DAFTAR ISI

Lembar Pengesahan	i
Pernyataan Keaslian Karya Ilmiah	ii
Ucapan Terimakasih	iii
Daftar Isi	v
Glossary	xxix
Abstrak	xxxi

BAB 1. PENDAHULUAN

1.1. Latar Belakang Permasalahan	1
1.1.1. Pola Cekungan Kendeng	1
1.1.2. Potensi Migas Cekungan Kendeng	5
1.2. Tujuan Penelitian	7
1.3. Batasan Penelitian	8
1.4. Lokasi Penelitian	8
1.5. Cakupan Penelitian	11
1.6. Hasil penelitian terdahulu	13
1.6.1. Tektonik dan Struktur	13
1.6.2. Stratigrafi	19
1.6.3. Potensi Migas	25
1.7. Hipotesis	34
1.8. Hasil Penelitian	34
1.8.1. Kebaruan (<i>Novelty</i>)	34
1.8.2. Manfaat	35
1.9. Organisasi Disertasi (Outline)	36

BAB 2. METODE PENELITIAN

2.1.	Skema Penelitian	38
2.2.	Metoda Perolehan data	46
2.2	.1. Pengambilan Data Geologi Permukaan	46
2.2	.2. Pengambilan Data Geofisika	48

2.2.3. Pengambilan Data Geokimia	52
2.3. Teori Dasar Analisis Konfigurasi Cekungan	54
2.3.1. Analisis Struktur Geologi Permukaan	54
2.3.1.1. Konsep Struktur Geologi	54
2.3.1.2. Sesar Anjak	57
2.3.1.3. Sistem Fold Thrust Belt	61
2.3.2. Analisis Geofisika Bawah Permukaan	63
2.3.2.1. Metoda Gravity	65
2.3.2.1.1. Anomali Gravitasi	68
2.3.2.1.2. Koreksi Data Gravitasi	70
2.3.2.1.3. Penentuan Densitas Batuan	76
2.3.2.2. Metoda Geomagnetik	78
2.3.2.2.1. Konsep Metoda Geomagnetik	78
2.3.2.2.2. Medan Magnet Bumi	82
2.3.2.2.3. Variasi Medan Magnet Bumi	84
2.3.2.2.4. Koreksi Data Geomagnetik	85
2.3.2.2.5. Penentuan Suseptibilitas Batuan	86
2.3.2.3. Pemisahan Anomali Lokal dan Regional	88
2.3.2.4. Analisis Derivative	91
2.3.2.5. Pemodelan Geofisika	100
2.4. Analisis Batuan Induk	103
2.4.1. Analisis Jumlah (Kuantitas) Material Organik	105
2.4.2. Analisis Kualitas Material Organik	107
2.4.3. Kematangan Material Organik	110
2.4.4. Analisis Biomarker	110
2.4.4.1. Biomarker Penunjuk Kematangan	111
2.4.4.2. Biomarker Penunjuk Lingkungan Pengendapan	112
2.5. Analisis Batuan Reservoar	117

BAB 3. KAJIAN GEOLOGI

3.1.	Evolusi Tektonik Regional	119
3.2.	Geologi Regional Jawa Bagian Timur	126

3.2.1. Evolusi Tektonik Jawa Bagian Timur	130
3.2.2. Struktur Regional Jawa Bagian Timur	135
3.2.3. Stratigrafi Regional Jawa Bagian Timur	136
3.2.3.1. Stratigrafi Pegunungan Selatan	138
3.2.3.2. Stratigrafi Cekungan Kendeng	139
3.2.3.3. Stratigrafi Cekungan Rembang (Sunda Shelf)	139
3.3. Cekungan Kendeng	141
3.3.1. Geologi Regional Cekungan Kendeng	141
3.3.2. Potensi Migas Cekungan Kendeng	146

BAB 4. MODEL STRUKTUR DAN KONFIGURASI CEKUNGAN KENDENG

4.1. St	ruktur Permukaan Cekungan Kendeng	149
4.1.1.	Analisis Struktur Regional	150
4.1.2.	Analisis Struktur Permukaan Daerah Penelitian	154
4.1.3.	Analisis Startigrafi Permukaan Daerah Penelitian	167
4.1.4.	Rekonstruksi Penampang Geologi Permukaan	187
4.2. St	ruktur Bawah Permukaan Cekungan Kendeng	193
4.2.1.	Analisis Kualitatif Struktur Cekungan Kendeng	200
4.2.2.	Analisis Kuantitatif (Derivative) Struktur Cekungan Kendeng	204
4.3. M	odel Konseptual Cekungan Kendeng	210
4.3.1.	Analisis Spektral	211
4.3.2.	Pemodelan Geofisika	212
4.3.3.	Rekonstruksi Konfigurasi Cekungan Kendeng	223
4.3.4.	Perkembangan Tektonik Cekungan Kendeng	225

BAB 5. POTENSI MIGAS CEKUNGAN KENDENG

5.1. Potensi Batuan Induk	229
5.1.1. Analisis Kuantitas dan Kematangan Material Organik	230
5.1.2. Analisis Tipe Material Organik	232
5.1.3. Analisis Lingkungan Pengendapan, Type dan Kematangan Minyak	234
5.1.4. Interpretasi Lingkungan Pengendapan Batuan Induk	244
5.2. Potensi Batuan Reservoar	248

5.3. Sintesa Konsep Sistem Migas Cekungan Kendeng	255
5.3.1. Tipe Cebakan dan Proses Migrasi Hidrokarbon	258
5.3.2. Play Concept Migas Cekungan Kendeng	258
5.4. Area Pontesi Eksplorasi	261

BAB	6. KESIMPULAN DAN SARAN	259
6.1.	Kesimpulan	259
6.2.	Saran	262

DAFTAR PUSTAKA

LAMPIRAN

1.	Peta-Peta Hasil Pengolahan
	1a. Peta Total Magnetik Intensitas (TMI)
	1b. Peta Residual Geomagnetik
	1c. Peta Residual Gravity
	1d. Peta Second Verical Derivative Gravity
	1e. Peta Sebaran Fault Berdasar Pendekatan Persamaan Euler
2.	Model Endapan Eosen Cekungan Jawa Timur Utara (Cahyono 2016)

DAFTAR GAMBAR

- Gambar 1.1. Konfigurasi Cekungan Kendeng yang menunjukkan bentuk asimetri miring ke arah selatan, (a). Anomali Bouguer gravity Jawa Timur yang menunjukkan pola cekungan Kendeng sebagai anomali rendah dengan nilai -580 μms⁻² hingga 40 μms⁻² (Smyth dkk., 2008), (b). Model Cekungan Kendeng sebagai cekungan *flexural* akibat *volcanic arc loading*, pada lintasan *anomaly bouguer gravity* Cekungan Kendeng (Waltham D., dkk. 2008). (Kotak biru adalah lokasi Penelitian)
- Gambar 1.2. Model konfigurasi cekungan di utara, selatan dan timur Cekungan Kendeng (a) Pola Horst-Graben yang menghasilkan tinggian dan rendahan Basement di Sangiran (Lunt, 1998), (b) Pola Horst-Graben pada Cekungan Rembang berdasar penampang seismik dan model Basement berdasarkan data seismik tersebut (Juliansyah dkk., 2016), (c) Penampang seismik di Fore-Arc Jawa timur yang menunjukkan pola Horst-Graben pada Basement, (d) Penampang seismik di selat Madura, menunjukkan pola Horst-Graben yang menghasilkan endapan syn-rifting dari Formasi Ngimbang dan menerus hingga Cekungan Kendeng (Prasetyadi dkk., 2016).
- Gambar 1.3. Potensi Migas Cekungan Kendeng. Rembesan minyak di Jawa Tengah dan Jawa Timur serta lapangan migas aktif di Cekungan Kendeng (Wunut-Carat, Madura-Oyong dll.) (Modifikasi Smyth dkk., 2008).....
- Gambar 1.4. Hubungan stratigrafi Cekungan Kendeng dan Rembang di sekitar sumur Porong-1 (Kendeng Timur). (a) Kolom stratigrafi (b) Penampang seismik yang menunjukkan tumpang tindih stratigrafi Cekungan Rembang dan Cekungan Kendeng, yang diinterpretasikan akibat *Thrust Fault*. (Moscariello dkk., 2017)......

3

4

6

Gambar 1.5.	Lokasi Penelitian. (a) Lokasi penelitian berada pada Cekungan	
	Kendeng Barat dan Kendeng Tengah secara administrasi	
	meliputi Kabupaten Bojonegoro hingga Kabupaten Blitar di	
	bagian timur dan Kabupaten Grobogan hingga Kabupaten	
	Wonogiri di bagian barat, (b) Koordinat lokasi penelian.	
	(Modifikasi Smyth dkk., 2008)	10
Gambar 1.6.	Pola Stuktur saat ini dan kaitannya dengan pola Cekungan Jawa	
	bagian timur, (a) arah utama struktur yang menunjukkan pola	
	Jawa (barat-timur) dan Pola Meratus (timur Laut-barat Daya) di	
	Jawa timur (b) Model cekungan pada saat Eosen yang terbentuk	
	oleh blok faulting dengan arah barat-timur dan diikuti oleh arah	
	timurlaut-baratdaya mengikuti zona suture Meratus	
	(Sribudiyani dkk., 2003)	14
Gambar 1.7.	Analogi moderen Cekungan Kendeng, (a.a'). Kondisi saat ini di	
	selatan Madura hingga utara Bali yang mengggambarkan	
	Cekungan Kendeng pada Eosen sampa Awal Miosen,(b) Bagian	
	utara merupakan Sunda Shelf yang merupakan laut dangkal	
	dengan sungai besar yang membawa sedimen ke arah timur dan	
	tenggara. Bagian tepiannya adalah pulau Madura dan Kangean,	
	yang merupakan hamparan reef shallow water. Di bagian	
	selatan merupakan gunung berapi aktif Jawa Timur, Bali dan	
	Lombok, yang setara dengan kondisi kemunculan OAF.	
	(Hall dkk., 2007)	17
Gambar 1.8.	Pendekatan model Cekungan Jawa Timur, terhadap Cekungan	
	di Jawa Barat, Model menunjukkan pola-pola horse-graben	
	dimana bagian dalaman teris oleh endapan-endapan Eosen yang	
	selanjutnya tertutupi oleh endapan-endapan Neogen (Hall dkk.,	
	2007)	17
Gambar 1.9.	Interpretasi basement di Jawa timur berdasar analisa zircon.	
	(a) Distribusi sampel dengan dan tanpa zirkon Archean dimana	
	zirkon Archean terbatas pada Zona Pegunungan Selatan.	
	(b) Distribusi sampel dengan dan tanpa zirkon Kapur dimana	

х

Zirkon Kapur terbatas pada bagian barat Zona Pegunungan Selatan. (c) Karakter kerak yang disimpulkan di bawah Jawa Timur dimana Cekungan Kendeng diinterpretasikan sebagai transisi antara tipe komplek akresi dan kontinental (metamorph-ophiolite/oceanic crust) (Smyth dkk., 2005).....

- Gambar 1.10. Penampang *Deep* seismik yang menunjukkan batuan Pra-tersier hadir di bawah Jawa bagian timur (a) Penampang *Deep* seismik di Laut Jawa sekitar Pulau Kangean yang menunjukkan batuan Pra-Tersier pada time 3500 ms-12000 ms, (b) Penampang *Deep* seismik di Fore arc Jawa Timur yang menunjukkan batuan Pra-Tersier pada time 5000 ms-10000 ms. Struktur menjadi kontrol penyebaran pola batuan Pra-Tersier tersebut. (Satyana, 2016)....
- Gambar 1.11. Analisa umur fragmen batuan yang terbawa oleh gunung lumpur LUSI. (a) Hasil analisa menunjukkan umur hingga 37.18 Ma (Eosen) yang merupakan bagian dari Formasi Ngimbang.
 (b) Penampang seismik melalui sumur Porong1 dan Banjarpanji 1 yang menggambarkan stratigrafi seismiknya dimana bagian Formasi Ngimbang dapat dikenali pada seismik ini dan mendukung keberadaan fragmen batuan berusia Eosen pada Cekungan Kendeng. (c) Stratigrafi lengkap yan menggambarkan urutan batuan yang dijumpai disekitar gunung lumpur LUSI (Samankassou E. dkk., 2017).....
- Gambar 1.12. Potensi reservoir vulkaniklastik di Lapangan Wunut.
 (a) Penampang seismik yg menggambarkan stratigrafi lapangan Wunut dan sekitarnya dimana ditempati oleh endapan vulkaniklastik dari Formasi Pucangan dibagian atas hingga yang tertua adalah Karbonat Kujung dan endapan batuan berumur Eosen di bawahnya (b) Model migrasi hidrokarbon di Lapangan Wunut dari porong reef ke reservoir di atasnya dari Formasi Pucangan berumur Pleistosen, batuan sumber diinterpretasikan berasal dari batuan berumur Eosen yang berada di bawahnya.

22

	(Kusumastuti A., dkk., 1999)	26
Gambar 2.1.	Tahapan Umum Kegiatan Penelitian, dimulai dari perencanaan	
	(Orange), Kegiatan Lapangan (Biru muda), Tahap Pengolahan	
	Data (Analisis Laboratorium (Hijau Tua) dan Interpretasi (Hijau	
	Muda), serta analisis komprehensif (Biru tua)	39
Gambar 2.2.	Diagram alir analisis konfigurasi Cekungan, merupakan	
	analisis komprehensif untuk menggambarkan kondisi Cekungan	
	Kendeng berdasar data permukaan dan bawah permukaan	45
Gambar 2.3.	Diagram alir analisis batuan Induk Cekungan Kendeng,	
	dilakukan untuk mengetahui kemungkinan batuan yang	
	berpotensi sebagai batuan Induk dengan melihat parameter	
	Kuantitas, Kualitas, dan Kematangan material organik serta	
	melakukan korelasi terhadap sample rembesan minyak	45
Gambar 2.4.	Diagram alir analisis potensi batuan reservor Cekungan	
	Kendeng dilakukan berdasarkan analisis petrografi untuk	
	mengetahui kandungan mineralnya yang berpengaruh pada	
	porositas dan permiabilitasnya	45
Gambar 2.5.	Lintasan pemetaan geologi permukaan pada lintasan terpilih.	
	Lintasan 1 melewati daerah Juwangi, Wonosegoro, Bayat, dan	
	Wonosari. Lintasan 2 melalui daerah Kuwu, Sragen, dan	
	Wonogiri. Lintasan 3 melalui Cepu, Ngawi, dan berakhir di	
	Ponorogo dan lintasan 4 melalui Bojonegoro, Gunung Pandan,	
	sisi timur Gunung Wilis hingga Tulungagung	47
Gambar 2.6.	Posisi pengkuran Geomagnetik (bulat hitam) dan posisi base	
	pengukuran Geomagnetik (kotak merah) berdasarkan nilai IGRF	
	daerah penelitian (garis ungu)	51
Gambar 2.7.	Lokasi Pengukuran Gravity dan batas lembar peta yang	
	digunakan yaitu (a) Lembar Salatiga, (b) Lembar Ngawi,	
	(c) Lembar Bojonegoro, (d) Lembar Madiun, (e) Lembar	
	Ponorogo, dan (f) Lembar Surakarta	51

Gambar 2.8.	Lokasi pengambilan sample batuan (huruf B) dan sample	
	Minyak (huruf M) yang dilakukan di Cekungan Kendeng dan	
	cekungan disekitarnya berdasarkan dari beberapa data yaitu data	
	2018, data URTC 2020, data PSDG 2007, dan Lemigas 2018	53
Gambar 2.9.	Konsep sesar ekstensional dan kontraksional. (a) Kondisi awal,	
	(b) Eksetensional, (c) Kontraksional. (Pluijm, 2004)	56
Gambar 2.10.	Konsep arah tegasan pada sistem sesar kontraksional yang	
	menunjukkan arah tegasan tegak lurus (Pure Shear) dan arah	
	gaya dengan sudut tertentu (Simple Shear)	56
Gambar 2.11.	(a) Penampang melintang pada sesar anjak yang menunjukkan	
	Geometri landaian (ramp) dan dataran (flat) pada saat sebelum	
	terjadi perlipatan/pergeseran oleh sesar. (b) Penampang yang	
	menggambarkan posisi landaian dan dataran pada hanging-wall	
	dan foot-wall. AB merupakan dataran hanging-wall diatas	
	dataran foot-wall. BC adalah dataran hanging-wall pada	
	landaian foot-wall. CD adalah landaian hanging-wall pada	
	dataran foot-wall, dan DE adalah dataran hanging-wall pada	
	dataran foot-wall (Pluijm, 2004)	58
Gambar 2.12.	Sistem Sesar anjak (a) <i>imbricate fan</i> (b) <i>sistem duplex</i> yang	
	terjebak antara roof thrust dan floor thrust	58
Gambar 2.13.	Model Kipas system imbricate fan, menunjukkan perkembangan	
	sesar dengan pola dorongan ke depan. Sesar yang lebih muda	
	secara berturut-turut memotong footwall, garis putus-putus	
	menunjukkan jejak sesar ke permukaan yang menghasilkan	
	lipatan sesar. Pada penampang sesar 1 adalah yang tertua dan	
	sesar 3 adalah yang termuda	60
Gambar 2.14.	(a) Pola <i>roof-thrust duplex</i> berkembang menghasilkan	
	pergerakan patahan ke arah depan. Roof-thrust menghasilkan	
	urutan perlipatan ke arah depan yang menutupi bagian footwall	
	menghasilkan pemendekan yang signifikan (b) Sketsa skematik,	
	konstruksi lipatan dengan pola kink pada sistem duplex dengan	
	atap bergelombang	60

xiii

- Gambar 2.15. (a). Penampang yang menunjukan *critical wedge* yang disebabkan oleh gesekan material sepanjang *docollement* (α = sudut dari slop topografi, β = sudut decolloment, $\alpha + \beta$ = sudut taper, σ = Tegasan kompresif maksimum, ψ 0 dan ψ b = sudut antara tegasan kompresi maksimum dengan top-bottom pembajian). (b) model pembentukan sesar akibat tektonik *stress* dan *normal stress* dari *overburden* (Ring U., 2019).....

Gambar 2.25.	Kurva M terhadap H dan posisi momen magnet dari bahan	
	paramagnetik (Blakely, 1995).	8
Gambar 2.26.	Kurva M terhadap H dan posisi momen magnet dari bahan	
	ferromagnetik (Blakely, 1995)	8
Gambar 2.27.	Elemen magnetik bumi yang menggambarkan unsur deklinasi,	
	inklinasi, dan Intensitas medan total (Reynolds, 1997)	8
Gambar 2.28.	Prinsip Bandpass Filter untuk mendapatkan Frequensi yang	
	diinginkan dalam memisahkan anomaly Regional-Residual	
	(Geosoft Guide)	8
Gambar 2.29.	Ilustrasi penentuan kedalaman anomali berdasarkan Grafik ln	
	Power Spectrum terhadap bilangan gelombang yang disebabkan	
	oleh dua lapisan anomali gabungan dengan masing-masing	
	kedalaman permukaan z1 dan z2 (Hinze dkk, 2012)	ç
Gambar 2.30.	Model 1D profil Gravity dan Second Vertical Derivative untuk	
	(a) cekungan sedimen dan (b) granit batholite (Bott, M.P.H,	
	1962)	ç
Gambar 2.31.	Hubungan antar arah kemiringan bidang batas anomali terhadap	
	kontras densitas batuan, (a) dan (b) menunjukkan g"max >	
	g''min , sedangkan (c) dan (d) menunjukkan $ g''max < g''min $	
	(Sumintadireja dkk, 2018)	ç
Gambar 2.32.	Respon anomali gravity dan SVD terhadap model cekungan dan	
	pluton, (1a) synthetic model cekungan dan pluton, (1b) respon	
	anomaly gravity untuk masing-masing model, (1c) respon	
	anomali SVD yang menunjukkan batas cekungan dan pluton.	
	(2a) model cekungan dengan kedalaman berbeda, (2b) respon	
	anomali gravitasi yang menunjukkan pola cekungan dengan	
	kedalaman berbeda (2c) respon SVD yang menunjukkan bahwa	
	efek batas cekungan lebih mempengaruhi pola SVD daripada	
	kontras densitas (Sumintadireja dkk, 2018)	Ç
Gambar 2.33.	Respon THD pada bidang batas anomali benda bawah	
	permukaan dengan kedalaman yang berbeda, respon THD	
	menunjukkan nilai maksimum pada batas benda anomali	

	(Arisoy, 2013)	99
Gambar 2.34.	Respon TDR pada benda anomali bawah permukaan dengan	
	kedalaman yang berbeda, respon TDR digambarkan pada nilai	
	nol atau perubahan nilai negative dan positif nilai anomali	
	(Arisoy, 2013)	99
Gambar 2.35.	Penampang benda 2,5 dimensi bentuk n sudut poligon	102
Gambar 2.36.	Lingkungan pengendapan oksik (kiri) dan anoksik (kanan)	
	secara umum menghasilkan preservasi yang baik dan buruk dari	
	material organik (Demaison dan Moore, 1980 dalam Peters dkk.,	
	2005a)	105
Gambar 2.37.	(a) Kromatografi gas yang menunjukkan kenampakan ciri	
	minyak yang berasal dari deltaik atau lakustrin, (b) dari laut	
	anoksik evaporit karbonat dan (c) dari laut alga. (Waples dan	
	Curiale, 1999)	115
Gambar 2.38.	Diagram penentu lingkungan pengendapan dengan sterana C27,	
	C ₂₈ , C ₂₉ (Huang dan Meinschein, 1979)	116
Gambar 3.1.	(a) Awal pergerakan mikrokontinen Banda, Argo dan India dari	
	Australia, mulai Akhir Jura mengikuti arah spreading di tepi	
	utara Australia. (b) Perkembangan pergerakan mikrokontinen	
	hingga awal kapur dengan arah NE-SW mendekati Sundaland,	
	dan India mulai terpisahnya dengan Australia. (Modifikasi Hall	
	dkk, 2009)	122
Gambar 3.2.	Perkembangan periode collision mikrokontinen dengan	
	Sundaland, (a) Docking Blok Banda disepanjang suture Biliton	
	pada awal Kapur (b) Perkembangan pada akhir Kapur-awal	
	Tersier dimana Blok Argo bertabrakan (docking) dengan SW	
	Borneo yang sudah menjadi bagian dari Sundaland, (c)	
	Peningkatan kecepatan pergerakan India ke utara yang	
	menghasilkan subduksi di bawah Incertus Arc, (d) Awal	
	subduksi di sepanjang sisi tenggara Sundaland pada akhir Eocen	
	(Modifikasi Hall dkk, 2009)	122

Gambar 3.3.	Fasa Ekstensi regional di Sundaland yang diinterpretasi akibat	
	collision antara India dengan Eurasia di sebelah barat pada	
	pertengahan Eosen-Oligosen (45 Ma) yg menghasilkan tegasan	
	strike-slip berarah relative NW-SE dengan deformasi searah	
	jarum jam yang dikenal sebagai Lateral Escape Tektonic	
	(Modifikasi Hall dkk, 2009)	125
Gambar 3.4.	Berakhirnya fasa rifting dengan Collision antara Australia	
	dengan Busur Banda (Papua) yang menghasilkan rezim	
	kompresi berlawanan arah jarum jam. Proses ini di Jawa	
	telah mengaktifkan sesar berarah relative Barat-Timur	
	dengan pergerakan transpresional Sinistral Strike-slip yang	
	membentuk Zona RMKS (Rembang-Madura-Kangean-	
	Sepanjang) (Modifikasi Hall dkk, 2009)	125
Gambar 3.5.	Peta Skema Fisiografi Jawa dan Madura, membagi Jawa Timur	
	menjadi beberapa zona Fisiografi yaitu Zona Rembang, Zona	
	Kendeng, dan Zona Pegunungan Selatan (Van Bemmelen,	
	1970). Kotak biru merupakan lokasi penelitian	128
Gambar 3.6.	Perkembangan pola subduksi Jawa mulai Kapur hingga masa	
	kini, menunjukkan perubahan arah subduksi dari arah NE-SW	
	menjadi arah E-W (Katili 1975, dalam Prasetyadi, 2007)	128
Gambar 3.7.	Pola umum struktur Pulau Jawa, menunjukkan 4 pola struktur	
	yaitu: Arah Meratus (timurlaut-baratdaya), Arah Sunda (utara-	
	selatan), Arah Jawa (barat-timur) dan Arah Sumatra (baratlaut-	
	tenggara). (Sribudiyani dkk,2003)	129
Gambar 3.8.	Evolusi Tektonik di Pulau Jawa, a. Periode Akhir Kapur-Awal	
	Tersier; fragmen benua terpisah dari Gondwana super-kontinen	
	dan bergerak ke arah timur laut mendekati komplek subduksi	
	Lok Ulo-Meratus b. Periode Eosen-Oligosen; collision	
	antara mikrokontinen Gondwana dengan Sundaland, c. Periode	
	Oligosen-Miosen; perubahan arah zona subduksi menjadi arah	
	Timur-Barat dan pembentukan OAF d. Miosen-Pliosen;	
	pembentukan cekungan bagian utara, back-arc basin	

berkembang dan dibagi menjadi beberapa sub-cekungan, yang dipisahkan oleh tinggian basement serta dikendalikan oleh basement blok faulting (Sribudiyani dkk., 2003) 134 Gambar 3.9. Pola struktur Jawa (timur-barat) di Cekungan Kendeng, Penampang seismik utara-selatan yang menunjukkan jalur lipatan dan sesar naik akibat kompresi Neogen, sesar naik membentuk batas sesar berupa overthrust sebagai batas antara Cekungan Rembang dan Cekungan Kendeng (Prasetyadi, 2007)... 137 Gambar 3.10. Pembagian Cekungan tektonostratigrafi Jawa bagian timur, dari selatan ke utara yaitu Pegunungan Selatan, Cekungan Kendeng dan Sunda Shelf (Cekungan Rembang) (Smyth dkk., 2008) 137 Gambar 3.11. Stratigrafi regional Cekungan Jawa Timur yan menggambarkan hubungan stratigrafi diPegunungan Selatan, Cekungan Kendeng 140 dan Cekungan Rembang (Satyana dkk., 2008)..... Gambar 3.12. Stratigrafi Cekungan Kendeng, dibagi menjadi tiga zona yaitu Kendeng Barat, Tengah dan Timur berdasarkan batuan dan kompleksitas strukturnya (Pringgoprawiro H., 1983) 144 Gambar 3.13. Peta Geologi Cekungan Kendeng dan cekungan di sekitarnya, menunjukkan stratigrafi Cekungan Kendeng yang teridentifikasi hanya di bagian utara cekungan, di bagian selatan umumnya tertutup oleh endapan vulkanik Kuarter (Pusat Penelitian dan Pengembangan Geologi (P3G), 1992-1996) 145 Gambar 3.14. Ilustrasi kemungkinan migrasi hidrokarbon di Cekungan Kendeng, Migas diinterpretasikan bermigrasi dari arah selatan yang merupakan cekungan yang dalam dimana pematangan terjadi dan termigrasi ke utara (Modifikasi, anomali Bouguer Smyth dkk., 2008) 148 Gambar 4.1. Pola struktur regional pengontrol konfigurasi cekungan di Jawa Timur, analisis morfologi di permukaan menunjukkan tren NE-SW kemenerusan struktur berarah yang dapat diinterpretasikan hingga ke bagian selatan Cekungan Kendeng,

Tren barat-timur membentuk morfologi tinggian yang diwakili

xviii

	oleh zona RMKS dan perbukitan Kendeng	151
Gambar 4.2.	Pola struktur berarah barat-timur di Cekungan Kendeng yang	
	membentuk sistem Fold Thrust Belt dengan beberapa sesar	
	utama (decollement surface) yang dikenali yaitu Sesar	
	Wonosegoro (F1), Sesar Juwangi (F2), dan Sesar Ngrahu (F3).	
	Tren Meratus diinterpretasikan menerus ke arah cekungan ini,	
	kemunculan jajaran gunungapi mengindikasikan zona lemah	
	akibat pertemuan dua pola struktur	153
Gambar 4.3.	Pengamatan struktur permukaan, menunjukkan lapisan dengan	
	Dip besar, offset litologi, dan bidang sesar. Pola Struktur ini	
	menunjukkan adanya thrusting di Cekungan Kendeng bahkan	
	menerus hingga Pegunungan Selatan yang membentuk sistem	
	Fold Thrust Belt	155
Gambar 4.4.	Singkapan batuan yang menunjukkan sesar Kradenan,	
	merupakan kelurusan sesar Ngrahu (F3). Sesar ini teridentifikasi	
	oleh adanya gores garis pada batugamping dan posisi stratigrafi	
	yang terbalik antara Napal dari Formasi Kalibeng yang berada	
	di atas dari Batugamping dari Anggota Klitik	158
Gambar 4.5.	Kelurusan sesar Ngrahu (F3) di daerah Padangan yang	
	menunjukkan perubahan kedudukan batuan dimana dip kecil di	
	bagian selatan dan menjadi dip besar dibagian utaraakibat thrust	
	<i>fault</i> . Indikasi pembalikan kedududukan lapisan batuan dapat	
	diketahui dari sisipan batupasir	158
Gambar 4.6.	Singkapan sesar Pelang pada jalur sesar Juwangi (F2), beberapa	
	indikasi keberadaan sesar Pelang berdasar zona breksiasi,	
	milonitisasi dan bidang sesar yang terbentuk akibat pergerakan	
	sesar Right Thrust Slip Fault (Rickard, 1972)	160
Gambar 4.7.	Sesar Banyuurip yang merupakan kelurusan sesar Pelang di	
	bagian timur. Kenampakan lapangan menunjukkan lapisan	
	dengan kemiringan dip besar dan sesar minor yang dengan ofset	
	litologi yang menunjukkan sesar naik	160

Gambar 4.8.	Indikasi sesar Wonosegoro dapat diamati berdasarkan pola	
	kedudukan batuan dengan dip yang besar, dan beberapa zona	
	gerusan yang membentuk milonitisasi pada singkapan batupasir	
	Kerek. Sesar ini merupakan kelompok sesar F1 yang merupakan	
	thrust fault paling selatan	162
Gambar 4.9.	Sesar Gesi merupakan kelurusan sesar Wonosegoro (F1) di	
	daerah sragen, mengindikasikan adanya sesar naik berdasarkan	
	perbedaan kedudukan lapisan batuan yang saling berdekatan	162
Gambar 4.10.	Sistem Fold Thrust Belt yang berkembang diCekungan Kendeng	
	diinterpretasikan berkembang hingga ke Pegunungan Selatan,	
	struktur <i>imbricate fa</i> n dan <i>duplex</i> diketemukan di daerah	
	Tegalrejo, selatan Bayat yang menunjukkan adanya sesar naik	
	akibat gaya kompresi, (Husein, 2018)	164
Gambar 4.11.	Bukti keberadaan thrust fault diperbukitan Jiwo yang memotong	
	dari batuan yang tua yaitu kelompok batuan metamorf hingga ke	
	batugamping Miosen dari Formasi Wonosari	166
Gambar 4.12.	Offset litologi akibat thrust fault di selatan Wonogiri yang	
	merupakan kemenerusan dari Baturagung hal ini juga	
	menunjukkan bahwa konsep sistem Fold Thrust Belt juga	
	berkembang di Pegunungan Selatan	166
Gambar 4.13.	Kenampakan Gunung lumpur purba pada komplek Gunung	
	Lumpur Boyolali, di Sangiran (A, B), sisipan pada endapan	
	vulkanik (sills-like) di daerah Jatikuwung (C), dan bola lumpur	
	di daerah danau Tengklik (D)	170
Gambar 4.14.	Grup I, bongkah-bongkah material yang terbawa oleh Gunung	
	lumpur pada komplek Gunung lumpur Boyolali, terdiri dari	
	Batugamping Nummulites (a), Konglomerat dengan fragmen	
	kwarsit (b), dan lanau yang menunjukkan struktur bioturbasi (c)	170
Gambar 4.15.	Grup II, bongkah-bongkah material disekitar komplek Gunung	
	lumpur Boyolali, terdiri dari Batugamping, Batugamping	
	dengan fragmen pecahan cangkang mullusca (a), lempung	
	dengan cangkang Mollusca Brachiopodha (b), dan batupasir	

	tuffasius (c)	171
Gambar 4.16.	Model Gunung lumpur pad daerah Sangiran oleh Wanatabe dan	
	Kadar, 1985 yang menunjukkan proses pengangkatan batuan	
	Eocene-Oligocene dari grup Nanggulan (Lunt, 1998)	175
Gambar 4.17.	Litologi pada singkapan Formasi Pelang yang tersusun oleh	
	Napal dengan sisipan batupasir karbonatan berstruktur laminasi.	
	Beberapa nodul-nodul lempung dan serat-serat silika dijumpai	
	pada singkapan ini dimana menunjukkan terjadinya penguapan	
	pada lingkungan yang dangkal	177
Gambar 4.18.	Litologi Formasi Kerek pada singkapan di desa Kerek yang	
	menunjukkan perlapisan batupasir dengan Napal yang pada	
	umumnya menunjukkan struktur laminasi, di beberapa tempat	
	terdapat struktur <i>loadcast</i>	179
Gambar 4.19.	Litologi penyusun Formasi Kalibeng yang didominasi oleh	
	Napal dengan sisipan-sisipan batupasir yang pada umumnya	
	menunjukkan struktur laminasi	180
Gambar 4.20.	Kontak antara Anggota Atasangin dar Formasi Kalibeng dengan	
	Batugamping Anggota Klitik dari Formasi Sonde. Struktur	
	sedimen silangsiur dan graded bedding pada Anggota Atasangin	
	yang menunjukkan sebagai endapan turbidite	181
Gambar 4.21.	Beberapa singkapan batuan dari Formasi Sonde yang tersusun	
	oleh batugamping dari Anggota Klitik di bagian bawah dan	
	diikuti oleh batuan yang lebih halus dari batupasir dan napal	182
Gambar 4.22.	Singkapan Formasi Pucangan pada daerah penelitian yang pada	
	umumnya didominasi oleh endapan breksi laharik dan batupasir	
	tufan	183
Gambar 4.23.	Usulan tambahan stratigrafi Cekungan Kendeng berdasarkan	
	analisis Geofosoka dan fragmen batuan yang terbawa oleh	
	Gunung lumpur pada komplek Gunung lumpur Boyolali di	
	Cekungan Kendeng Barat (Gambar modifikasi Satyana, 2008;	
	Pringgoprawiri, 1983)	186

- Gambar 4.24. Rekonstruksi penampang geologi permukaan pada empat lintasan terpilih. (a) Lintasan 1 melalui daerah Juwangi, Wonosegoro, Bayat, dan Wonosari, (b) Lintasan 2 melalui daerah Kuwu, Sragen, hingga Wonogiri, (c) Lintasan 3 melalui daerah Cepu, Ngawi, dan berakhir di Ponorogo, (d) Lintasan 4 melalui daerah Bojonegoro, Gunung Pandan, sisi timur Gunung Wilis hingga Tulungagung

- Gambar 4.30. Interpretasi kemenerusan struktur regional Jawa Timur yang mengontrol konfigurasi Cekungan Kendeng berdasarkan analisis (a) Geomagnetik dan Gravity (b)sehingga menghasilkan pola tinggian dan rendahan *basement* dengan arah barat-timur 202
- Gambar 4.31. Interpretasi kemenerusan struktur berarah timurlaut-baratdaya (pola Meratus) yang memotong pola dengan arah barat-timur

	berdasarkan kelurusan pola anomali Gravity	203
Gambar 4.32.	Interpretasi kemenerusan struktur berdasarkan analisis derivativ	
	pada data Geomagnetik (a) baik Total Horizontal Derivative (b),	
	maupun Tilt Derivative (c). Hasil analisis menunjukkan bahwa	
	pola tinggian dan rendahan di Cekungan Kendeng terutama	
	dikontrol oleh sesar dengan arah barat-timur	205
Gambar 4.33.	Interpretasi kemenerusan struktur berdasarkan analisis derivativ	
	pada data Gravity (a) baik Total Horizontal Derivative (b),	
	maupun Tilt Derivative (c). Hasil analisis menunjukkan bahwa	
	pola tinggian dan rendahan di Cekungan Kendeng terutama	
	dikontrol oleh sesar dengan arah barat-timur	206
Gambar 4.34.	Rekonstruksi sesar bawah permukaan berdasarkan analisis SVD	
	menggunakan kriteria Bot's pada empat lintasan terpilih yang	
	menunjukkan pola kemiringan sesar akibat gaya tektonik yang	
	bekerja di Cekungan Kendeng	207
Gambar 4.35.	Interpretasi perkembangan pola struktur secara horizontal yang	
	mengontrol pola basement di Cekungan Kendeng dan sekitarnya	209
Gambar 4.36.	Konsep integrasi data permukaan dan bawah permukaan,	
	berdasarkan modeling geofisika untuk menggambarkan	
	konfigurasi Cekungan Kendeng	210
Gambar 4.37.	Interpretasi kedalaman benda anomali berdasarkan analisis	
	spektral pada empat lintasan pengukuran yang menunjukkan	
	bahwa kedalaman anomali regional yang diinterpretasikan	
	sebagai basement berkisar antara 3,7 Km-5,1 Km)	211
Gambar 4.38.	Hasil pemodelan data Geomagnetik dan Gravity serta model	
	konseptual Cekungan Kendeng pada lintasan 1 yang	
	menunjukkan perkembangan stratigrafi dan pola struktur yang	
	membentuk sistem Fold Thrust Belt	216
Gambar 4.39.	Hasil pemodelan data Geomagnetik dan Gravity serta model	
	konseptual Cekungan Kendeng pada lintasan 2 yang	
	menunjukkan perkembangan stratigrafi dan pola struktur yang	
	membentuk sistem Fold Thrust Belt	218

Gambar 4.40.	Hasil pemodelan data Geomagnetik dan Gravity serta model	
	konseptual Cekungan Kendeng pada lintasan 3 yang	
	menunjukkan perkembangan stratigrafi dan pola struktur yang	
	membentuk sistem Fold Thrust Belt	220
Gambar 4.41.	Hasil pemodelan data Geomagnetik dan Gravity serta model	
	konseptual Cekungan Kendeng pada lintasan 4 yang	
	menunjukkan perkembangan stratigrafi dan pola struktur yang	
	membentuk sistem Fold Thrust Belt	222
Gambar 4.42.	Konfigurasi Cekungan Kendengberdasarkan analisis permukaan	
	dan bawah permukaan,menunjukkan pola tinggian dan rendahan	
	yang pada awalnya dikontrol oleh sesar normal dan diikuti oleh	
	thrust fault yang membentuk sistem Fold Thrust Belt	224
Gambar 5.1.	Kelimpahan dan kualitas material organik berdasarkan krosplot	
	TOC Vs S2 (a) dan TOC berdasarkan HI (b), yang menunjukkan	
	bahwa rata-2 sample bantuan mempunyai kuantitas dan kualitas	
	yang jelek untuk menghasilkan hidrokarbon, kecuali sample dari	
	Formasi Pelang	233
Gambar 5.2.	Tipe material organik yang menunjukkan bahwa sample Pelang	
	mampu menghasilkan minyak atau gas pada tingkat kematangan	
	yang optimal, sedangkan sample lain menunjukkan type IV	
	sehingga dikategorikan tidak mampu menghasilkan hidrokarbon	233
Gambar 5.3.	Analisis n-Alkana Pristana dan Phitana menggunakan Gas	
	Chromatography (GC) pada sample minyak, menunjukkan	
	karakter yang berbeda antara sample minyak dari Cekungan	
	Kendeng, menunjukkan berasal dari material organik dari laut	
	dan sample dari Cekungan Rembang menunjukkan material	
	organik yang berasal dari terestrial	236
Gambar 5.4.	Hasil analisis ion Sterana m/z 217 kedalam diagram terner,	
	menunjukkan perbedaan karakter antara minyak dari Cekungan	
	Kendeng dan Cekungan Rembang, yang memperkuat analisis	
	n-Alkana	239

Gambar 5.5.	Analisis lingkungan pengendapan atau asal material organik	
	berdasarkan ion Triterpana m/z 191 terhadap sample minyak	
	dari Cekungan Rembang yang menunjukkan bahwa kedua	
	sample tersebut berasal dari material organik yang terpengaruh	
	oleh unsur darat termasuk sample dari Dunglantung	240
Gambar 5.6.	Analisis asal material organik berdasarkan ion Triterpana	
	m/z 191 terhadap sample minyak (Boto) dan ekstraksi minyak	
	(Fm. Pelang) dari Cekungan Kendeng yang menunjukkan	
	bahwa kedua sample tersebut berasal dari material organik	
	yang terpengaruh oleh unsur laut atau delta	240
Gambar 5.7.	Analisis kematangan batuan induk berdasarkan ion Triterpana	
	berdasar krosplot Tm/Ts dengan C_{30} moretana/ C_{30} hopana,	
	menunjukkan bahwa sample dari Cekungan Rembang termasuk	
	dalam kategori peak mature sedangkan minyak dari Cekungan	
	Kendeng termasuk dalam kategori late mature, krosplot ini	
	juga menunjukkan bahwa Formasi Pelang dan Kerek bukan	
	sebagai batuan induk dari rembesan minyak di Cekungan	
	Kendeng	242
Gambar 5.8.	Analisis kematangan batuan induk berdasarkan ion Triterpana	
	dan ion Sterana berdasar Ts/(Ts+Tm) Vs C ₂₉ 20S(20S+20R),	
	menunjukkan perbedaan tingkat kematangan minyak Cekungan	
	Rembang dan Cekungan Kendeng, krosplot juga menunjukkan	
	bahwa Formasi Pelang bukan sebagai batuan induk dari	
	rembesan minyak di Cekungan Kendeng	243
Gambar 5.9.	Lingkungan pengendapan selama Eosen yang menunjukkan pola	
	tinggian berarah barat-timur yang membatasi cekungan dibagian	
	utara sebagai laut tertutup yang memungkinkan pembentukan	
	material organik dan Cekungan di selatan yang merupakan laut	
	terbuka	247

DAFTAR TABEL

Penelitian terdahulu yang mendasari penelitian di Cekungan	
Kendeng dan beberapa permasalahan yang akan diselesaikan	
dalam mengungkap konfigurasi dan potensi migas Cekungan	
Kendeng	30
Tabel koreksi medan (Kearey, 2002)	76
Nilai Rapat Massa Beberapa Batuan (Telford, dkk., 1990)	77
Nilai suseptibilitas batuan (Clark D.A. and Emerson	
D.W., 1991)	87
Terminologi yang menggambarkan kondisi reduksi-oksidasi	
di lingkungan sedimentasi (Peters dkk., 2005a)	104
Klasifikasi TOC pada batuan induk belum matang (Peter &	
Cassa, 1994 dalam Peters K.E., dkk., 2005)	106
Prediksi nilai TOC awal berdasarkan varias nilai HI pada batuan	
induk dengan asumsi PI yang ditentukan pada batuan induk	
belum matang (Peters K.E. dkk.,2005)	107
Tipe kerogen, maseral dan asal material organik (Waples,	
1985)	108
Klasifikasi Tipe kerogen pada batuan induk belum matang,	
(Peter & Cassa, 1994 dalam Peters K.E., dkk., 2005)	109
Potensi batuan induk dari kerogen immature berdasarkan nilai	
Hydrogen Index (Waples, 1985)	109
Klasifikasi kematangan berdasarkan Tmaks dan Ro (Peter &	
Cassa, 1994 dalam Peters K.E., dkk., 2005)	110
Hubungan moretana/hopana sebagai parameter kematangan	
(Miles,1989)	112
Hubungan Tm/Ts sebagai parameter kematangan (Miles, 1989)	112
Senyawa penanda organisme asal (Waples dan Curiale, 1999)	113
Klasifikasi porositas dan permiabilitas (Koesoemadinata, 1980)	117
	 Kendeng dan beberapa permasalahan yang akan diselesaikan dalam mengungkap konfigurasi dan potensi migas Cekungan Kendeng

Tabel 4.1.	Analisis umur relative berdasarkan foraminifera Planktonik pada		
	fragmen-fragmen batuan yang terbawa oleh Gunung lumpur	173	
Tabel 4.2.	Analisis Paleobathimetri berdasarkan foraminifera Benthonik		
	pada fragmen-fragmen batuan yang terbawa oleh Gunung		
	lumpur	174	
Tabel 4.3.	Nilai densitas dan suseptibilitas dari masing-masing satuan		
	batuan yang teridentifikasi berdasarkan pemodelan geofisika	214	
Tabel 5.1.	Hasil analisis TOC dan Rock Eval Pyrolisis pada sample batuan		
	untuk mengidentifikasi kuantitas material organik, kualitas		
	material organik (tipe material organik) dan kematangan		
	material organiknya	231	
Tabel 5.2.	Analisis porositas kuantitatif dan kualitatif serta analisis		
	permiabilitas pada sample batuan lintasan1	252	
Tabel 5.3.	Analisis porositas kuantitatif dan kualitatif serta analisis		
	permiabilitas pada sample batuan lintasan 2	252	
Tabel 5.4.	Analisis porositas kuantitatif dan kualitatif serta analisis		
	permiabilitas pada sample batuan lintasan 3	253	
Tabel 5.5.	Analisis porositas kuantitatif dan kualitatif serta analisis		
	permiabilitas pada sample batuan lintasan 4	253	

GLOSSARY

Nama	Penjelasan Singkat
Migas	Merupakan kepanjangan dari Minyak dan Gas Bumi, yaitu
	substansi fluida hidrokarbon alam yang berbentuk cair, gas dan
TMI	padatan pada Kondisi suhu dan tekanan permukaan.
	<i>Total Magnetic Intensity</i> , yaitu distribusi filai medan magnetik yang belum terkoreksi yariasi barian maupun
	IGRF.
RTP	Reduce To Pole yaitu proses mengubah arah
	medan magnetik dipol menjadi monopol.
SVD	Second Vertical Derivative, yaitu filter turunan kedua nilai
	medan potensial terhadap komponen horizontal dan vertikal.
THD	<i>Total Horizontal Derivative</i> , yaitu filter gradien horizontal medan potensial.
TDR	<i>Tild Derivative</i> , vaitu filter vang menghitung fungsi dari rasio
	turunan vertikal dan horizontal dari intensitas medan potensial.
IGRF	International Geomagnetic Reference Field, yaitu medan acuan
	geomagnetik intenasional yang menunjukkan nilai kuat medan
	magnetik utama bumi
PPM	Proton Precession Magnetometer, yaitu instrumen untuk
	hordeserken nede processi proton delem stom yong dipengeruhi
	oleh medan magnet humi
Anomali <i>Bouguer</i>	Anomali percepatan gravitasi yang dipengaruhi oleh benda
Gravity	target di bawah permukaan.
Anomali Regional	Anomali percepatan gravitasi yang disebabkan oleh perbedaan
Gravity	densitas batuan pada daerah yang lebih dalam.
Anomalı Residual	Anomali percepatan gravitasi yang disebabkan oleh perbedaan densitas batuan pada daerah yang lebih dangkal
GC	Gas Chromatography vaitu jenis kromatografi dalam analisis
	geokimia untuk pemisahan dan analisis senyawa yang dapat
	menguap tanpa mengalami dekomposisi
GCMS	Gas Chromatography-Mass Spectrometry, yaitu metode
	analitik yang menggabungkan fitur-fitur kromatografi gas dan
	spektrometri massa untuk mengidentifikasi berbagai zat dalam
	sampel uji.
TOC	<i>Total Organic Carbon</i> , yaitu jumlah karbon yang ditemukan
	dari batuan kering
НІ	Hydrogen Index vaitu jumlah hidrogen relatif terhadan jumlah
111	karbon organik vang ada dalam sampel.
	HI=S2(Mg/g)/%TOCX100
OI	Oxygen Index, yaitu jumlah oksigen relatif terhadap jumlah
	karbon organik yang ada dalam sampel,
	HI=S3(Mg/g)/%TOCX100

n-Alkana	Senyawa hidrokarbon alifatik yang tersusun dari unsur atom karbon (C) dan juga atom hidrogen (H) yang terikat dan membentuk rantai terbuka yang bercabang ataupun tidak bercabang
Sterana	Senyawa organik yang terdiri dari empat ikatan siklik yaitu tiga sikloheksana dan satu siklopentana yang merupakan kerangka dasar dari lemak sterol dan steroid, dapat digunakan sebagai penanda biologi (biomarker)
Triterpena	Kelompok senyawa kimia yang terbentuk dari tiga unit terpena dengan rumus molekul C30H48; dihasilkan oleh binatang, tumbuhan dan jamur
Suture	Zona deformasi intens di mana terran yang berbeda, atau unit tektonik dengan sejarah lempeng tektonik, metamorf, dan paleogeografi yang berbeda bergabung bersama.
Fold Thrust Belt	Sistem pensesaran yang pembentukannya bersamaan dengan pembentukan lipatan
Thrust Fault	Sesar naik yang memiliki kemiringan 45 derajat atau kurang.
Overthrust Fault	Sesar naik yang memiliki sudut bidang sesar rendah (seringkali kurang dari 15°) dan perpindahan blok di atasnya besar (seringkali dalam kisaran kilometer).
Horst-Graben	Hasil proses sesar normal yang menghasilkan daerah tinggian (<i>Horst</i>) dan rendahan (<i>Graben</i>).