DAFTAR ISI

SKRIPSI	i
HALAMAN PENGESAHAN	ii
PERNYATAAN KEASLIAN KARYA ILMIAH	iii
KATA PENGANTAR	iv
ABSTRAK	vii
ABSTRACT	ix
DAFTAR ISI	xi
DAFTAR GAMBAR	xvi
DAFTAR TABEL	xxix
DAFTAR LAMPIRAN	xxxi
DAFTAR SINGKATAN DAN ISTILAH	xxxii

BAB I

PENDAHULUAN	
1. 1. Latar Belakang	1
1. 2. Rumusan Masalah	4
1. 3. Maksud dan Tujuan	4
1. 4. Batasan Masalah	5

BAB II

TINJAUAN PUSTAKA	6
2. 1. Geologi Regional	6
2.1. 1. Tektonik dan Magmatisme Busur Sunda-Banda	6
2.1. 2. Metalogenik Busur Sunda-Banda	13
2.1. 3. Fisiografi Regional Jawa Barat dan Banten	16
2.1. 4. Statigrafi Regional Jawa Barat dan Banten	18
2.1. 5. Struktur Regional Jawa Barat dan Banten	19
2. 2. Geologi Lokal Daerah Cibaliung	20
2.2. 1. Statigrafi Lokal Daerah Cibaliung	21
2.2. 2. Struktur Geologi Daerah Cibaliung	22

2.2. 3. Mineralisasi dan Alterasi Daerah Daerah Cibaliung	
2. 3. Penelitan Terdahulu	

BAB III

DASAR TEORI 3	32
3. 1. Metode Geofisika	32
3.1. 1. Konsep Metode Geomagnetik 3	32
3.1.1. 1. Gaya Magnetik 3	33
3.1.1. 2. Kuat Medan Magnetik 3	33
3.1.1. 3. Induksi Magnet 3	33
3.1.1. 4. Teori Potensial Magnetostatik	34
3.1.1. 5. Momen Magnetik 3	37
3.1.1. 6. Magnetisasi	38
3.1.1. 7. Suseptibilitas Kemagnetan	39
3.1.1. 8. Medan Magnet Bumi 4	10
3.1.1. 9. Remanensi 4	12
3.1.1. 10. Koreksi Data Magnetik 4	13
3.1.1. 11. Reduksi ke Kutub 4	14
3.1.1. 12. Analisis Spektrum Gelombang 4	16
3.1.1. 13. Total Horizontal Derivative (THD) 4	18
3.1.1. 14. Tilt Derivative 5	50
3.1.1. 15. Continuation (Kontinuasi)	52
3.1.1. 16. Pemodelan 2.5 D dan 3D 5	54
3.1.1. 17. Efek Magnetik Pada Alterasi Tipe Porphyry-Skarn, da	an
Epithermal5	56
3.1. 2. Konsep Geolistrik IP (Induced Polarization)	50
3.1.2. 1. Potensial dalam Medium Homogen 6	51
3.1.2. 2. Elektroda Arus Tunggal di Bawah Permukaan dan d	di
Permukaan 6	52
3.1.2. 3. Dua Elektroda Arus di Permukaan	54
3.1.2. 4. Polarisasi Membaran (Elektrolitik) 6	55
3.1.2. 5. Polarisasi Elektroda (Grain) 6	57

3.1.2. 6. Pengukuran IP
3.1.2. 7. Konsep Overvoltage pada metode TDIP 71
3.1.2. 8. Konfigurasi Wenner 74
3. 2. Endapan Hidrotermal76
3.2. 1. Fluida Hidrotermal
3.2. 2. Sistem Hidrotermal
3.2. 3. Konsep Tahapan Sulfidasi
3.2. 4. Mineralogi Endapan Epitermal 84
3.2. 5. Alterasi Hidrotermal
3.2.5. 1. Alterasi Argilik dan Silisik
3.2.5. 2. Sinter
3.2.5. 3. Vein Kuarsa dan Breksi
3.2.5. 4. Sistem Endapan Epitermal Sulfidasi Rendah 97
3.2.5. 5. Bijih Pada Sulfidasi Rendah 100
3.2.5. 6. Oksidasi / Supergen 103
3. 3. Geokimia Endapan Epitermal
3.3. 1. Asosiasi Unsur Jejak (Pathfinder Element) 104
3.3.1. 1. Daur Geologi 105
3.3.1. 2. Dispersi Geokimia 106
3.3.1. 3. Lingkungan Geokimia 107
3.3.1. 4. Mobilitas Unsur 108
3.3.1. 5. Penciri Unsur
3.3.1. 6. Asosiasi Unsur 110
3.3. 2. Zonasi Geokimia Deposit Sulfidasi Rendah - Menengah 111
3.3. 3. Geokimia Fluida Hidrotermal Endapan Epitermal Sulfidasi Rendah

BAB IV

METODE PENELITIAN	115
4. 1. Lokasi dan Informasi Pengambilan Data Penelitian	
4. 2. Pengolahan Data	119
4.3. 1. Pengolahan Data Metode Geomagnetik	123

4.3. 2. Pengolahan Data Metode TDIP14	41
4.3. 4. Pengolahan Data Geokimia Soil14	48
4.3. 5. Pengolahan Data Pemboran Eksplorasi15	50
4. 3. Interpretasi Data	53

BAB V

HASIL DAN PEMBAHASAN 155
5. 1. Peta-Peta Geologi Permukaan 155
5.1. 1. Peta Litologi dan Struktur 155
5.1. 2. Peta Alterasi
5. 2. Metode Geomagnetik 159
5.2. 1. Peta Intensitas Anomali Geomagnetik 159
5.2. 2. Interpretasi Peta Reduce to the Pole Berdasarkan Data Geologi
Permukaan
5.2. 3. Analisis Spektrum Gelombang
5.2. 4. Peta Pseudogravity, Tilt Derivative, Total Horizontal Derivative,
Upward Continuation dan Analisis Struktur
5.2. 5. Hasil Integrasi Pengolahan Data Geomagnetik 173
5. 3. Metode Time Domain Induced Polarization 178
5.3. 1. Penampang 2D Resisitivitas dan Chargeabilitas
5.3. 2. Peta Kedalaman (<i>Planmap</i>) Resistivitas dan Chargeabilitas 185
5.3. 3. Model 3D Resistivitas dan Chargeabilitas
5. 4. Peta Persebaran Geokimia Soil 190
5. 5. Titik Pemboran Eksplorasi 202
5. 6. Integrasi Metode 208
5.6.1. Integrasi Metode Geofisika Geomagnetik, TDIP dan Pemboran
Eksplorasi
5.6.2. Pemodelan Terintegrasi dan Model Konseptual Alterasi dan
Mineralisasi Endapan Epitermal Sulfidasi Rendah Cibaliung, Banten

BAB VI

KESIMPULAN DAN SARAN	
6. 1. Kesimpulan	
6. 2. Saran	
DAFTAR PUSTAKA	
LAMPIRAN	

DAFTAR GAMBAR

Gambar 2. 1.	Sebaran batuan gunungapi Paleogen hingga Kuarter di Pulau Jawa
	(Soeria-atmadja drr., 1994)
Gambar 2. 2.	Peta tektonik kawasan Asia Tenggara (Simandjuntak & Barber,
	1996)7
Gambar 2. 3.	Perkembangan zona tunjaman Indnesia bagian barat (Katili, 1989).
Gambar 2. 4.	Penampang skematik kerangka tekronik memotong Pulau Jawa
	bagian timur dan Kalimantan bagian barat, dikompilasi oleh Katili
	(1989)
Gambar 2. 5.	Pola struktur di Pulau Jawa dan sekitarnya (Simandjuntak dan
	Barber (1996) 10
Gambar 2. 6.	Tiga arah pola struktur (kelurusan) di Jawa dan sekitarnya
	Pulunggono dan Martodjojo, 1994) 12
Gambar 2. 7.	Jalur Busur Magmatik Utama tempat Kedudukan Mineralisasi
	Logam (Soeharto, 2000) 14
Gambar 2. 8.	Evolusi jalur magmatic sunda bagian timur yang menyebabkan
	adanya sumber daya bahan tambang terutama komoditi Au, Cu dan
	Ag (Maryono, 2018) 15
Gambar 2. 9.	Peta fisiografi regional Jawa Barat yang digambarkan menurut
	Bemmelen (1949) 17
Gambar 2. 10.	Peta geologi regional lembar cikarang (Sudana dan Santosa, 1992).
Gambar 2. 11.	Peta struktur regional Jawa Barat yang menunjukkan pola Meratus,
	pola Sunda, dan Pola jawa menurut Martodjojo dan Pulunggono
	(1994)
Gambar 2. 12.	Skema penampang geologi daerah Cibaliung yang menunjukkan
	unit batuan pre-mineralisasi dan post-mineralisasi (Angeles dkk,
	2002)

- Gambar 2. 13. Skema pembentukan vein termineralisasi disekitar lokasi penelitian pada saat tahap awal proses hidrotermal (A) dan tahap akhir proses hidrotermal (B) menurut Angeles dkk (2002). 23
- Gambar 2. 15. Penampang Panjang Strukturr Vera-Nancy. Sumber daya yang ditambang dan tersisa pada November 2002 ((Hoschke dan Sexton, 2005).

- Gambar 2. 18. (a) Interpretasi Geologi ; (b) Magnetik RTP (*Reduce to the Pole*);(c) Resisitivitas gradient array (Hoschke dan Sexton, 2005)..... 30

- **Gambar 3. 4.** a. Elemen magnetik bumi dan b. Sudut deklinasi adalah besar sudut penyimpangan arah utara magnet terhadap arah utara geografis, c.

- Gambar 3. 5. Peta IGRF (International Geomagnetic Reference Field) yang menggambarkan rata-rata nilai kemagnetan (Blakely, 1995). 44

- **Gambar 3.9.** Grafik anomali pseudogravity dan gradien horizontal yang diakibatkan oleh suatu tubuh tabular. Grafik anomali pseudogravity akan membentuk puncak tepat di atas sumber anomali, sementara grafik gradien horizontal akan memiliki puncak yang tepat berada di atas batas anomali (Blakely, 1995).50

- Gambar 3. 14. Model umum dari Gold-rich Porphyry dengan asosiasi mineral biotite-magnetite pada alterasi Potassic. Alterasi Potassic ditunjukkan dengan warna merah pada bagian tengah dengan nilai suseptibilitas yang besar, alterasi Phyllic hadir pada bagian atas

- Gambar 3. 19. Skema terjadinya polarisasi elektroda. (A) Aliran arus listrik tanpa adanya butir mineral sebagai penghambat dan (B) akumulasi muatan yang terjadi akibat adanya butir mineral sebagai penghambat aliran listrik pada saluran pori (Reynolds, 2011). .. 67
- Gambar 3. 21. Skema pengukuran nilai IP menggunakan konsep millivolt per volt (A) dan pengukuran nilai IP dalam chargeabilitas semu

- Gambar 3. 25. (a) Tiga tipe utama jenis cairan air (*liquid water*) yang hadir dipermukaan dan dekat permukaan, (b) Diagram perbandingan isotopik berbagai jenis air (Taylor, 1997 dalam Robb, 2005).77

- Gambar 3. 28. Penampang model skematik untuk epitermal sulfidasi rendah (A) dan epitermal sulfidasi tinggi (B), yang menunjukan zonasi altarasi, mineralisasi, dan litologi (Hedenquist dkk, 2000) 89
- Gambar 3. 29. Representasi skematis dari sistem hidrotermal suhu tinggi yang aktif dan pada permukaan utamanya (terinspirasi oleh Hedenquist dan Arribas 1999; Hochstein dan Browne 2000; Simmons etal. 2005). a Sistem vulkanik-hidrotermal di atas intrusi dangkal dan didominasi oleh cairan magmatik. b Sistem geotermal di atas intrusi dalam di medan relief tinggi, dengan pH netral yang naik,

- Gambar 3. 32. Diagram skematik menunjukan perilaku perak dan emas padalingkungan supergen (Sillitoe, 2008; John dkk, 2018). 103

- Gambar 3. 35. Penampang melintang skematik yang menunjukan zona si mineralogi dan geokimia yang berasosiasi dengan Deposit sulfidasi menegah Gosowong, Indonesia (Gemmell, 2007). Singkatan: adul, adularia; alb, albite; cal, calcite; chlFe, iron-rich chlorite; chlMg, magnesium-rich chlorite; ep, epidote; ill, illite;

Gambar 4. 1. I	okasi daerah penelitian Tugas Akhir pada salah satu IUP PT. Aneka
	Tambang di salah satu prospek di Cibaliung, Kabupaten
	Pandeglang, Banten, Indonesia 115
Gambar 4. 2.	Desain Survey Titik Beserta Lintasan Geomagnetik dan TDIP pada
	Peta Geologi Cibaliung, Banten PT. Aneka Tambang Unit Geomin
Gambar 4. 3.	Desain Survey Titik Beserta Lintasan Geomagnetik dan TDIP pada
	Kenampakan Citra Satelit Cibaliung, Banten PT. Aneka Tambang
	Unit Geomin117
Gambar 4. 4.	Desain Survey Titik Beserta Lintasan Geomagnetik dan TDIP pada
	Peta Topografi Cibaliung, Banten PT. Aneka Tambang Unit
	Geomin
Gambar 4. 5.	Desain Survei Titik Beserta Lintasan TDIP dan tiga titik pemboran
	eksplorasi pada Peta Topografi Detil Cibaliung, Banten PT. Aneka
	Tambang Unit Geomin119
Gambar 4. 6.	Diagram alir pengolahan data penelitian dari mulai studi pustaka
	hingga interpretasi selesai 122
Gambar 4. 7.	Diagram alir pengolahan data dan pemodelan data pada metode
	Geomagnetik
Gambar 4.8.	Ketika benda ferromagnetic dimagnetisasi dalam satu arah, material
	tersebut tidak akan kembali menjadi "nol magnetisasi" ketika
	medan magnet dihilangkan. Benda tersebut hanya bisa di jadikan
	"nol magnetisasi" ketika benda tersebut diberikan kembali medan
	magnet yang arahnya bertolak belakang dengan arah sebelumnya.
	Jika medan magnet penyearah tersebut diberikan kepada suatu

- Gambar 4.15. Contoh pencocokan hasil olahan data Ha (pengolahan) dan Anomali Magnetik olahan PT. Aneka Tambang yang terlihat tumpeng tindih dikarenakan memiliki pola dan nilai yang sama....

- Gambar 4. 16. Gambaran hasil fourier transform dari sinyal. (Atas) sinyal dengan pola seperti gelombang berarah +45°. (Bawah) sinyal dengan pola gelombang dari arah yang bersebrangan yaitu +45° dan -45° (Bardi dkk, 2016).
- Gambar 4. 17. Anomali magnet total dalam unit arbitrer (ACC) melintasi sumber bola pada kemiringan magnet 90° dikutub geomagnetik (a), 45° pada garis lintang tengah geomagnetik (b), dan 0° pada ekuator geomagnetik (c). Perhatikan peningkatan asimetri danpenurunan

- Gambar 4. 20. Analisis Depresi dan Batas Anomali Berdasarkan Total Horizontal Derivative dan Tilt Derivaive (A) Peta Total Horizontal Derivative (B) Peta Lokal Tilt Derivative (Maulana dan Prasetyo, 2019). 139

- Gambar 5. 1. Peta geologi regional beserta titik pengukuran metode geomagnetik pada prospek endapan Au-Ag Daerah Cibaliung, Banten (Peta Geologi dibuat oleh tim PT. Aneka Tambang).... 155
- Gambar 5.2. Peta geologi detil dan kemungkinan struktur yang didapat dari pemetaan geologi permukaan pada prospek endapan Au-Ag

Daerah	Cibaliung,	Banten	(Peta	geologi	dan	struktur	dibuat	oleh
tim PT.	Aneka Tar	nbang)					•••••	. 156

- Gambar 5. 4. Peta Intensitas Anomali Magnetik yang masih memiliki respon dipol pada prospek endapan Au-Ag Daerah Cibaliung, Banten.

- Gambar 5. 9. Peta Tilt Derivative dan kemungkinan struktur yang berkembang pada prospek endapan Au-Ag Daerah Cibaliung, Banten. 169
- Gambar 5. 11. Perbandingan spectrum hasil respon pemrosesan data TDR VS THDR pada sayatan C-C'(lihat sayatan pada Gambar 5.8)...... 172

- Gambar 5. 12. Peta *Total Horizontal Derivative* dan struktur geologi permukaan pada prospek endapan Au-Ag Daerah Cibaliung, Banten. 172

- Gambar 5. 22. Planmap Resisitivitas per kedalaman interval 50 meter...... 186
- Gambar 5. 23. Planmap Resisitivitas per kedalaman interval 50 meter...... 187

Gambar 5. 25.	3D resitivitas dengan pembagian zona berdasarkan nilai resistivitas
	pada Tabel 5.3
Gambar 5. 26.	3D chargeabilitas dengan pembagian zona berdasarkan nilai
	chargeabilitas pada Tabel 5. menampilkan zona dengan
	kemungkinan hadirnya mineral lempung dan sulfida 190
Gambar 5. 27.	Peta distribusi persebaran kadar Au pada prospek endapan Au-Ag
	Daerah Cibaliung, Banten
Gambar 5. 28.	Peta distribusi persebaran kadar Ag pada prospek endapan Au-Ag
	Daerah Cibaliung, Banten 194
Gambar 5. 29.	Peta distribusi persebaran kadar Cu pada prospek endapan Au-Ag
	Daerah Cibaliung, Banten 195
Gambar 5. 30.	Peta distribusi persebaran kadar Pb pada prospek endapan Au-Ag
	Daerah Cibaliung, Banten 196
Gambar 5. 31.	Peta distribusi persebaran kadar Zn pada prospek endapan Au-Ag
	Daerah Cibaliung, Banten 197
Gambar 5. 32.	Peta distribusi persebaran kadar As pada prospek endapan Au-Ag
	Daerah Cibaliung, Banten
Gambar 5. 33.	Peta distribusi persebaran kadar Sb pada prospek endapan Au-Ag
	Daerah Cibaliung, Banten 199
Gambar 5. 34.	Peta distribusi persebaran kadar Hg pada prospek endapan Au-Ag
	Daerah Cibaliung, Banten
Gambar 5.35.	Analisis spectrum profil sayatan E-E' pada setiap unsur pathfinder
	elements sistem epitermal sulfidasi rendah pada prospek endapan
	Au-Ag, Cibaliung, Banten
Gambar 5. 36.	Lokasi titik pemboran eksplorasi RD.01 dan RD.02 terhadap
	planmap resistivitas dari data TDIP L14A dan L15A (sebelah
	timur)
Gambar 5. 37.	Strip log dari drillhole RD.01 dari data rock, alteration, assay Au
	dan Ag
Gambar 5. 38.	Strip log dari drillhole RD.01 dari data rock, alteration, assay Au
	dan Ag

Gambar 5. 39.	Stacked Section titik pemboran RD.01 terhadap penampang	TDIP
	resisitivitas L15A.	205

- Gambar 5. 44. Model konseptual endapan epitermal sulfidasi rendah pada lintasan TDIP L15A. Pemodelan berdasarkan data pemboran, resistivitas, chargeabilitas, geomagnetic RTP dan *Tilt Derivative* serta data geologi permukaan daerah prospek Au-Ag, Cibaliung, Banten.

Gambar 5. 44. Gambaran bawah permukaan resistivitas (cut off nilai 66.3 - 458
Ohm metereter), peta struktur, chargeabilitas isosurface (cut off isosurface nilai 75 - 125 msec) dan titik pemboran RD.01 dan RD.02.

DAFTAR TABEL

Tabel 3. 1.	Tabel Tipe Remanensi Sekunder (Sismanto, 2017)					
Tabel 3. 2.	Karakteristik mineralogi untuk klasifikasi batuan beku teroksidasi					
	(Champion dan Heinemann, 1994)					
Tabel 3. 3.	Penyederhanaan batasan mineral sulfida penciri dari tipe endapan					
	porfiri dan epitermal berdasarkan tahapan sulfidasinya (kompilasi dari					
	Einaudi et al, 2003)					
Tabel 3. 4.	Ringkasan karakteristik mineralisasi tipe epitermal (Einaudi dkk,					
	2003; Sillitoe dan Hedenquist, 2003; Sillitoe, 2015)					
Tabel 3. 5.	Perbandingan tipe alterasi yang hadir pada endapan Epitermal (White					
	dan Hedenquist, 1990; Arribas, 1995; Hedenquist dkk, 2000;					
	Simmons dkk, 2005; John dkk, 2018) 86					
Tabel 3. 6.	Tipe dan karaktersitik alterasi Silisik (Hedenquist dkk, 2000					
	dimodifikasi oleh John dkk, 2018)					
Tabel 3. 7.	Karakteristik bentukan permukaan purba pada deposit epitermal					
	(Sillitoe, 2015)					
Tabel 3. 8.	Karakteristik endapan epitermal sulfidasi rendah (Corbett dan Leach,					
	1996)					
Tabel 3. 9.	Contoh dari unsur-unsur penciri yang digunakan dalam mendeteksi					
	mineralisasi. (Learned dan Boissen, 1973 dalam Levinson, 1980).					
Tabel 4. 1.	Tabel data pengukuran base pada tanggal 12 September 2018					
	pengukuran ke-1 hingga ke-10 128					
Tabel 4. 2.	Tabel data pengukuran lapangan Line 13 rover pada tanggal 13					
	September 2018 dari patok atau pos 1500 hingga 1590 130					
Tabel 4. 3.	Tabel perhitungan dan koreksi sebagai pengolahan utama data					
	lapangan yang telah diperoleh berdasar data rover dan base 130					
Tabel 4. 4.	Tabel format data perhitungan hasil analisis FFT 1D yang akan					
	digunakan sebagai grafik analisis fourier transform					
Tabel 4. 5.	Tabel format data dengan beberapa parameter yang akan dimasukkan					
	dan diproses dalam software RES2DNV 142					

Tabel 4. 6.	Tabel nilai Resistivitas Batuan menurut Telford 1976 yang dijadikan			
	acuan sebagai deret interval penyamaan skala warna dan nilai 146			
Tabel 4. 7.	Tabel informasi koordinat X, Y dan elevasi Z dengan kadar beberapa			
	unsur yang diambil sebagai dasar analisis geokimia soil 149			
Tabel 4. 8.	Contoh analisis petrologi mineral RD_01 berupa tabel pada daerah			
	penelitian151			
Tabel 4. 9.	Contoh format data collar yang dimasukkan untuk pengolahan data			
	drillhole atau bor			
Tabel 4. 10.	Contoh format data from to yang dimasukkan untuk pengolahan data			
	drillhole atau bor			
Tabel 5. 1.	Tabel perhitungan estimasi kedalaman lokal dan regional melalui			
	sayatan peta Reduce to Pole D-D' 166			
Tabel 5. 2.	Klasifikasi nilai resistivitas untuk menginterpretasi litologi dan			
	alterasi daerah penelitian			
Tabel 5. 3.	Klasifikasi nilai chargeabilitas untuk menginterpretasi alterasi di			
	daerah penelitian			
Tabel 5. 4.	Tabel kadar maksimum dan minimum pathfinder elements geokimia			
	soil endpan epitermal sulfidasi rendah pada daerah prospek endapan			
	Au-Ag, Cibaliung, Banten			

DAFTAR LAMPIRAN

Lampiran Diagram Pengolahan	. 227
A. DIURNAL CORRECTION (BASE)	. 227
B. ROVER	. 230
Lampiran Peta-Peta Magnetik	. 242
A. Struktur pada Peta Reduce to the Pole	. 242
B. Struktur pada Peta Second Vertical Derivative	. 243
C. Peta Analytic Signal	. 244
Lampiran Gambaran Bawah Permukaan dengan Interpolasi	. 245
Lampiran 2,5D Geomagnetik	. 249
Lampiran Penampang Resisrivitas dan Chargeabilitas	. 250
A. Line 11	. 250
B. Line 12	. 250
C. Line 13	. 250
D. Line 14	. 250
E. Line 15	. 251
F. Line 16	. 251
G. Line 17	. 251
H. Line 18	. 251
I. Line 19	. 252
J. Line 20	. 252
Model Endapan LSE Buchanaan, 1981	. 253
Turunan Reduce to Pole	. 254
Turunan Least Square RES2DINV	. 255
Second Vertical Derivative	. 256