* terjadi kenaikan tekanan menjadi 1700 kPa, temperature menjadi 30,15°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa sepenuhnya liquid. Selanjutnya, dari outlet *feed pump* menuju inlet *heat exchanger* menggunakan pipa dengan diameter luar sebesar 114,3 mm atau 4,5", diameter dalam sebesar 97,18 mm atau 3,826", dan jarak sejauh 10 m. Sehingga terjadi perubahan parameter berupa tekanan menjadi 1698 kPa, kehilangan temperature sebesar 0,0001 °C, karena kehilangan temperature terlalu kecil sehingga dianggap masih konstan 30,15°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa 100% liquid.

Didalam heat exchanger terjadi transfer panas dari fluida brine ke fluida kerja *iso-butane*, sehingga terjadi perubahan parameter di masing-masing outlet *heat exchanger*. Pada outlet brine tekanan menurun dari 902 kPa menjadi 802,7 kPa, temperature menurun dari 175,6°C menjadi 91,77°C,laju alir sebesar 33866,24 kg/h atau 9,41 kg/s, dan fasa liquid sebesar 100%. Sedangkan untuk fluida kerja *iso-butane* terjadi penurunan tekanan dari 1698 kPa menjadi 1598 kPa, kenaikkan temperature dari 30,15°C menjadi 89°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa menjadi 100% gas. Kemudian dari outlet *heat exchanger* fluida kerja dialirkan menuju inlet turbin gas menggunakan pipa proses sejauh 10 m, diameter luar pipa sebesar 168,3 mm atau 6,625", dan diameter dalam pipa sebesar 146,3 mm atau 5,671". Sehingga terjadi penurunan beberapa parameter seperti tekanan sebelumnya 1598 kPa menjadi 1594 kPa dan temperature dari 89°C menjadi 88,94°C, laju alir konstan sebesar 32400 kg/h atau 9 %g/s, dan fasa 100% gas.

Selanjutnya menganalisa turbin gas untuk mengetahui besarnya energi listrik yang dihasilkan menggunakan fluida kerja *iso-butane*. Energi listrik yang dihasilkan sebesar 344,4 kW atau 0,3444 MW dengan perubahan parameter pada outlet turbin gas berupa tekanan dari 1594 kPa menjadi 440 kPa, temperature dari 88,94°C menjadi 51,06°C, laju alir sebesar 32400 kg/h atau 9 kg/s, dan fasa 100% sepenuhnya gas.

Dari outlet turbin gas, fluida kerja dialirkan menuju kondensor untuk dikondensasikan menggunakan pipa proses yang berjarak 20 m, dengan diameter luar sebesar 219,1 mm atau 8,625", dan diameter dalam sebesar 193,7 mm atau 7,625". Analisa pipa, dari outlet turbin gas menuju inlet kondensor terjadi perubahan tekanan dari 440 kPa menjadi 433,3 kPa, perubahan temperatur dari 51,06°C menjadi 50,95°C, laju alir konstan 32400 kg/h atau 9 kg/s, dan fasa 100% sepenuhnya gas. Kemudian, didalam kondensor terjadi kondensasi fasa gas menjadi fasa liquid dengan asumsi temperature lapangan ADN sebesar 25°C. dari inlet kondesor menuju outlet kondensor, terjadi perubahan parameter berupa

tekanan dari 433,3 kPa menjadi 413,3kPa, temperature dari 50,95°C menjadi 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s, dan fasa menjadi sepenuhnya liquid. Kemudian dari outlet kondensor, fluida kerja dialirkan menggunakan pipa proses menuju ke inlet *feed pump* dengan jarak sejauh 10 m, diameter luar pipa sebesar 88 mm atau 3,5", dan diameter dalam pipa sebesar 73,66 mm atau 2,9". Sehingga, terjadi perubahan nilai parameter seperti tekanan yang awalnya 413,3 kPa menjadi 413 kPa dan temperatur dari 29°C menjadi 29,0001°C, laju alir sebesar 32400 kg/h atau 9 kg/s, fasa 100% liquid. Dan fluida kerja *iso-butane* menyelesaikan satu siklus *binary cycle*.

Analisa ketiga menggunakan fluida kerja *butane* yang dimasukkan ke inlet *feedpump* dengan tekanan sebesar 291,2 kPa, temperature sebesar 29°C, laju alir sebesar 28800 kg/h atau 8 kg/s dan fasa sepenuhnya liquid. Kemudian dari inlet *feed pump* menuju outlet *feed pump* terjadi kenaikan tekanan menjadi 1300 kPa, temperature menjadi 29,77°C, laju alir konstan sebesar 28800 kg/h atau 8 kg/, dan fasa sepenuhnya liquid. Selanjutnya, dari outlet *feed pump* menuju inlet *heat exchanger* menggunakan pipa dengan diameter luar sebesar 114,3 mm atau 4,5", diameter dalam sebesar 97,18 mm atau 3,826", dan jarak sejauh 10 m. Sehingga terjadi perubahan parameter berupa tekanan menjadi 1298 kPa, kehilangan temperature sebesar 0,00005 °C, karena kehilangan temperature terlalu kecil sehingga dianggap masih konstan 29,77°C, laju alir konstan sebesar 28800 kg/h atau 8 kg/, dan fasa 100% liquid.

Didalam *heat exchanger* terjadi transfer panas dari fluida brine ke fluida kerja *butane*, sehingga terjadi perubahan parameter di masing-masing outlet *heat exchanger*. Pada outlet brine tekanan menurun dari 902 kPa menjadi 802,7 kPa, temperature menurun dari 175,6°C menjadi 93,68°C,laju alir sebesar 33866,24 kg/h atau 9,41 kg/s, dan fasa liquid sebesar 100%. Sedangkan untuk fluida kerja *butane* terjadi penurunan tekanan dari 1298 kPa menjadi 1198 kPa, kenaikkan temperature dari 29,77°C menjadi 88°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa menjadi 100% gas. Kemudian dari outlet *heat exchanger* fluida kerja dialirkan menuju inlet turbin gas menggunakan pipa proses sejauh 10 m, diameter luar pipa sebesar 168,3 mm atau 6,625", dan diameter dalam pipa

sebesar 146,3 mm atau 5,671". Sehingga terjadi penurunan beberapa parameter seperti tekanan sebelumnya 1198 kPa menjadi 1194 kPa dan temperature dari 88°C menjadi 87,93°C, laju alir konstan sebesar 28800 kg/h atau 8 kg/, dan fasa 100% gas.

Selanjutnya menganalisa turbin gas untuk mengetahui besarnya energi listrik yang dihasilkan menggunakan fluida kerja *butane*. Energi listrik yang dihasilkan sebesar 321,5 kW atau 0,3215 MW dengan perubahan parameter pada outlet turbin gas berupa tekanan dari 1194 kPa menjadi 330 kPa, temperature dari 88,94°C menjadi 53,63°C, laju alir sebesar 28800 kg/h atau 8 kg/, dan fasa 100% sepenuhnya gas.

Dari outlet turbin gas, fluida kerja dialirkan menuju kondensor untuk dikondensasikan menggunakan pipa proses yang berjarak 20 m, dengan diameter luar sebesar 219,1 mm atau 8,625", dan diameter dalam sebesar 193,7 mm atau 7,625". Analisa pipa, dari outlet turbin gas menuju inlet kondensor terjadi perubahan tekanan dari 330 kPa menjadi 322,7 kPa, perubahan temperatur dari 53,63°C menjadi 53,5°C, laju alir konstan 28800 kg/h atau 8 kg/, dan fasa 100% sepenuhnya gas. Kemudian, didalam kondensor terjadi kondensasi fasa gas menjadi fasa liquid dengan asumsi temperature lapangan ADN sebesar 25°C. dari inlet kondesor menuju outlet kondensor, terjadi perubahan parameter berupa tekanan dari 322,7 kPa menjadi 302,7 kPa, temperature dari 53,5°C menjadi 29°C, laju alir sebesar 28800 kg/h atau 8 kg/, dan fasa menjadi sepenuhnya liquid. Kemudian dari outlet kondensor, fluida kerja dialirkan menggunakan pipa proses menuju ke inlet feedpump dengan jarak sejauh 10 m, diameter luar pipa sebesar 88 mm atau 3,5", dan diameter dalam pipa sebesar 73,66 mm atau 2,9". Sehingga, terjadi perubahan nilai parameter seperti tekanan yang awalnya 302,7 kPa menjadi 295,1 kPa dan temperatur dari 29°C menjadi 29,0001°C, laju alir sebesar 28800 kg/h atau 8 kg/, fasa 100% liquid. Dan fluida kerja butane menyelesaikan satu siklus binary cycle.

Analisa keempat menggunakan fluida kerja *iso-pentane* yang dimasukkan ke inlet *feed pump* dengan tekanan sebesar 114,1 kPa, temperature sebesar 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s dan fasa sepenuhnya liquid. Kemudian

dari inlet *feed pump* menuju outlet *feed pump* terjadi kenaikan tekanan menjadi 550 kPa, temperature menjadi 29,27 °C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa sepenuhnya liquid. Selanjutnya, dari outlet *feed pump* menuju inlet *heat exchanger* menggunakan pipa dengan diameter luar sebesar 114,3 mm atau 4,5", diameter dalam sebesar 97,18 mm atau 3,826", dan jarak sejauh 10 m. Sehingga terjadi perubahan parameter berupa tekanan menjadi 541 kPa, kehilangan temperature sebesar 0,0020 °C, karena kehilangan temperature terlalu kecil sehingga dianggap masih konstan 29,27°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa 100% liquid.

Didalam *heat exchanger* terjadi transfer panas dari fluida brine ke fluida kerja *iso-pentane*, sehingga terjadi perubahan parameter di masing-masing outlet *heat exchanger*. Pada outlet brine tekanan menurun dari 902 kPa menjadi 802,7 kPa, temperature menurun dari 175,6°C menjadi 85,2°C,laju alir sebesar 33866,24 kg/h atau 9,41 kg/s, dan fasa liquid sebesar 100%. Sedangkan untuk fluida kerja *iso-pentane* terjadi penurunan tekanan dari 541 kPa menjadi 441 kPa, kenaikkan temperature dari 29,27°C menjadi 82°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa menjadi 100% gas. Kemudian dari outlet *heat exchanger* fluida kerja dialirkan menuju inlet turbin gas menggunakan pipa proses sejauh 10 m, diameter luar pipa sebesar 168,3 mm atau 6,625°, dan diameter dalam pipa sebesar 146,3 mm atau 5,671°. Sehingga terjadi penurunan beberapa parameter seperti tekanan sebelumnya 441 kPa menjadi 428,6 kPa dan temperature dari 82°C menjadi 81,78°C, laju alir konstan sebesar 32400 kg/h atau 9 kg/s, dan fasa 100% gas.

Selanjutnya menganalisa turbin gas untuk mengetahui besarnya energi listrik yang dihasilkan menggunakan fluida kerja *iso-butane*. Energi listrik yang dihasilkan sebesar 268,6 kW atau 0,2686 MW dengan perubahan parameter pada outlet turbin gas berupa tekanan dari 428,6 kPa menjadi 160 kPa, temperature dari 81,78°C menjadi 63,11°C, laju alir sebesar 32400 kg/h atau 9 kg/s, dan fasa 100% sepenuhnya gas.

Dari outlet turbin gas, fluida kerja dialirkan menuju kondensor untuk dikondensasikan menggunakan pipa proses yang berjarak 20 m, dengan diameter

luar sebesar 219,1 mm atau 8,625", dan diameter dalam sebesar 193,7 mm atau 7,625". Analisa pipa, dari outlet turbin gas menuju inlet kondensor terjadi perubahan tekanan dari 160 kPa menjadi 143,1 kPa, perubahan temperatur dari 63,1°C menjadi 62,81°C, laju alir konstan 32400 kg/h atau 9 kg/s, dan fasa 100% sepenuhnya gas. Kemudian, didalam kondensor terjadi kondensasi fasa gas menjadi fasa liquid dengan asumsi temperature lapangan ADN sebesar 25°C. dari inlet kondesor menuju outlet kondensor, terjadi perubahan parameter berupa tekanan dari 143,1 kPa menjadi 123,1 kPa, temperature dari 62,81°C menjadi 29°C, laju alir sebesar 32400 kg/h atau 9 kg/s, dan fasa menjadi sepenuhnya liquid. Kemudian dari outlet kondensor, fluida kerja dialirkan menggunakan pipa proses menuju ke inlet *feed pump* dengan jarak sejauh 10 m, diameter luar pipa sebesar 88 mm atau 3,5", dan diameter dalam pipa sebesar 73,66 mm atau 2,9". Sehingga, terjadi perubahan nilai parameter seperti tekanan yang awalnya 123,1 kPa menjadi 114,1 kPa dan temperatur dari 29°C menjadi 29,0001°C, laju alir sebesar 32400 kg/h atau 9 kg/s, fasa 100% liquid. Dan fluida kerja iso-Pentane menyelesaikan satu siklus binary cycle.

Analisa dari sumur GN-01, GN-02, GN-03 secara konvensional menghasilkan electric power sebesar 3516 kW atau 3,516 MW. Sedangkan, untuk metode *binary cycle* electric power terbesar dihasilkan menggunakan fluida kerja iso-butana sebesar 344,3 kW atau 0,3444 MW. Sehingga pemanfaatan sumur GN-01, GN-02, dan GN-03 sebagai pembangkit listrik hybrid dengan metode konvensional dan *binary cycle* menggunakan fluida kerja *iso-butane* diharapkan untuk segera dilakukan.

BAB VII KESIMPULAN

Dari penulisan tesis ini dapat disimpulkan :

- Pembangkit listrik secara konvensional dengan memanfaatkan steam keluaran separator menghasilkan energi listrik sebesar 3516 kW atau 3,516 MW.
- 2. Analisa pembangkit listrik metode *binary cycle* dengan memanfaatkan brine keluaran separator menghasilkan besarnya energi listrik :
 - Fluida kerja *propane* energi listrik yang dihasilkan sebesar 223,1 kW atau 0,2231 MW
 - Fluida kerja *iso-butane* energi listrik yang dihasilkan sebesar 344,4 kW atau 0,3444 MW
 - Fluida kerja *butane* energi listrik yang dihasilkan sebesar 321,5 kW atau 0,3215 MW
 - Fluida kerja *iso-pentane* energi listrik yang dihasilkan sebesar 268,6
 kW atau 0,2686 MW
- 3. Jumlah total elektrik power yang dihasilkan dari *hybrid flash binary* sebesar 3,860 MW
- 4. Pemanfaatan sumur GN-01, GN-02, dan GN-03 sebagai pembangkit listrik hybrid dengan metode konvensional dan binary cycle menggunakan fluida kerja iso-butane diharapkan untuk dilakukan. Hal ini dikarenakan dapat menambah pasokan energi listrik.

DAFTAR PUSTAKA

- 1. Assad, M. E. H., Hani, E. B., Khalil, M. Performance of geothermal powerplants (single, dual, and binary) to compensatefor LHC -CERN power consumption: comparative study. Geotherm Energy.2017
- Basaran, A., Orgener, L. Investigation of the effect of different refrigerants on performances of binary geothermal power plants. Energy Conversion and Management. 2013.
- Bambang Pramono, Bambang Pramono. Microearthquake Characteristics in Darajat Geothermal Field, Indonesia. Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005.
- Bemmelen. R. W. V., The Geology of Indonesia. Vol.1A General Geology of Indonesia. 1945
- Cáceres, I. E., Agromayor, R., Nord, L.O. Thermodynamic Optimization of an Organic Rankine Cycle for Power Generation from a Low Temperature Geothermal Heat Source. Department of Energy and Process Engineering Norwegian University of Science and Technology (NTNU) Kolbjørn Hejes v.1B, NO-7491 Trondheim, Norway.2017
- Cegalia, F., Macaluso, A., Marrasso, E., Sasso, M., and Vanoli, L.,. Modelling ofn Polymeric Shell and Tube Heat exchangers for Low-Medium Temperature Geothermal Applications.2020
- DiPippo, R. Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact: Third Edition. Chapter 8. Page 151-179. Elsevier Ltd. ISBN 978-0-08-098206-9. <u>https://doi.org/10.1016/C2014-0-02885-7. 2012</u>.
- DENSO. Service Manual In Line Pumps. Jakarta: Denso Sales Indonesia., hal. 21. 2008.
- 9. Frick, S. Kranz, S., Saadat, A Holistic Design Approach for Geothermal Binary Power Plants with Optimized Net Electricity. Provision. Helmholtz

Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany.2010.

- Frick, S., Saadat, A., Surana, T., Siahaan, E. E., Kupfermann, G. A., Erbas, K., Huenges, E., & Gani, M. A. 2015. *Geothermal Binary Power Plant for Lahendong , Indonesia : A German-Indonesian Collaboration Project.* World Geothermal Congress 2015.
- Juan Pablo Gutierrez, etc. *Thermodynamic Properties for the Simulation of Crude Oil Primary Refining*. Int. Journal of Engineering Research and Applications www.ijera.com. ISSN: 2248-9622, Vol. 4, Issue 4 (Version 1), April 2014, pp.190-194
- Kartanegara, L., Uneputty, H., dan Asikin, S. Tatanan Stratigrafi dan Posisi Tektonik Cekungan Jawa Tengah Utara selama Jaman Tersier, PITIAGI ke-16, Bandung.1987.
- KESDM. Potensi Panasbumi Indonesia : Jilid 2. Direktorat Panasbumi, Direktorat Jendral EBTKE. ISBN 978-602-50394-0-9. 2017.
- 14. Leith, T.O, McColl, J.R., Ryall, M. L. Advanced-Class Boiler Feed pump For 660-MW Generators.2015
- Michel, J.W. and Murphy, R., W. Condenser Design for binary cycle.. Engineering Tecnology Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37819.1980.
- 16. Mota, F. A. S., Carvalho, E. P., & Ravagnani, M. A. S. S. Modeling and Design of Plate Heat exchanger. Heat Transfer Studies and Applications. Chapter 7. Page 165-194. July. 2015.
- Mulyawan, Ricki *Fattah*. Karakteristik Geokimia *Panasbumi* Berdasarkan Data Air Panas Gunung Welirang Provinsi Jawa Timur. UNPAD. 2010.
- Najafabadi, A. Geothermal Power Plant Condensers in the World. World Geothermal Congress : Melbourne, Australia. 2015.
- Nicholson, K. N., Geothermal Fluids. Chemistry and Exploration Techniques. xv + 263 pp. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer-Verlag. 1993.

- Nurhilal, O., Mulyana, C., Suhendi, N., and sapdiana, D.*The simulation of organic rankine cycle power plant with n-pentane working fluid*. American Institute of Physics. 2015.
- Parada, A. F. M. Geothermal Binary Cycle Power Plant Principles, Operation and Maintenance. Geothermal Training Programme Reports. Number 20. Page 443-476. Reykjavik, Iceland. 2013.
- 22. Pulunggono, A., dan S. Martodjojo. Perubahan tektonik Paleogen dan Neogen merupakan peristiwa tektonik terpenting di Jawa, Proceeding geologi dan geoteknik Pulau Jawa sejak akhir Mesozoik hingga Kuarter. 1994.
- Reynolds, M., W. *Thermodynamic Properties In SI*. Departement of Mechanical Engineering Standford University, Stanford CA 94305. 1979.
- 24. Surana, Taufan. Final Report: A Study of Binary Cycle and Kalina Cycle For Geothermal Power Generation. Geothermal Institute. University of Auckland, N Auckland. 1995.
- 25. Sri Rejeki, , Julfi Hadi, Ilan Suhayati. Porosity Study for Detail Reservoir Characterization in Darajat Geothermal Field, West Java, Indonesia. Proceedings World Geothermal Congress 2005. Antalya, Turkey, 24-29 April 2005
- 26. Sri Rejeki, Dave Rohrs, , Gregg Nordquist, and Agus Fitriyanto. Geologic Conceptual Model Update of the Darajat Geothermal Field, Indonesia. Proceedings World Geothermal Congress 2010. Bali, Indonesia, 25-29 April 2010
- Teguh, B.P. Design of n-Butane Radial Inflow Turbine for 100 kW Binary Cycle Power Plant. International Journal of Engineering & Technology IJET-IJENS Vol: 11 No: 06. 2012.
- 28. Teguh, B.P., Himawan, S., Suyanto., Taufan, S., Trisno, M.D. Design and Experimental Validation of Heat exchangers Equipment for 2 kW Model of Binary Cycle Power Plant. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-29 April 2010.

LAMPIRAN

1			Case Name: 2. DIPAKE YG KON, HYBRID I-B UTANE DONE hsc			
3	edford, M	ame Not Available A	Unit Set:	SI		
4	USA		Date/Time:	Wed Mar 30 02:29:08	2022	
6	Material Street				Ruid Package:	Basis-1
8	Material Strea	am: GN-01			Property Package:	Peng-Robinson
9			CONDITIONS			
11		Overal	Vapour Phase	Acuecus Phase		
12	Vapour / Phase Fraction	0.7500 *	0.7500	0.2500		
13	Temperature: (C)	185.0 *	185.0	185.0		
14	Pressure: (kPa)	1118	11 18	11 18		
15	Molar Flow (kgmole/h)	2158	1619	539.5		
16	Mass Flow (kg/h)	3.888e+004 *	2.916e+004	9720		
17	Std Ideal Liq Vol Flow (m3/h)	38.96	29.22	9.740		
18	Molar Enhalpy (kJ/kgmole)	-2.461e+005	-2.370e+005	-2.734e+005		
19	Molar Entropy (kJ/kgmole-C)	147.6	167.5	88.02		
20	Heat Row (kJ/h)	-5.310e+008	-3.835e+008	-1.475e+008		
21	Liq Vol Row @Std Cond (m3/h)	38.31 *	28.73	9.578		
22			PROPERTIES			
23			PROPERTIES			
24		Overal	Vapour Phase	Aqueous Phase		
25	Molecular Weight	18.02	18.02	18.02		
26	Molar Density (kgmole/m3)	0.4142	0.31 13	48.27		
27	Mass Density (kg/m3)	7.461	5.608	869.6		
28	Act. Volume Flow (m3/h)	5211	5200	11.18		
29	Mass Enhalpy (kJ/kg)	-1.366e+004	-1.315e+004	-1.517e+004		
30	Mass Entropy (kJ/kg-C)	8.196	9.299	4.886		
31	Heat Capacity (kJ/kgmole-C)	49.28	37.03	86.01		
32	Mass Heat Capacity (kJ/kg-C)	2.735	2.056	4.774		
33	LHV Molar Basis (Std) (kJ/kgmole)	0.0000	0.0000	0.0000		_
34	HHV Molar Basis (Std) (kJ/kgmole)	4.101e+004	4.101e+004	4.101e+004		
30	HHV Mass Basis (Std) (kJ/kg)	22/6	2276	2276		
30	CO2 Loading					
37	CO2 App ML Con (kgmolemia)					
30	CO2 App W1 Con (kgmol/kg)	0.0000	0.0000	0.0000		
40	EHV Mass basis (50) (KJ/Kg) Photo Excitor B/ol Parks)	0.0000	0.0000	0.0000		
41	Phase Eraction [Mass Basis]	0.7500	0.7500	0.2500		_
42	Phase Fraction (Act, Vol. Basis)	0.9979	0.9979	2 145e-003	1	
43	Mass Exercy (kilko)	674.8	0.0010	2.140000		
44	Partial Pressure of CO2 (kPa)	0.0000				
45	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000		
46	Act. Gas Row (ACT_m3/h)	5200	5200			
47	Avg. Liq. Density (kgmole/m3)	55.40	55.40	55.40		
48	Specific Heat (kJ/kgmole-C)	49.28	37.03	86.01		
49	Std. Gas Flow (STD_m3/h)	5.103e+004	3.827 e+004	1.276e+004		
50	Std. Ideal Liq. Mass Density (kg/m3)	998.0	998.0	998.0		
51	Act. Liq. Row (m3/s)	3.105e-003		3.105e-003		
52	Z Factor		0.9432	6.083e-003		
53	Watson K					
54	User Property					
55	Partial Pressure of H2S (kPa)	0.0000				
55	Cp/(Cp - R)	1.203	1.289	1.107		
57	Cp/Cv	1.185	1.381	1.107		
58	Heat of Vap. (kJ/kgmole)	3.642e+004				
	Kinematic Viscosity (cSt)		2.698	0.1668		
100	Liq. Mass Density (Std. Cond) (kg/m3)	1015	1015	1015		_
61	Liq. Vol. Row (Std. Cond) (m3/h)	38.31	28.73	9.578		
2	Liquid Fraction	0.2500	0.0000	1.000		Dress (of a
63	Aspen rechnology Inc.	Aspen HYS	51 3 Version 8.8 (3	4.0.0.0909)		Page 1 of 3

Licensed to: Company Name Not Available

* Specified by user.

Image: Description Company Name Net Available bad/ork MA Company Name Net Available bad/ork MA Image: Description Image: Description Image: Description Image: Description Image: Description Material Stream: GN-O1 (continued) Property Package: Berls-1 Image: Description Property Package: Berls-1 Property Package: Berls-1 Image: Description Property Package: Berls-1 Property Package: Berls-1 Image: Description Property Package: Description Property Package: Berls-1 Image: Description Property Package: Description Property Package: Berls-1 Image: Description Property Package: Description Property Package: Description Property Package: Description Image: Description Property Package: Description Property Package: Description Property Package: Description Image: Description Property Package: Description Property Package: Description Property Package: Description Image: Practice Description Property Package: Description Property Package: Description Property Package: Description Image: Practice Description Property Package: Description Property Package: Description Description			_		_		_			
Image: Comparison for Marking M	2				- L	Case Name:	2. D	IPAKE YG KON, HYB	RID I-BUTANE DONE.h	sc
Base Partners Data Data Time Wet Mar 30 0229 08 2022 Material Stream: CANON Property Pachage: Base 1 Property Pachage: Percy Pachage: <td>3</td> <td>easpentech</td> <td>Bedford, MA</td> <td>ame Not Available</td> <td>[</td> <td>Unit Set:</td> <td>SI</td> <td></td> <td></td> <td></td>	3	easpentech	Bedford, MA	ame Not Available	[Unit Set:	SI			
Image: Stream: Continued Prior Package: Berts-1 Property Package: Progety Package:<	4		USA		- [Date/Time:	Wed	i Mar 30 02:29:08 202	2	
Ansterial Stream: GN-01 (continued) Paid Padage: Basis 1 Property Package: Party	2									
Image: Progent Package: Perget/Package: Perget/Package: <td>2</td> <td>Motor</td> <td>ial Stree</td> <td>CN 04</td> <td>100</td> <td>(house)</td> <td></td> <td>Fi</td> <td>id Package: Ba</td> <td>sis-1</td>	2	Motor	ial Stree	CN 04	100	(house)		Fi	id Package: Ba	sis-1
Image: Control of the second	a	Water	ial Strea	III. GIN-UI	(00	munueu)		Pr	operty Package: Pe	ng-Robinson
Image: constraint of the state of	9				_		_			
Overall Vapour Phase Agurous Phase Agurous Phase 0 Moder Volume (n.S.Ngmder) 2414 3.212 2.078-002 10 Mase Head of Volge (n.J.Ngmder) 2414 3.212 2.078-002 11 Mase Head of Volge (n.J.Ngmder) 24114 3.212 2.078-002 11 Mase Head of Volge (n.J.Ngmder) 2.0750 0.2020 (n.J.Ngmder) 11 Thermal Conductivy (Wink) 3.173-002 0.6740 (n.J.Ngmder) 12 V.Vacosty (G*) 1.518-002 0.4711 (n.J.Ngmder) 13 Cv (M.NgC) 2.274 1.534 4.313 (n.J.Ngmder) 21 Mase CV (M.MgC) (n.J.Ngmder) 22 CV (Ent Method) (J.Mg-C) 22 CV (Ent Method) (J.Mg-C) </td <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>PROPERTIES</td> <td></td> <td></td> <td></td> <td></td>	10					PROPERTIES				
D Mask Hubers giSAgradal 2414 3.72 2.072e-002 Image: Control (Mar Bank) 10 Mara Heart Vigo, 6.4/kg) 2022 11 Phane Prastion (Mar Bank) 0.7/200 0.7/200 0.2/200 0.2/200 12 Mara Heart Vigo, 4/117 -1/117 13 Thermal Conductity (Wink) 1.518-002 0.4/k11 14 Mara Not (Gene Beal) (LUbp, C) 2.2/24 1.594 4.313 16 Mara CV (Gene Beal) (LUbp, C) 2.2/209 1.449 4.313 16 Mara CV (Gene Beal) (LUbp, C) 17 Mara V at 32.6 (Pa) 18 Mara V at 32.6 (Pa) 18 Mara V at 32.6 (Pa) <td< td=""><td>11</td><td></td><td></td><td>Overall</td><td></td><td>Vapour Phase</td><td>1</td><td>Queous Phase</td><td></td><td></td></td<>	11			Overall		Vapour Phase	1	Queous Phase		
31 Mase Near of Vap. (k.lkg) 2022 4 Phase Praction (k.lkg) 0.7500 0.7500 0.2500 8 Thema Conductivity (Vimik) 4.117 4.117 9 Masonaly (QP) 1.513e.002 0.0461 10 Crigemi-beal (k.lkgrock-C) 40.96 28.72 7769 10 Mason Crigemi-beal (k.lkgrock-C) 41.60 28.82 7769 20 Cv (k.lkgrock-C) 21 Cv (Kit Method) (k.lkgrock-C) 21 Kaw Crigemin 21 Lkg.Vic Rew Method) (k.lkgrock-C) <td>12</td> <td>Molar Volume</td> <td>(m3/komde)</td> <td>2414</td> <td>-</td> <td>3,212</td> <td></td> <td>2.072e-002</td> <td></td> <td></td>	12	Molar Volume	(m3/komde)	2414	-	3,212		2.072e-002		
19 Haor Frantion (Notice Basis) 07500 0.7000 0.2000 Image of the second of t	13	Mass Heat of Vap.	(kJkg)	2022	-					
5 Artion Transm (gme) 4117 4117 (minimized conductivity (Minimized Conductity (Minimized Conductity (Minimized Conductivity (Minimized Condi	14	Phase Fraction (Molar Basi	5]	0.7500		0.7500		0.2500		
B Terms Conducity (Wink) ··· 3.778-002 0.8740 ··· 1 Viscosty (P) ··· 1518-002 0.441 ··· 0 Cr (Beri-Mail) (Julig-C) 2274 1.584 44313 ··· 0 Cr (March (Mink) (Julig-C) 2200 1.469 44313 ··· 2 Man Or (Mink-C) ··· ··· ··· ··· ··· 2 Man Or (Mink-C) ··· ··· ··· ··· ··· 2 Man Or (Mink-C) ··· ··· ··· ··· ··· 2 Man Or (Mink-C) ··· ··· ··· ··· ··· ··· 3 Cov (Fith Mink-C) (Mink ··· <td< td=""><td>15</td><td>Surface Tension</td><td>(dyne/am)</td><td>41.17</td><td></td><td></td><td></td><td>41.17</td><td></td><td></td></td<>	15	Surface Tension	(dyne/am)	41.17				41.17		
17 Monosofy (d ²) ··· 1518-002 0.4811 Image: Constraint of the state of	16	Thermal Conductivity	(W/m-K)			3.173e-002		0.6740		
3 0. Cr (Serri-Steal) 0. Julgmode-Cr 0.000 0.2274 1.594 4.313	17	Viscosity	(dP)			1.513e-002		0.1451		
9 Mass Cr (Serri-Sea) (Mag.C) 227 1544 4333 (Mag.C) 2 Cr (R.Method) (Mag.C) 2309 1489 24313 (Mag.C) 2 Mag.C (R.Method) (Mag.C) (Mag.C) (R.Method) (Mag.C) (Mag.C) (Mag.C) (M	18	Cv (Semi-Ideal) (kJ/kgmole-C)	40.96		28.72		77.69		
20 Or 0,4/kgmche-C) 4100 28.82 77.90 21 Mass Or, (ik/kg-C) 2.309 1.480 4.313 22 Or (Ert. Method) (k/kg-C) 23 Or (Ert. Method) (k/kg-C) 24 Or (Ert. Method) (k/kg-C) 35 Taw P/R # 78.0 (kPa) 36 Taw YR # 78.0 (kPa) <td>19</td> <td>Mass Cv (Semi-Ideal)</td> <td>(kJ/kg-C)</td> <td>2274</td> <td></td> <td>1.594</td> <td></td> <td>4.313</td> <td></td> <td></td>	19	Mass Cv (Semi-Ideal)	(kJ/kg-C)	2274		1.594		4.313		
21 Mass Cv (LMap C) 2.000 1.489 4.131 22 Cv (Ent Method) (LMap C) 23 Cv (Ent Method) (LMap C) 24 CpCV (Ent Method) (LMap C) 26 Reit VP at 78 C (VPa) 27 Lig VA E Row Sam (Bac Cond) (mSh) 38 31 28 73 28 Vascossly Index 29 COMPONENTS MCL R RLOW MCL E FRACTION MASS RLOW MASS RPACTION LQUID VOL LME FRACTION LQUID VOL ME FRACTION LQUID VOL ME FRACTION 1.0000 3.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	20	Cv (kJ/kgmole-C)	41.60		26.82		77.69		
22 Or. Bet. Method) (kJifty-C) 21 Mass Or. Eff. Method) (kJifty-C)	21	Mass Cv	(kJ/kg-C)	2.309		1.489		4313		
21 Mass Cv (Ent. Method) (LI)Rije-(C) 23 CpC/F (Rink Method) 24 CpC/F (Rink Method) 25 Reid VP af 37 8 C (IPa) 26 Vero Sm (Sac Cond) (mSh) 38 31 28.73 9578 37 Compositi Index 38 COMPONENTS MOLAR PLOW MCLE FRACTION MASS FRACTION LOUID VOLUME LOUID VOLUME 39	22	Ov (Ent. Method)	kJ/kgmole-C)							
Hole Control Image <	23	Mass Cv (Ent. Method)	(kJ/kg-C)							
B Real VP att 37.8 C (VP att 37.8 C (VP att 37.8 C)	24	Cp/Cv (Ent. Method)								
Bit Ture VP at S7 8 C (VP at VL U2, VC INVE Sam(Sd.Cond) (m3h)	25	Reid VP at 37.8 C	(kPa)		-					
27 Lik, Vol. Flow - Sun(Sol. Cond) (m3h) 38.31 28.73 9.78 28 Macoshy Index 30 31 COMPOSITION Vacour Fraction 0.7500 * 32 COMPONENTS MQLAR FLOW MQLE FRACTION MASS FRACTION LIQUID VOLUME PROV (m3h) FRACTION 33 420 2168.1986 * 1.0000 * 38880.0000 * 1.0000 * 389858 * 1.0000 * 34 HACO 2168.1986 * 1.0000 * 0.00	26	True VP at 37.8 C	(kPa)		-					
28 Macosky index 20 COMPOSITION 31 COMPOSITION 32 Overall Phase Vapour Fraction 0.750 ° 33 COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW MASS FRACTION LIQUID VOLUME FRACTION 34 ACO 2158.1985 ° 1.0000 ° 38880.0000 ° 1.0000 ° 38880.0000 ° 1.0000 ° 38880.0000 ° 0.0000 ° <td>27</td> <td>Liq. Vol. Flow - Sum(Std. C</td> <td>ond) (m3/h)</td> <td>38.31</td> <td>-</td> <td>28.73</td> <td></td> <td>9.578</td> <td></td> <td></td>	27	Liq. Vol. Flow - Sum(Std. C	ond) (m3/h)	38.31	-	28.73		9.578		
29 30 COMPOSITION 31 32 33 COMPONENTS MOLAR FLOW (kgmoleh) MASS FLOW (kgmoleh) MASS FLOW (kgh) MASS FRACTION (kgh) LIQUID VCLUME FLOW (mSh) LIQUID VCLUME FRACTION 33 F420 2188.1886* 1.0000* 38880.0000* 1.0000* 388585* 1.0000* 34 F420 2188.1886* 1.0000* 0.0000*	28	Viscosity Index								
30 Overall Phase Vapour Fraction 0.7500 * 32 COMPONENTS MQLAR FLOW (kgmolehn) MASS FLOW (kgmolehn) MASS FRACTION (kg/sh) MASS FRACTION (kg/sh) LIQUID VOLUME FLOW (m3h) ERACTION (kg/sh) 35 H2C 2158.1895 * 1.0000 * 38880.0000 * 1.0000 * 389585 * 1.0000 * 36 Hatane 0.0000 * 0.0	29				C	COMPOSITION				
33 34 Vapour Fraction 0.7300 * 33 COMPONENTS MCLAR FLOW (tigmothin) MCLE FRACTION (tigh) MASS FLOW (tigh) MASS FRACTION (tigh) LIQUID VOLUME FRACTION UQUID VOLUME FRACTION 34 HAO 2158.1885 * 1.0000 * 0.0000 0.0000 * 0.0000	30									
AL COMPONENTS MOLAR FLOW (kgmolsh) MOLE FRACTION MASS FLOW (kgh) MASS FRACTION LIQUID VOLUME FLOW (m3h) LIQUID VOLUME FRACTION 31 H2O 2158.1895 * 1.0000 * 38880.0000 * 1.0000 * 38885.5 * 1.0000 * 32 H2D 2158.1895 * 1.0000 * 0.0000 *	31					Overall Phase			Vapour Fr	raction 0.7 500 *
Sector COMPONENTS INDUCT PLOW INDUCT PLOW INSERTION INSERTION IDDUCT OUT 35 H2O 2158.1895 * 1.0000 * 38880.0000 * 1.0000 * 3889585 * 1.0000 * 36 HBLane 0.0000 * </td <td><u></u></td> <td>00000000000</td> <td>100 40 0 0</td> <td></td> <td>TION</td> <td>10.00 0 00</td> <td></td> <td>MARE ERACTION</td> <td>LINE WALLER</td> <td>1001001001001000</td>	<u></u>	00000000000	100 40 0 0		TION	10.00 0 00		MARE ERACTION	LINE WALLER	1001001001001000
M (mgm0m) (mgm	34	COMPONENTS	(komole/h)	NOLE PROC	TION	(kob)		NV35 PRVGTION	EQUID VOLUME	FRACTION
Instrume Consol Consol <thconsol< td=""><td>35</td><td>H2O</td><td>2158.1</td><td>895 1</td><td>0000 -</td><td>38880.000</td><td><u>n - 1</u></td><td>1,0000</td><td>389585 *</td><td>1,000 1</td></thconsol<>	35	H2O	2158.1	895 1	0000 -	38880.000	<u>n - 1</u>	1,0000	389585 *	1,000 1
Indiana 0.0000 *	36	LButane	2100.1	0001 0	0000 '	0.000	ñ.	0.0000	00000 *	0,0000 *
Image: Section of the sectio	37	Propage	0.0	000 * 0	0000 *	0.000	õ · l	0.0000	00000 *	0.0000 *
Instance Dotation	38	n-Butane	0.0	000.00	0000 '	0.000	<u>.</u>	0.0000	00000 *	0.0000 *
40 n-Pentane 0.0000 ⁺ 0.000	39	i-Pentane	0.0	000 * 0	0000 '	0.000	0.1	0.0000	00000 *	0.0000 *
Instal 2158.1895 1.0000 38880.0000 1.0000 389855 1.0000 Image: Particle of the state of the	40	n-Pentane	0.0	000 * 0	.0000	0.000	0.	0.0000	0.0000 *	0.0000 *
All Vapour Phase Phase Fraction 0.7500 44 COMPONENTS MOLAR FLOW (kgmoleh) MOLE FRACTION (kgh) MASS FLOW (kgh) MASS FRACTION (kgh) LIQUID VOLUME FLOW (m3h) LIQUID VOLUME FRACTION 48 H2O 1618.6421 1.0000 29000 0.0000	41	Total	2158.1	895 1	.0000	38880.000	0	1.0000	389585	1.0000
43 Under Frage Phase Fraction 0.7500 44 COMPONENTS MOLAR FLOW (kgmoleh) MOLE FRACTION (kgmolek) MASS FLOW (kgh) MASS FRACTION (kgh) LIQUID VOLUME FLOW (m3h) LIQUID VOLUME FRACTION 46 H2O 1618.6421 1.0000 29160.0000 1.0000 292188 1.0000 47 H3tane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 48 Propane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 49 n-8utane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 49 n-8utane 0.0000	42					la nous Dhaara	-			
44 COMPONENTS MALAR FLOW (kgmoleh) MOLE FRACTION (kgmb) MASS FLOW (kgmb) MASS FRACTION (kgmb) LIQUID VOLUME FLOW (m3h) LIQUID VOLUME FRACTION 45 H2O 1618.6421 1.0000 29160.0000 1.0000 292188 1.0000 47 I-Butane 0.0000 0.00	43					apour Phase			Phase Hi	action 0.7500
45 (kgmole/h) (kgh) FLOW (m3/h) FRACTION 40 H2O 1618.6421 1.0000 29160.0000 1.0000 292188 1.0000 47 i-Butane 0.0000	44	COMPONENTS	MOLAR FLO	W MOLE FRAC	TION	MASS FLOW		MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME
48 H2O 1618.6421 1.0000 29160.0000 1.0000 292188 1.0000 47 i-Butane 0.0000	45		(kgmole/h))		(kg/h)			FLOW (m3h)	FRACTION
47 Hautame 0.0000 <td>46</td> <td>H20</td> <td>1618.6</td> <td>421 1</td> <td>.0000</td> <td>29160.000</td> <td>0</td> <td>1.0000</td> <td>292188</td> <td>1.0000</td>	46	H20	1618.6	421 1	.0000	29160.000	0	1.0000	292188	1.0000
49 Propane 0.0000 <td>47</td> <td>i-Butane</td> <td>0.0</td> <td>000 0</td> <td>0000</td> <td>0.000</td> <td>0</td> <td>0.0000</td> <td>00000</td> <td>0.0000</td>	47	i-Butane	0.0	000 0	0000	0.000	0	0.0000	00000	0.0000
n-Butane 0.0000 0.000	48	Propane	0.0	000 0	.0000	0.000	0	0.0000	0.0000	0.0000
No. FPensane 0.0000 </td <td>49</td> <td>n-Butane</td> <td>0.0</td> <td>000 0</td> <td>.0000</td> <td>0.000</td> <td><u> </u></td> <td>0.0000</td> <td>00000</td> <td>0.0000</td>	49	n-Butane	0.0	000 0	.0000	0.000	<u> </u>	0.0000	00000	0.0000
In-Fernane 0.0000 0.0	80	+ Pentane	0.0	000 0	00000	0.000	<u>_</u>	0.0000	00000	0.0000
International Internat	91	Total	0.0	000 0	0000	0.000	<u>~</u>	0.0000	00000	0.0000
Amplify Phase Fraction 0.2500 Mole Mole Fraction Mass Flow (kgmole/h) Mass Flow (kgmole/h) Mass Flow (kgmole/h) LiQuiD VoluMe FloW (m3h) LiQUID VoluMe FloW (m3h) LiQUID VoluMe FloW (m3h) LiQUID VoluMe FloW (m3h) 7 H2O 539.5474 1.0000 9720.0000 1.0000 97.396 1.0000 8 i Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9 Propane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9 I-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 9 i-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 9 i-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000	9 2	TO BE	1618.6	1 1		29160.000	~	1.0000	292188	1.000
65 COMPONENTS MOLAR FLOW (kgmole/h) MOLE FRACTION MASS FLOW (kg/h) MASS FRACTION LIQUID VOLUME FLOW (m3h) LIQUID VOLUME FRACTION 97 H2O 539.5474 1.0000 9720.0000 1.0000 97396 1.0000 98 i-Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 99 Propane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 90 n-Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 91 i-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 92 n-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	54				A	queous Phase			Phase Fr	action 0.2500
98 (kgmole/h) (kg/h) FLOW (m3h) FRACTION 97 H2O 539.5474 1.0000 9720.0000 1.0000 97396 1.0000 98 i-Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 99 Propane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 90 n-Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10 n-Butane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10 n-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	66	COMPONENTS	MOLAR FLO	W MOLE FRAC	TION	MASS FLOW		MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME
97 H2O 539.5474 1.0000 9720.0000 1.0000 97396 1.0000 98 i-Butane 0.0000	56		(kgmole/h))		(kg/h)			FLOW (m3h)	FRACTION
98 i-Butane 0.0000 <td>57</td> <td>H20</td> <td>539.5</td> <td>474 1</td> <td>.0000</td> <td>9720.000</td> <td>0</td> <td>1.0000</td> <td>9.7396</td> <td>1.0000</td>	57	H20	539.5	474 1	.0000	9720.000	0	1.0000	9.7396	1.0000
90 Propane 0.0000 <td>68</td> <td>i-Butane</td> <td>0.0</td> <td>000 0</td> <td>0000</td> <td>0.000</td> <td>0</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td>	68	i-Butane	0.0	000 0	0000	0.000	0	0.0000	0.0000	0.0000
00 n-Butane 0.0000 <td>59</td> <td>Propane</td> <td>0.0</td> <td>000 0</td> <td>.0000</td> <td>0.000</td> <td>0</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td>	59	Propane	0.0	000 0	.0000	0.000	0	0.0000	0.0000	0.0000
61 i-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000 62 n-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000	60	n-Butane	0.0	000 0	0000	0.000	0	0.0000	0.0000	0.0000
12 n-Pentane 0.0000 0.0000 0.0000 0.0000 0.0000	61	i-Pentane	0.0	000 0	.0000	0.000	0	0.0000	0.0000	0.0000
	62	n-Pentane	0.0	000 0	0000	0.000	0	0.0000	0.0000	0.0000

1	<u> </u>		Case Name:	2. DIPAKE YG K	ON, HYBRID I-BU	TANE DONE.hsc	
3	Company Name Not Availa Bedford, MA	ible	Unit Set:	SI			
4	USA		Date/Time:	Wed Mar 30 02:2	9.08 202 2		
6	Matarial Streams Ch	04 /0	ontinued	、 、	Ruid Packa	ge: Basis-1	
8	Material Stream: GN	I-01 (C	ontinuea)	Property Pa	ckage: Peng-Robins	on
9 10			COMPOSITIO	N			
11		Aqueo	us Phase (cor	nt in ue d)		Phase Fraction	0.2500
13	Total 539.5474	1.0000	9720.0	000	1.0000	9.7396	1.0000
14 15			K VALUE				
16	COMPONENTS	MIX	ED 1.000	LIGI	нт	HEAVY	1 000
18	i-Butane						
19	Propane						
20	n-Butane						
21	- Pentane						
23	11-Period N						
24		U	NIT OPERATIO	ONS			
25	FEED TO		PRODUCT FROM	4	LO	GICAL CONNECTION	
27	Pipe segment: PIPE-101						
28			UTILITIES				
30		(Nout	lites reference this	stream)			
31		P	ROCESSUTIL	ITY			
33			DVNAMICS				
34 35	Pressure Specification (inactive) 1118kPa		DTNAMICS				
36	Flow Specification (Active) Molar:	2158 k	gmole/h Mass:	3.888	se+004 kg/h * S	td Ideal Lig Volume:	38.96 m3/h
37 38			User Variable	5			
39 40			NOTES				
41							
42 43			Description				
44							
45							
47							
48							
49							
51							
52							
53							
94 65							
56							
57							
58 90							
00							
61							
82	Asnen Tashashau ing	on on Live	VS Marrian 8.0	(34.0.0.9000)			2012
63	Aspen Technology Inc. A	ispen MYS	5.8 noisney 6.1	(34.0.0.8909)		Pa	age 3 01 3

Licensed to: Company Name Not Available

Specified by user.

1	<u> </u>		Case Name: 2. DIPAKE YG KON, HYBRID HBUTANE DONE had			
3	easpentech Bedford, MA	erte Not Avalable	Unit Set:	9		
4	USA		Date/Time:	Wed Mar 30 02:29:58 2	022	
6					Fluid Package:	Basis-1
7	Material Strea	m: GN-02			Property Package:	Pang-Robinson
9			CONDITIONS			
10		Ourst	Vacour Divers	Access of Disease		_
- 1	Vancer / Dhase Erection	0.0000 *	0.0000	0.4000		
13	Temperature: (C)	100.0 *	188.0	188.0		
14	Pressure: (kPa)	1195	1195	1195		
15	Molar Flow (kgmoleih)	1998	1199	799.3		
16	Mass Flow (kgh)	3.600e+004 *	2.160e+004	1.440e+004		
17	Std Ideal Liq Vol Flow (m3ih)	36.07	21.64	14.43		
18	Molar Enthalpy (kJikgmole)	-2.514e+005	-2.369e+005	-2.731e+005		
19	Molar Entropy (kJ/kgmole-C)	135.7	167.1	66.50		
20	Heat Flow (kJh)	-5.023e+008	-2.840e+008	-2.183e+008		
21	Liq Vol Flow (gStd Cond (m3/h)	35.47 *	21.28	14.19		
22			PROPERTIES			
20			PROFERINES			
21		Overal	Vapour Phase	Aqueous Phase		
26	Molecular Weight	18.02	18.02	18.02		
28	Molar Density (kgmole/m3)	0.5500	0.3315	48.10		
27	Mass Density (kg/m3)	9.909	5.973	006.5		
20	Act. Volume Flow (m3h)	3633	3616	16.62		
20	Mass Enthalpy (kJ/kg)	-1.3956+004	-1.315e+004	-1.516e+004		
-	Mass Entropy (kUkg-C)	7.534	9.278	4.917		
21	Heat Capacity (KJ/kgmole-C)	56.88	37.20	86.40		
	Mass Heat Capacity (kJkg-C)	3.157	2.065	4.796		
	LHV Molar Basis (Std) (kJ/kgmole)	0.0000	0.0000	0.000		
-21	HHV Motar Basis (5td) (KJ/kgmole)	4.10104004	4.101e+004	4.1016+004		
	(COLLander	4/9	22/10	22/0		
	CC2 Are M. Con Remainin 31					
5	CO2 Are WT Cos (kemaika)					
	LHV Mana Basis (Std) (k.ika)	0.0000	0.0000	0.0000		
40	Phase Fraction [Vol. Basis]	0.6000	0.6000	0.4000		
41	Phase Fraction Mass Basis!	0.6000	0.6000	0.4000		
42	Phase Fraction (Act. Vol. Basis)	0.9954	0.9954	4.574e-003		
43	Mass Evergy (kJ/kg)	576.9				
-64	Partial Pressure of CO2 (kPa)	0.0000				
45	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000		
-46	Act. Gas Flow (ACT_m3/h)	3616	3616			
42	Avg. Liq. Density (kgmole/m3)	55.40	55.40	55.40		
48	Specific Heat (kJ/kgmole-C)	56.88	37.20	86.40		
49	Std. Gas Flow (STD_m3/h)	4.725e+004	2.835e+004	1.890e+004		
52	Std. Ideal Liq. Mass Density (kg/m3)	998.0	998.0	998.0		
\$1	Act. Liq. Flow (m3/k)	4.616e-003		4.616e-003		
2	Z Factor		0.9403	6.481e-003		
2	Watson K					
54	User Property					
	Partial Pressure of HQS (kPa)	0.0000				
	Cp(Cp - R)	1.171	1.208	1.106		
H	CPCV	1.123	1.305	1.106		
	reat of vap. (kJikgnole)	3.6236+004				
H	Kinematic Viscosity (cSt)		2.551	0.1647		
	Lie Vid Fire (Rd Cond) (kgm3)	1015	1015	1015		
	Leg. vol. How (sto. cond) (mSh)	20.47	21.20	14.19		
60	Asnen Technology Inc	Acces HM	VS Marsing 8 P /3	4 0 0 89001		Page 1 of 2
	Licensed to Company Name Not Available	Aspendito	1011010101			 Consider the unit

1	0		Commence Mark Resultable			Case Name: 2. DIP ARE YORON, HYB RID I-BUTANE DONE his:				
3	(Paspentech	Bedford, M	ame No A	X A Vallable		Unit Set: 5	81			
4	usperiteer	USA			ſ	Date/Time: N	Wed	Mar 30 02:29:58 2 02	2	
6	Mata			CN 02/	-	(housed)		Flu	id Package: E	ka sis-1
7	Mater	nal Strea	am:	GN-02 (CC	ontinuea)		Pro	perty Package: F	Peng-Robinson
9						PROPERTIES				
10				Overall		Vapour Phase	A	u cous Phase		
12	Molar Volume	(m3/kgmole)		1.818		3.016		2.079e-002		
13	Mass Heat of Vap.	(kJ/kg)		20/11		-		-		
14	Phase Fraction Molar Bas	(s)		0.6000		0.6000		0.4000		
15	Surface Tension	(dyneitam)		40.50		_		40.50		
16	Thermal Conductivity	(Wim-K)		_		3.201e-002		0.6723		
17	Vis casily	(cP)		_		1.523e-002		0.1427		
18	Cv (Semi-Ideal) ((kJ/kgmale-C)		48.57		28.89		78.08		
19	Mass Cv (Semi-Ideal)	(kJkg-C)		2.696		1.603		4.334		
20	Ov ((kJ/kgmale-C)		50.65		26.87		78.08		
21	Mass Cv	(kJkg-C)		2.812		1.491		4.334		
22	Ov (Ent. Method) ((kJ/kgmale-C)		-		- 1		-		
23	Mass Cv (Ent. Method.)	(kJkg-C)		_	_	_		_		
24	Cp/Cv (Ent. Method)			_	_	_		_		
25	Reid VP at 37.8 C	(iPa)		_				_		
26	True VPat 37.8 C	(vPa)		_						
27	Lig. Vol. Flow - Sum(Std. C	and) (m3/h)		35.47		21.28		14.19		
28	Visicosity Index			_		_		_		
29					c	OMPOSITION				
30					_					
31					C	verali Phase			Vapour	Fraction 0.6000 *
32							_			
33	COMPONENTS	MOLAR FL	w I	MOLE FRACTIO	ON	MASS FLOW		MASS FRACTION	LIQUEVOLUME	LIQUE VOLUME
34	100	0.gmain	<u>v</u>			(kgin)			PLOW (main)	I CONTRACTION
30	H2O	1998.	3236 -	1.00	00.	36000.000	0-	1.0000	36.0726	10000
30	Houtane	0.	0000-	0.00	00-	0.000	0-	0.0000	0.0000	0.0000
	Propane	0	0000	0.00	00	0.000	0.1	0.0000	0.0000	1 0,000 1
30	Declare	0	0000-	0.00	00.	0.000	0.1	0.0000	0.0000	0.0000 *
40	n Partana	0	0000	0.00	no •	0.000	n •	0.0000	0.0000	· 0.0000 ·
41	Total	19.98	1216	1.00	00	38000.000	0	1,0000	36.0726	1,0000
42			1000						000100	
43					v	apour Phase			Phase F	haction 0.6000
44	COMPONENTS	MOLAR FL	w	MOLE FRACTION	ON	MASS FLOW		MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME
45		(kgm ale /	Û.			(kgh)			FLOW (m3/h)	FRACTION
46	H2O	1198.	9941	1.00	000	2 16 00.0 00	0	1.0000	21.6436	1.0000
47	i-Butane	0	0000	0.00	00	0.000	0	0.0000	0.0000	0.0000
48	Propane	0	0000	0.00	000	0.000	0	0.0000	0.0000	0.0000
49	n-Butane	0.	0000	0.00	000	0.000	0	0.0000	0.0000	0.0000
50	iPentane	0	0000	0.00	00	0.000	0	0.0000	0.0000	0.0000
51	n-Pentane	0.	0000	0.00	00	0.000	0	0.0000	0.0000	0.0000
52	Total	1198.	9941	1.00	000	21600.000	0	1.0000	21.6436	1.0000
53 54					A	queous Phase			Phase P	fraction 0.4000
55	COMPONENTS	MOLAR FL	w	MOLE FRACTIO	ON	MASS FLOW		MASS FRACTION	LIQUE VOLUME	LIQUID VOLUME
56	100	(kgm de /	9		200	(kgh)		10000	FLOW (m3/h)	HNACTION
97 60	HEO .	799.	3294	1.00	00	14400.000	0	1.0000	14.4291	1.0000
00	Produine	0.	0000	0.00	00	0.000		0.0000	0.0000	0.0000
00	- Optime	0	0000	0.00	00	0.000		0.0000	0.0000	0.000
61	Dentaria	0	0000	0.00	00	0.000	0	0.0000	0.0000	0.0000
62	n-Bartana	0	0000	0.00	ne	0.000		0.0000	0.0000	0.000
60	Aspen Technology Inc			Across M	VEV	S Version 8 8 /24	4.0.0	189091	0.0000	Page 2 of 2
100	CARDINE CONTRACTOR INC.	N		COLUMN 1	1.01	- Yelaulo.0134	1.0.0			Fage 2013

License d.to: Company Name Not Available

*Specified by user.

4 I I		Company Name No.	Avaiable	Case Name:	2. DIPAKE YG K	ON, HYBRID I-BL	ITANE DONE.hs	c				
1	(Paspentech	Bedford, MA	- Available	Unit Set:	SI							
ł		USA		Date/Time:	Wed Mar 30 02:2	9:58 2022						
T	Motoria	Stream	CN 02 (0	ontinued	`	Fluid Packa	ige: Bas	is-1				
1	Waterra	a Stream:	GN-02 (C	ontinuea)	Property Pa	ackage: Pen	g-Robins	son			
				COMPOSITIO	N							
1			Aqueo	us Phase (cor	tinued)		Phase Frac	tion	0.400			
3	Total	799.3294	1.0000	14400.0	000	1.0000	14.4291		1.000			
4 5				K VALUE								
6	COMPONEN	лs	MIX	ED	LIG	IT	ł	HEAVY				
7		H20		1.000					1.0			
8		Propane										
0		n-Butane										
1		i-Pentane										
2		n-Pentane										
4			U	NIT OPERATIO	ONS							
5	FEED TO)		PRODUCTERON	4	L	DGICAL CONNE	CTION				
6	Pipe Segment:	PIPE-102										
8				UTILITIES								
9			(Nouti	ilities reference this	stream)							
0			PI	ROCESS UTIL	ITY							
22												
33				DYNAMICS								
4	Descure Consideration day	110510		DINAMO								
<u></u>	Flow Specification (Ac	tive) Molar:	1998 k	gmole/h Mass	3.600	e+004 kg/h * 5	td Ideal Lig Volu	me:	36.07 m3			
~	Flow Specification (Active) Molar: 1998 kgmole/h Mass: 3.600e+004 kg/h * Std Ideal Liq Volume: 36.07 m3/h											
97	· · · · · · · · · · · · · · · · · · ·		User Variables									
8 8				User Variable	0							
8 8 9 0	· · · · · · · · · · · · · · · · · · ·			NOTES	•							
30 37 38 39 40 41				NOTES	•							
30 37 38 39 40 41 41 42 43				NOTES Description								
30 37 38 39 40 41 42 43 44				NOTES Description	•							
37 38 39 40 41 42 43 44 45 45				NOTES Description	•							
20 27 28 29 40 41 42 43 44 45 46 47				NOTES Description	•							
20 37 38 39 40 41 42 43 44 45 46 47 48				NOTES Description	•							
27 27 28 29 20 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14 15 16 17 16 16 17 16 16 16 16 16 16 16 16 16 16				NOTES Description	•							
37 38 39 40 41 42 43 44 45 46 47 48 49 90 51				NOTES Description	•							
27 35 39 40 41 42 43 44 45 46 40 55 1 52 51 51 51 51 51 51 51 51 51 51 51 51 51				NOTES Description	•							
				NOTES Description	•							
				NOTES Description	•							
				NOTES Description	•							
				NOTES Description	• 							
				NOTES Description	• 							
				NOTES Description	• 							
				NOTES Description	• 							
			App 1100	NOTES Description								

1			Case Name: 2. DIPAKE YG KON, HYBRID I-BUTANE DONE hac				
2	Company N Bedford, M	lame Not Available A	Unit Set:	SI			
4	aspentech USA		Date/Time:	Wed Mar 30 02:30:15 2	022		
5 6					Buid Backager	Basis_1	
7	Material Strea	am: GN-03			Property Package:	Pano-Robinson	
9			CONDITIONS				
10			CONDITIONS				
11	Manage 1 Phone Frontier	Overal	Vapour Phase	Aqueous Phase		-	
12	Vapour / Phase Fraction	0.5500 *	0.5500	0.4500			
10	Pressure: (C)	100.0	100.0	100.0			
15	Molar Flow (komole/b)	1359	747.4	6115			
16	Mass Flow (koh)	2.448e+004 *	1.346e+004	1.102e+004			
17	Std Ideal Lig Vol Flow (m3/h)	24.53	13.49	11.04			
18	Molar Enthalpy (kJ/komole)	-2.532e+005	-2.369e+005	-2.731e+005			
19	Molar Entropy (kJ/kgmole-C)	131.8	167.1	88.58			
20	HeatFlow (kJ/h)	-3.440e+008	-1.770e+008	-1.670e+008			
21	Lig Vd Flow @StdCond (m3/h)	24.12 *	13.27	10.86			
22			PROPERTIES				
23			PROPERTIES				
24		Overall	Vapour Phase	Aqueous Phase			
25	Molecular Weight	18.02	18.02	18.02			
26	Molar Density (kgmole/m3)	0.5994	0.3315	48.10			
27	Mass Density (kg/m3)	10.80	5.973	866.5			
28	Act. Volume Flow (m3/h)	2267	2254	1271			
29	MassEnthalpy (kJ/kg)	-1.405e+004	-1.315e+004	-1.516e+004			
30	Mass Entropy (kJkg-C)	7.316	9.278	4.917			
31	Heat Capacity (kJ/kgmole-C)	59.34	37.20	8640			
32	Mass Heat Capacity (KJKg-C)	3.294	2.065	4.796			
30	LHV Motar Basis (30) (Kakgmole)	4.10100004	4.10100004	4 10100004			
35	HHV Motar Basis (Sid) (KJKgmow)	4.10101004	4.10184004	4.10184004			
36	CO2 Loading	2210	2210	22.10			
37	CO2 App ML Con (kamole/m3)						
38	C Q2 App WT Con (kamol/ka)						
39	LHV Mass Basis (Std) (kJ/kg)	0.0000	0.0000	0.0000			
40	Phase Fraction [Vol. Basis]	0.5500	0.5500	0.4500			
41	Phase Fraction (Mass Basis)	0.5500	0.5500	0.4500			
42	Phase Fraction (Act. Vol. Basis)	0.9944	0.9944	5.608e-003			
43	MassExergy (kJ/kg)	541.3					
44	Partal Pressure of CO2 (kPa)	0.0000					
45	Cost Based on Row (Cost/s)	0.0000	0.0000	0.0000			
46	Act. Gas Flow (ACT_m3/h)	2254	2254				
47	Avg. Liq. Density (kgmole/m3)	55.40	55.40	55.40			
48	Specific Heat (kJ/kgmole-C)	59.34	37.20	86.40			
49	Std. Gas Flow (STD_m3/h)	3.213e+004	1.767e+004	1.446e+004			
80	Act Lie Dev	0.899	998.0	0.899			
91 (22)	Act. Uq. How (m3/s)	3.5316-003		3.5310-003			
8	Watace K		0.9403	0.4610-003			
51	User Property						
35	Partal Pressure of H2S (kPa)	0.0000					
56	Cp/(Cp - R)	1.163	1.288	1,106			
57	Cp/Cy	1.107	1.385	1.106			
58	Heatof Vap. (k./komole)	3.623e+004					
59	Kinematic Viscosity (cSt)		2.551	0.1647			
60	Lig. Mass Density (Std. Cond) (kg/m3)	1015	1015	10 15			
61	Lig. Vol. Flow (Std. Cond) (m3/h)	24.12	13.27	10.86			
62	Liquid Fraction	0.4500	0.0000	1.000			
63	Aspen Technology Inc.	Aspen HYS	SYS Version 8.8 (3	4.0.0.8909)		Page 1 of 3	

Licensed to: Company Name Not Available

* Specified by user.

1					Case Name: 2. DIPAKE VG KON, HYBRID I-BUTANE DONE had				
2		Company N	ame Not Available	- H					-
3	Caspentech	Bedford, MA	×	- H	Unit Set:	SI			
5				- 1	Date/Time: Wed Mar 30 02:30:15 2022				
6							Fluid Package:	Basis-1	
7	Mater	ial Strea	am: GN-03	(CC	ontinued)		Property Package:	Peng-Robinson	
9							repart from the second s		
10					PROPERTIES		_		
11			Overall		Vapour Phase	Aqueous Phase			
12	Molar Volume	(m3kgmole)	1.668		3.016	2.079e-002			_
13	Mass Heatof Vap. Phase Eraction Molar Basi	(KJ/Kg)	2011	+	0.5500	0.4500		-	\neg
15	Surface Tension	(dyne/cm)	40.50			40.50			
16	Thermal Conductivity	(W/m-K)			3.201e-002	0.6723			
17	Macosity	(cP)			1.523e-002	0.1427			
18	Cv (Semi-Ideal) (kJ/kgmole-C)	51.03		28.89	78.08			
19	Mass Cv (Semi-Ideal)	(kJ/kg-C)	2.832	-	1.603	4.334			
20	Ov (kJ/kgmole-C)	53.63		26.87	78.08			_
21	Mass Cv	(kJ/kg-C)	2.977		1.491	4.334		_	_
22	Cv (Ent. Method) (kJ/kgmole-C)		+					\neg
24	Co/Cy/Ent_Method)	(KUNG-C)		\vdash					\neg
25	Reid VP at 37.8 C	(kPa)		\vdash					
26	True VP at 37.8 C	(kPa)							
27	Liq. Vol. Flow - Sum(Std. C	ond) (m3h)	24.12		13.27	10.86			
28	Macosity Index								
29				c	OMPOSITION				
30				_					\neg
32				0	Overall Phase		Vapo	ur Fraction 0.550	×۰
33	COMPONENTS	MOLAR FLO	W MOLE FRAC	TION	MASS FLOW	MASS FRACTIO	N LIQUID VOLUM	E LIQUID VOLUM	ε
34		(kgmole/h)		(kg/h)		FLOW (m3/h	FRACTION	
35	H20	1358.8	800 ° 1.	0000 *	24480.000	0* 1000	0 24.52	94 * 1.000	<u>,0 °</u>
36	i-Eutane	0.0	000.000	0000 '	0.000	0.000	0.00	0.000	<u>,0 °</u>
37	Propane		200 1 0	0000 *	0.000	01 000	0.0	0.000	<u>.</u>
39	i-Pentane	0.0	000 1 0	0000 *	0.000	0* 0000	0.0	0.000	ñ.
40	n-Pertane	0.0	000 * 000	0000 *	0.000	0.000	0.00	0.000	x0 ·
41	Total	1358.8	3600 1.	0000	24480.000	0 1000	24.52	94 1.000	0
42				×	apour Phase		Phas	Fraction 0.550	<u>"</u>
43									_
45	COMPONENTS	(kgmole/h	MOLE FRAC	ION	(ka/h)	MASS FRACTIO	FLOW (m3/h	FRACTION	-
46	H20	747.3	¥30 1.	0000	13464.000	0 1.000	0 '3.49	12 1.000	20
47	i-Eutane	0.0	0000	0000	0.000	0 0.000	0.00	00.000	0
48	Propane	0.0	0000	0000	0.000	0 0.000	0.00	0.000	20
49	n-Butane	0.0	0000	0000	0.000	0 0000	0.00	00 0.000	<u>></u>
50	E-Pentane	0.0	000 0	0000	0.000	0 0000	0.00	0.000	<u>_</u>
52	Total	747 9	730 1	0000	13464.000	0 1000	0.00	1000	<u>_</u>
53		1414							
54				A	queous Phase		Phas	e Fraction 0.450	^
55	COMPONENTS	MOLAR FLO	W MOLE FRAC	TION	MASS FLOW	MASS FRACTIO	N LIQUID VOLUM	E LIQUID VOLUM	E
36	H20	(Ngmole/h	4970 1	0000	(kg/h)		PLOW (#3/	PRACTION 4 000	_
58	i-Eutane	011.0	1.	0000	0,000	0 0000	0 000	00 0.000	<u>_</u>
59	Propane	0.0	000 0	0000	0.000	0 0000	0.00	0.000	5
60	n-Butane	0.0	0000 0.000	0000	0.000	0 0000	0.00	00.000	x
61	i-Pentane	0.0	0000	0000	0.000	0 0.000	0.00	0.000	00
62	n-Pertane	0.0	0000	0000	0.000	0 0.000	0.00	000.000	20
63	Aspen Technology Inc.		Aspen	HYSY	S Version 8.8 (34	(000800.0		Page 2 of	3

1	<u> </u>		Case Name: 2. DIPAKE YG KON, HYBRID I-BUTANE DONE hsc					
3	edford, MA	Available	Unit Set:	SI				
4	USA		Date/Time:	Wed Mar 30 02:3	0:15 2022			
6 7	Material Stream:	GN-03 (c	ontinued	\	Fluid Packa	ge: Basi	8-1	
8	material of earn.	011-00 (0	ontinueu	,	Property Pa	ckage: Penç	-Robinson	
9 10			COMPOSITIO	N				
11 12		Aqueo	us Phase (con	ntinued)		Phase Frad	tion 0.4500	
13	Total 611.4870	1.0000	1 1016.0	000	1.0000	11.0382	1.0000	
15			K VALUE					
16	COMPONENTS	MIX	ED 1.000	LIG	IT	н	1.000	
18	i-Butane				_			
19	Propane				-			
20	n-Butane				-			
21	-Pentane							
23		U		ONS				
24 25	FEED TO		PRODUCTI FROM	4	LC	GICAL CONNE(CTION	
26	Pipe Segment: PIPE-103							
27 28			UTILITIES					
29		(Nout	lities reference this	steam)				
30 31		P	ROCESS UTIL	ſΓY				
32								
33 34			DYNAMICS					
35 36	Pressure Specification (Inactive) 1195kPa Flow Specification (Active) Mdar:	1359 k	amole/h Mass	2.448	ke+004 ko/h * S	td ideal Lig Volu	me: 24.53 m3/h	
37			User Variable	s				
39			NOTIES					
40 41								
42			Description					
43 44								
45								
46								
48								
49								
50								
51								
53								
54								
55								
30 57								
58								
59								
80								
62								
63	Aspen Technology Inc.	Aspen HYS	YS Version 8.8	(34.0.0.8909)			Page 3 of 3	
	Licensed to: Company Name Not Available						* Specified by user.	