DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
HALAMAN PERSEMBAHAN	V
KATA PENGANTAR	vi
SARI	viii
DAFTAR ISI	X
DAFTAR GAMBAR	xiv
DAFTAR TABEL	xxiii
BAB I. PENDAHULUAN	1
1.1. Latar Belakang Penelitian	1
1.2. Lokasi Penelitian	2
1.3. Ruang Lingkup	2
1.4. Rumusan Masalah	3
1.5. Tujuan Penelitian	3
1.6. Asumsi	4
1.7. Hipotesis	4
1.8. Hasil yang diharapkan	5
1.8.1. Kebaruan	5
1.8.2. Manfaat	5
BAB II. DASAR TEORI	7
2.1. Sistem Panas Bumi Vulkanik Hidrotermal	7
2.2. Manifestasi Panas bumi	
2.3. Geokimia Panas Bumi	9
2.4. Tipe Fluida Panas Bumi	9
2.5. Geoindikator	10
2.5.1. Geoindikator Cl-SO4-HCO3	10
2.5.2. Geoindikator Na-K-Mg	12
2.5.3. Geoindikator Cl-Li-B	13

	2.6. Sumber Air Panas Bumi Menggunakan Metode Geokimia Isotop Stab	il 14
	2.7. Geotermometer Air	15
	2.8. Klasifikasi Batuan Gunungapi	19
	2.9. Petrogenesa Batuan Beku	22
	2.10. Unsur Kimia Major Element	23
	2.11. Tektonik berdasarkan data Geokimia Batuan Beku	24
	2.12. Unsur Kimia Trace Element dan REE	26
BAI	B III METODOLOGI PENELITIAN	29
	3.1. Tahap persiapan	29
	3.2. Tahap Penelitian Lapangan	29
	3.3. Tahap Analisis Laboratorium	31
	3.4. Interpretasi dan Penyusunan Laporan	33
	3.5. Waktu Pelaksanaan	33
BAI	B IV GEOLOGI REGIONAL JAWA TIMUR	35
	4.1. Fisiografi Daerah Jawa bagian tengah dan timur	35
	4.2. Fisiografi Zona Solo	35
	4.3. Stratigrafi Regional Jawa Timur	37
	4.3.1. Stratigrafi Regional Pegunungan Selatan	37
	4.3.2. Stratigrafi Regional Perbukitan Kendeng	
	4.3.3. Stratigrafi Regional Perbukitan Rembang	38
	4.4. Tatanan Tektonik Pulau Jawa dan Zona Solo	39
BAI	B V GEOLOGI DAN PANASBUMI GUNUNGAPI WILIS	43
	5.1. Geologi Regional Daerah Penelitian	43
	5.2. Struktur Geologi Komplek Vulkanik Wilis	48
	5.3. Sejarah Erupsi Komplek Vulkanik Wilis	49
	5 4 Determine Demonstration (Willie	50

6.1. Geomorfologi Daerah Penelitian	52
6.1.1. Morfologi Umum	52
6.1.2. Geomorfologi	53
6.1.3. Pola Pengaliran	57
6.2. Stratigrafi	59
6.2.1. Gumuk Jeding	59
6.2.2. Gumuk Kemlandingan	67
6.2.3. Gumuk Manyutan	76
6.2.4. Gumuk Ngebel	85
6.3. Struktur Geologi	102

BAB VII PETROGENESA KOMPLEK VULKANIK GUNUNGAPI

NGEBEL
7.1. Jenis Batuan108
7.2. Diagram Harker
7.3. Karakteristik Geokimia Trace Elemen118
7.4. Karakteristik Geokimia REE Batuan120
7.5. Afinitas Magma122
7.6. Kedalaman Magma Asal124
7.7. Asal Magma dan Lingkungan Tektonik Berdasarkan Data Unsur Utama. 125
7.8. Asal Magma Berdasarkan <i>Trace Element</i> 127
7.9. Fase Evolusi Komplek Vulkanik Gunungapi Ngebel128
7.9.1. Fase Jeding129
7.9.2. Fase Kemlandingan130
7.9.3. Fase Manyutan132
7.9.4. Fase Ngebel133

BAB VIII GEOKIMIA AIR DAN KARAKTERISTIK PANASBUMI	
8.1. Manifestasi Panasbumi	135
8.2. Geokimia Fluida	138
8.2.1. Karakteristik Geokimia Unsur Anion Kation Fluida	138
8.2.2. Karakteristik Geokimia Isotop Fluida	142

8.2.3. Karakteristik Geokimia REE Fluida	143
8.3. Tipe Fluida	145
8.4. Maturitas Fluida	147
8.5. Asal Fluida	148
BAB IX MODEL KONSEPTUAL SISTEM PANASBUMI	
9.1. Sistem Panasbumi Daerah Telitian	
9.2. Sumber Panas	151
9.3. Reservoir	
9.4. Caprock	155
9.5. Karakteristik Fluida	
9.6. Suhu Reservoir	155
9.7. Penentuan Upflow dan Outflow	
9.8. Jalur Migrasi Fluida	
BAB X KESIMPULAN	159

DAFTAR GAMBAR

Gambar 1.1. Peta Lokasi Penelitian (Citra Google Earth, dan Bakosurtanal 1975)2
Gambar 2.1. Model Konseptual Sistem Panasbumi Vulkanik (Cumming, 2016)8
Gambar 2.2. Model Konseptual Sistem Panasbumi G.Kaba, Kepahiang, Provinsi
Bengkulu contoh tipe sistem panasbumi gunung api strato (Badan
Geologi, 2010)8
Gambar 2.3. Diagram Segitiga Cl-SO4-HCO3 (Giggenbach 1991, dalam
Cumming dan Powell, 2010)11
Gambar 2.4. Diagram segitiga Na-K-Mg (Giggenbach, 1988 dalam Powell dan
Cumming, 2010)13
Gambar 2.5. Diagram Cl-Li-B (Giggenbach., 1991a dalam Powell dan
Cumming.,2010)
Gambar 2.6. Grafik isotop D-18O (Giggenbach, 1992 dalam Powell dan
Cumming, 2010)14
Gambar 2.7. Diagram segitiga Na-K-Mg (Giggenbach, 1988 dalam Powell dan
Cumming, 2010)17
Gambar 2.8. Diagram alir klasifikasi genetik batuan vulkanik (Mcphie, 1993)20
Gambar 2.9. Klasifikasi Batuan Volkanik Berdasarkan Fenokris Modal
(Streckheisen, dkk., 2002)
Gambar 2.10. Klasifikasi IUGS untuk tipe batuan afanitik dan gelas (Le Matire
(1989), dalam Best (2003))
Gambar 2.11. Klasifikasi Batuan Beku Peccerillo dan Taylor (1976)
mengelompokkan jenis magma berdasarkan kandungan K2O dan
SiO2
Gambar 2.12. Diagram TiO2-MnO-P2O5 (Mullen, 1983) untuk melakukan
interpretasi tektonik pembentukan sebuah gunung api
Gambar 2.13. Pola spider diagram pada Mid Oceanic Ridge (MORB), Oceanic
Island (OIB), dan Island Arc
Gambar 3.1. Diagram alir penelitian
Gambar 4.1. Zonasi fisiografi Pulau Jawa bagian tengah dan timur (Modifikasi,
van Bemmelen, 1949)

Gambar 4.2. Fisiografi Zona Solo, yang terbagi menjadi 3 sub-zona. Perhatikan
Zona Blitar hanya berkembang di bagian selatan G. Kelud
(Modifikasi, van Bemmelen, 1949)
Gambar 4.3. Kolom stratigrafi komposit Jawa Timur (Husein, 2016)39
Gambar 4.4. Tatanan Tektonik Pulau Jawa (Martodjo dan Pulunggono, 1994) 41
Gambar 4.5. Unsur-unsur tektonik Jawa Timur (Husein, 2015)
Gambar 5.1. Modifikasi dari Peta Geologi Lembar Madiun (Hartono, dkk, 1992) 44
Gambar 5.2. Korelasi Satuan Peta Geologi Lembar Madiun (Hartono, dkk, 1992)47
Gambar 5.3. Peta geologi regional Madiun Skala 1:100.000 yang disederhanakan
(Hartono, dkk, 1992 dimodifikasi oleh Putra, dkk. 2014)49
Gambar 5.4. Model Konsep Panas Bumi Gunung Wilis (ESDM, 2017) 51
Gambar 6.1. Peta topografi daerah penelitian
Gambar 6.2. Bentuk lahan kawah di LP W119 dengan Azimut N210'E54
Gambar 6.3. Bentuk lahan lereng vulkanik di LP W110 dengan Azimut N277'E55
Gambar 6.4. Bentuk lahan kubah vulkanik di LP W93 dengan Azimut N88'E 56
Gambar 6.5. Bentuk lahan lereng vulkanik di LP W139 dengan Azimut N30'E 56
Gambar 6.6. Peta pola pengaliran daerah telitian
Gambar 6.7. Diagram Roset pada pola pengaliran paralel 1, 2, 3, 4, 5, dan 6 58
Gambar 6.8. Diagram Roset pada pola pengaliran radial
Gambar 6.9. Litologi pada Satuan Piroklastik Aliran Jeding 1 (PAJ1), A) Foto
close up singkapan breksi piroklastik aliran LP W54 dan (B) Foto
singkapan breksi piroklastik aliran pada LP W54 dengan azimut
foto N95'E. C) Foto close up singkapan LP W112 dan (D)
singkapan lapili piroklastik aliran pada LP W112 dengan azimut
foto N135'E61
Gambar 6.10. Profil kasar Satuan Breksi Piroklastik Aliran Jeding 1 pada LP
W54
Gambar 6.11. Litologi pada Satuan Breksi Piroklastik Aliran Jeding 2 (PAJ2), A)
Foto singkapan breksi piroklastik aliran pada LP W54 dengan
azimut foto N95'E dan B) Foto close up singkapan breksi

piroklastik aliran LP W243. C) singkapan lapili piroklastik aliran

pada LP W15 dengan azimut foto N135'E dan D) Foto close up

singkapan LP W15......63

- Gambar 6.15. Profil kasar Satuan Lava Jeding pada LP W59......67

- Gambar 6.20. Profil kasar Satuan Lava Kemlandingan 1 pada LP W108......73

Gambar 6.21. Litologi pada Satuan Lava Kemlandingan 2 (LK2), A). Singkapan	
andesit piroksen pada LP W174 memperlihatkan struktur masif	
dengan azimut foto N283'E, B). Foto close up singkapan andesit	
piroksen LP W1747	4

Gambar 6.23. Profil kasar Satuan Lava Kemlandingan 2 pada LP W174......76

- Gambar 6.28. Profil kasar Satuan Lava Manyutan 1 pada LP W158......82

- Gambar 6.31. Profil kasar Satuan Lava Manyutan 2 pada LP W234......85
- Gambar 6.32. Litologi pada Satuan Breksi Piroklastik Jatuhan Ngebel (PJN), A).
 Kenampakan satuan Endapan Piroklastik Jatuhan Ngebel berupa kontak antara aglomerat dan akresionari lapili pada LP W5 dengan azimut foto N55'E, B). Foto close up kenampakan singkapan akresi lapili LP W5. C). Singkapan aglomerat pada LP W48 dengan azimut foto N35'E, D). Foto close up kenampakan singkapan aglomerat. E).
 Singkapan breksi piroklastik jatuhan pada LP W51 dengan azimut foto N350'E, F). Foto close up kenampakan singkapan breksi piroklastik jatuhan LP W51.
- Gambar 6.33. Profil kasar Satuan Breksi Piroklastik Jatuhan Ngebel pada LP W5.

Gambar 6.38. Litologi pada Satuan Breksi Piroklastik Aliran Ngebel 2 (PAN2),A). Foto singkapan breksi piroklastik aliran pada LP W40 dengan

- Gambar 6.39. Profil kasar Satuan Breksi Piroklastik Aliran Ngebel 2 pada LP

- Gambar 6.42. Profil kasar Satuan Lava Ngebel 1 pada LP W26......97

- Gambar 6.47. Profil kasar Satuan Lava Ngebel 2 pada LP W53...... 102 Gambar 6.48. Peta Geologi dan citra DEM yang memperlihatkan struktur geologi

Gambar 6.49. Kenampakan kelurusan sesar mendatar kiri pada bentang alam
pada LP W83 (A,B) dengan azimut kamera N194'E dan LP W70 (C)
dengan azimut kamera N30'E104
Gambar 6.50. A). Kenampakkan Sesar Mendatar Kiri Talun pada LP W59
dengan azimut N70'E, B). Kenampakan SF dan GF pada LP W59.
C). Kenampakkan Sesar Mendatar Kiri Talun pada LP W55 dengan
azimut N256'E, D). Kenampakan SF dan GF pada LP W55105
Gambar 6.51. Analisis stereografis Sesar Mendatar Kiri Talun
Gambar 6.52. Kenampakkan Sesar Turun Ngebel di lapangan. Kamera
menghadap N273'E106
Gambar 6.53. Analisis stereografis Sesar Turun Ngebel107
Gambar 7.1. Foto sayatan tipis W59 satuan Lava Jeding (LJ) berupa Basalt
(Strekeisen, 1978) perbesaran 40x. Mineral plagioklas (5L), massa
dasar (5F), mineral opaq (1H), dan piroksen (2B)110
Gambar 7.2. Foto sayatan tipis W108 satuan Lava Kemlandingan 1 (LK1) berupa
Andesit (Piroksen) (Strekeisen, 1978) perbesaran 40x. Mineral
plagioklas (7H), Hornblend (6L), massa dasar (3M), mineral opak
(5I), dan piroksen (10L)111
Gambar 7.3. Foto sayatan tipis satuan Lava Manyutan 1 (LM1) berupa Andesit
(hornblenda) (Strekeisen, 1978) perbesaran 40x. Mineral plagioklas
(5I), hornblenda (5E), massa dasar (10G), mineral opaq (3F), kuarsa
(4L) dan piroksen (10D)113
Gambar 7.4. Foto sayatan tipis W53 satuan Lava Ngebel 2 (LN2) berupa Andesit
(Hornblenda)/Dasit (Strekeisen, 1978) perbesaran 40x. Mineral
plagioklas 3K), hornblend (4D), massa dasar (8F), mineral opak
(9K), kuarsa (10F) dan piroksen (6G)114
Gambar 7.5. Diagram Harker (Unsur Utama) memperlihatkan proses diferensiasi
magma117
Gambar 7.6. (A). Hasil plotting spider diagram Primitive Mantle (Thompson RN,
1982) daerah telitian, (B). Pola Umum spider diagram Primitive
Mantle (Thompson RN, 1982) 120

Gambar 7.7. Digram laba-laba normalsasi kondrit unsur tanah jarang dari Sun
dan McDonough (1989) dari batuan vulkanik Komplek Gunungapi
Ngebel (Gumuk Jeding, Gumuk Kemlandingan, Gumuk Manyutan,
dan Gumuk Ngebel)121
Gambar 7.8. Grafik klasisfikasi batuan beku berdasarkan TAS Diagram (SiO2 vs
(Na2O+K2O), dalam % berat) didapatkan hasil Basaltic andesite,
Andesite, dan Dacite (after LeBas et.al., 1986; IUGS, 1989)123
Gambar 7.9. Diagram afinitas magmatik menurut Peccerillo dan Taylor (1976) 124
Gambar 7.10. Lingkungan tektonik sampel Daerah Wilis dan sekitarnya
berdasarkan diagram TiO2–MnO–P2O5 menurut Mullen, (1983)126
Gambar 7.11. Hubungan seri magma dan lingkungan tektoniknya (Wilson, 2007).
karakter dari lingkungan tektonik daerah penelitian127
Gambar 7.12. Hasil plotting asal magma berdasarkan unsur jejak 2xNb, Zr/4, dan
Y (Meschede, 1986)128
Gambar 7.13. Urutan Stratigrafi dan Fase Evolusi Magmatisme Komplek
Gunungapi Ngebel129
Gambar 7.14. Ilustrasi diagram blok sejarah geologi Fase Jeding (tanpa skala)130
Gambar 7.15. Ilustrasi diagram blok sejarah geologi Fase Kemlandingan (tanpa
skala)132
Gambar 7.16. Ilustrasi diagram blok sejarah geologi Fase Manyutan (tanpa skala). 133
Gambar 7.17. Ilustrasi diagram blok sejarah geologi Fase Ngebel (tanpa skala)134
Gambar 8.1. Manifestasi Mata air panas Padusan
Gambar 8.2. Manifestasi Mudpool Banyulirang
Gambar 8.3. A). Manifestasi Batuan Teralterasi Padusan, B). Manifestasi Batuan
Teralterasi Banyulirang137
Gambar 8.4. Diagram SiO2 vs SO3 memperlihatkan anomali SO3 terhadap
fragmen batuan di lokasi manifestasi panasbumi137
Gambar 8.5. Grafik δ18O vs suhu
Gambar 8.6. Grafik δD vs suhu143
Gambar 8.7. Diagram laba-laba normalisasi kondrit dari Thompson (1982) dari
sampel fluida dan batuan beku vulkanik didaerah penelitian 145

Gambar 8.8. Diagram segitiga HCO3-Cl-SO4 menurut Giggenbach (1991) untuk
penentuan tipe dan kematangan fluida147
Gambar 8.9. Diagram segitiga Na-K-Mg (Giggenbach, 1988) untuk
mengestimasi suhu reservoir panas bumi serta penentuan kematangan
fluida148
Gambar 8.10. Grafik isotop D-18O (Giggenbach, 1992 dalam Powell dan
Cumming, 2010)149
Gambar. 9.1. Model Konseptual Sistem Panasbumi Komplek Gunungapi Ngebel
Gambar. 9.2. Fenomena Air Kawah Ngebel yang dicemari gas belerang152
Gambar 9.3. Diagram segitiga Li-B-Cl menurut Giggenbach (1991) untuk
penentuan sumber fluida panas bumi153
Gambar. 9.4. Penampang Gaya Berat yang menampilkan kondisi bagian bawah
permukaan Gunung Wilis bagian Timur dari Komplek Vulkanik
Gunung Wilis Bagian Barat (ESDM, 2017)154
Gambar. 9.5. Hasil cross-plot Na-K/Mg-Ca menunjukan tempratur reservoir
berkisar 264°C - 304°C 156
Gambar. 9.6. Jalur Kelurusan Struktur Geologi yang berada disekitar manifestasi
panasbumi daerah penelitian158

•

DAFTAR TABEL

Tabel 1.1 Posisi peneliti terhadap hasil peneliti terdahulu
Tabel 2.1. Klasifikasi sistem panas bumi berdasarkan tempratur
Tabel 2.2. Tata nama endapan piroklastik berdasarkan ukuran butir dan genetik
(Modifikasi Fisher (1961) & Schmidt (1981) dalam Mcphie (1993)21
Tabel 2.3. Karakteristik seri magma berasosiasi dengan kondisi spesifik kondisi
tektonik (Wilson, 2007)26
Tabel 2.4. Ringkasan parameter kunci Trace Element yang berguna dalam
evaluasi model petrogenetik (Green (1980), dalam Wilson (1989))27
Tabel 3.1. Rincian Waktu Penelitian
Tabel 6.1. Klasifikasi lereng berdasarkan van Zuidam (1985) dalam Bermana
(2006)
Tabel 7.1. Tabel modal mineralogi lava pada daerah telitian
Tabel 7.2. Data analisis kimia unsur utama batuan beku vulkanik di daerah
telitian115
Tabel 7.3. Data analisis kandungan Trace Element batuan beku vulkanik di daeah
telitian119
Tabel 7.4. Data analisis kandungan REE batuan beku vulkanik di daeah telitian120
Tabel 7.5. Data analisis kedalaman pembentukan magma daerah penelitian
berdasarkan kandungan SiO2 dan K2O 125
Tabel. 8.1. Hasil pengukuran tempratur terhadap sampel air dilapangan
Tabel 8.2. Hasil analisis anion kation sampel air di Sumber Mata Air Dingin 139
Tabel 8.3. Hasil analisis anion kation sampel air di Mata Air Panas Padusan 140
Tabel 8.4. Hasil analisis anion kation sampel air di Mud Pool Banyulirang141
Tabel 8.5. Hasil analisis anion kation sampel air di Telaga Ngebel
Tabel 8.6. Hasil analisis kandungan REE sampel air dan batuan didaerah
penelitian143
Tabel 9.1. Estimasi temperatur dengan geotermometer Na/K, SiO2, K-Mg, dan
Na-K-Ca156
Tabel 9.2. Rasio Unsur Anion Kation air daerah telitian (Nicholson, 1993)