Nama Author 1	:	Dr. Jaka Purwanta, S.T., M.Si., C.E.I.A
Jurusan	:	Teknik Lingkungan FTM UPN "Veteran" Yogyakarta
Nama Journal	:	International Journal of Civil Engineering and Technology (IJCIET)
Status Journal	:	Scoupus Q2
Alamat link	:	http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=11&IType=2
Judul Paper	:	Dust control on andesite stone processing industry
Edisi	:	Volume 11, Issue 2, February 2020, pp. 114-119, Article ID : IJCIET 11 02 012

ecure <mark>www.ia</mark>	eme.com/ijciet,	/issues.asp?JType=IJCIE	T&VType=1	1&IType=2			
AEME	IAEME Publicatio	орен (11 👱 <u>Online Pa</u>	Access	Enter Ession	Home Search Keyword 19514 Articles	Site Map Care	ers Contact <mark>Q Search</mark> rnals
CALI	FOR PAPER Oct	ober - October 2020 ISSUE	L	Submit an Article	G Selec	t Language 🔻	
About IAEME	Authors Information	International Journals P	rocessing Charges	Quality of Journals	Download	Journal	Subscriptio
Bibliometrics DownLoad (3 Weeks) DownLoad (6 Weeks) DownLoad (6 Months) DownLoad (1 Year)	; 117 : 189 : 544 : 635				Q2 Sign 2019 0.29 powered by scimago	ioys uurtile r.com	
S.No Article I	D	Title of the Paper		Authors	Pages	Downloads	How to cite this article
1 UCIET_11_0	STUDY OF THE YACOUBE HAM 2_001 SIDI SLIMANE - FDF Abstract F	QUALITY OF THE THERMAL SPRING N MA AND ITS IMPACT ON THE HAMMA P MOROCCO Download	IOULAY AITSI S/ DOUAE, KHARRI MOHAN DRISS	ALAH AND ELKHACHINE ISSATI TOURIA, EL M KHADIJA, TAYEBI IMED AND BELGHYTI	1 - 11	91	View
2 IJCIET_11_0	2_002 ACOUSTIC PAN ENVIRONMENT	EL CHICKEN FEATHER WASTE ALLY FRIENDLY Download	ANSARI BAHARI ASNIAV MUHAM	JLLAH, RAMLI RAHIM, JDDIN HAMZAH, IATY KUSNO AND IMAD TAYEB	12 - 22	48	View

secure | www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=11&IType=2

2	IJCIET_11_02_002	ACOUSTIC PANEL CHICKEN FEATHER WASTE ENVIRONMENTALLY FRIENDLY Download PDF Abstract Reference	ANSARULLAH, RAMLI RAHIM, BAHARUDDIN HAMZAH, ASNIAWATY KUSNO AND MUHAMMAD TAYEB	12 - 22	48	View
3	IJCIET_11_02_003	COST ANALYSIS OF GEOPOLYMER CONCRETE OVER CONVENTIONAL CONCRETE Download PDF Abstract Reference	B. RAJINI, A.V. NARASIMHA RAO AND C.SASHIDHAR	23 - 30	41	View
4	IJCIET_11_02_004	COMPRESSIBILITY BEHAVIOUR OF COMPACTED SOILS - HYPERBOLIC MODELLING Download PDF Abstract Reference	U. VENKATA RATNAM and K. NAGENDRA PRASAD	31 - 42	58	View
5	IJCIET_11_02_005	EVALUATION OF THE ENGINEERING PROPERTIES OF FLY ASH-BASED GEOPOLYMER BRICK'S Download PDF Abstract Reference	SI-HUY NGO	43 - 51	40	View
6	IJCIET_11_02_008	DEFLECTION BEHAVIOUR OF SLAB PAVEMENT WITH PILE ON SOFT SOIL Download PDF Abstract Reference	ADOLF SITUMORANG and PRATIKSO, ABDUL ROCHIM	52 - 59	32	View
7	IJCIET_11_02_007	INVESTIGATING THE ABILITY OF MICROBIAL SOLAR CELL FOR WASTEWATER TREATMENT Download	ZAHRAA RAAD KHANJER, AHMED HASSOON ALI, NAGAM OBAID KARIEM	60 - 67	28	View
8	IJCIET_11_02_008	GROUNDWATER LEVEL FORECASTING MODEL IN TROPICAL PEATLAND USING ARTIFICIAL NEURAL NETWORK Download PDF Abstract Reference	IMAM SUPRAYOGI, ARI SANDHYAVITRI, NURDIN, JOLEHA, WAWAN, AZMERI	68 - 78	30	View
9	IJCIET_11_02_009	TIDAL SEA WATER MEA SUREMENT MONITORING SYSTEM Download PDF Abstract Reference	UMAR KATU, ACHMAD ZUBAIR, SAHBUDDIN A.K	79 - 87	33	View
10	IJCIET_11_02_010	MONTE CARLO SIMULATION APPLICATIONS FOR CONSTRUCTION PROJECT MANAGEMENT Download PDF Abstract Reference	MANOJ KUMAR SHARMA	88 - 100	29	View
11	IJCIET_11_02_011	FINITE ELEMENT ANALYSIS OF OUT-OF-PLANE BENDING OF PRECAST CONCRETE SANDWICH PANELS Download PDF Abstract Reference	MOHAMED F. GOMAA, WALID A. ATTIA and AHMED H. AMER	101 - 113	19	View

t secure	www.iaeme	.com/ijciet/issues.asp?JType=IJCIET&VTy	ype=11&IType=2			
11	IJCIET_11_02_011	FINITE ELEMENT ANALYSIS OF OUT-OF-PLANE BENDING OF PRECAST CONCRETE SANDWICH PANELS Download PDF Abstract Reference	MOHAMED F. GOMAA, WALID A. ATTIA and AHMED H. AMER	101 - 113	19	View
12	IJCIET_11_02_012	DUST CONTROL ON ANDESITE STONE PROCESSING INDUSTRY Download PDF Abstract Reference	J. PURWANTA, SUHARWANTO and T. RISTYOWATI	114 - 119	19	View
13	IJCIET_11_02_013	STUDIES ON MECHANICAL AND THERMAL PROPERTIES OF EPOXY/FLY ASHINANOFILLER NANOCOMPOSITE: A REVIEW Download FDF Abstract Reference	SHILPI TIWARI, KAVITA SRIVASTAVA, C L GEHLOT and DEEPAK SRIVASTAVA	120 - 139	20	View
14	IJCIET_11_02_014	EXPERIMENTAL STUDIES ON PROPERTIES OF SULFUR MODIFIED BINDER WITH AGING Download PDF Abstract Reference	KUMKUM PRIYADARSINI and JHUNARANI OJHA	140 - 155	21	View
15	IJCIET_11_02_015	RESPONSE OF TALL BUILDING SUBJECTED TO WIND LOADS UNDER INTERFERENCE CONDITION Download PDF Abstract Reference	BHARAT S. CHAUHAN and ASHOK K. AHUJA	156 - 163	20	View
16	IJCIET_11_02_016	PERFORMANCE EVALUATION OF HYBRID FRC USING ADAPTIVE NEURO-FUZZY TECHNIQUE Download PDF Abstract Reference	S. SYED IBRAHIM, S. KANDASAMY, S. PRADEEPKUMAR	164 - 173	12	View
17	UCIET_11_02_017	STRESS ANALYSIS IN RIGID ROADWAY PAVEMENT WITH DISCONTINUITIES SUBJECTED TO VEHICLE MOVEMENT Download PDF Abstract Reference	SOFIA W. ALISJAHBANA, SAFRILAH, JOUVAN CHANDRA PUTRA PRATAMA, ADE ASMI, IRENE ALISJAHBANA, BUNTARA STHENLY GAN	174 - 182	30	View
18	IJCIET_11_02_018	MODIFICATIONS MODELING OF THE FRIEDLANDER'S BLAST WAVE EQUATION USING THE 6TH ORDER OF POLYNOMIAL EQUATION'S Download PDF Abstract Reference	H. K. BUWONO, S. W. ALISJAHBANA, NAJID	183 - 191	24	View
19	IJCIET_11_02_019	VERTICAL HOLINESS IN A LEVEL BUILDING DESIGN Download PDF Abstract Reference	I MADE SASTRA WIBAWA, I WAYAN REDANA, PUTU ALIT SUTHANAYA, NGAKAN MADE ANOM WIRYASA	192 - 202	22	View
20	LICIET 44 02 020	OPTIMIZING OF THE CONSUMER DISPUTE SETTLEMENT AGENCY AS A NON-COURT AGENCY TO RESOLVE THE CONSUMER DISPUTE Download	A. JOKO PURWOKO, R. BENNY PIYANTO, RAMBANG EKO	202 240	10	View

International Journal of Civil Engineering and Technology (IJCIET) Volume 11, Issue 2, February 2020, pp. 114-119, Article ID: IJCIET_11_02_012 Available online at http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=11&IType=2 ISSN Print: 0976-6308 and ISSN Online: 0976-6316 © IAEME Publication

DUST CONTROL ON ANDESITE STONE PROCESSING INDUSTRY

J. Purwanta*

Environmental Engineering Department, UPN "Veteran", Yogyakarta, Indonesia

Suharwanto

Environmental Engineering Department, UPN "Veteran", Yogyakarta, Indonesia

T. Ristyowati

Industrial Engineering Department, UPN "Veteran", Yogyakarta, Indonesia *Corresponding Author: jakapurwanta_tlupn@yahoo.co.id

ABSTRACT

The research aims to make efforts to control dust generated in the processing industry of stones. This industrial location in the village Hargomulyo, Kokap, Kulon Progo, Yogyakarta. This study background that the andesite stroke processing industry. especially in the stone crusher tool with the flow of exhaust gas, dust arise in large numbers. Their media scattered wind the wind-borne dust is so dispersed into the environment around the site and it is dangerous to public health. It is necessary to control the spread of dust. The research was conducted in the laboratory and simulation using dust extraction equipment fogging method. Optimized variable is the diameter of the nozzle, while the others held constant magnitude replications, then the results are averaged. After doing research, the research data obtained that the optimum conditions mass of dust captured by the mist that is the nozzle diameter of 1.50 mm with an average mass of dust that can be captured by the mist that is 13327.33 g and an average efficiency value 70.69 %. Equation of a line that states the relationship between the variable diameter of the nozzle by the symbol X Masses of dust captured by the mist by the symbol Yie Y = 392.X3 + 3969.9X2 + 10090X+5542.4 the percent error 0.77%, while the equation stating the relationship between variables within the sprayer to the tools by the symbol X with the value of efficiency by the symbol Yie Y = 1,2333X3 - 13,528X2 + 40,199X + 33.878 with percent average error of 0.54%. An increase in the efficiency of dust extraction tool is then expected spread of dust into the environment as a result of the processing of andesite can be minimized so that the air quality around the site will be maintained well.

Keywords: Processing, distribution, control, misting, efficiency.

Cite this Article: J. Purwanta, Suharwanto and T. Ristyowati, Dust Control on Andesite Stone Processing Industry. *International Journal of Civil Engineering and Technology*, 11(2), 2020, 114-119.

http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=11&IType=2

1. INTRODUCTION

Andesite stone processing industry, especially in the stone crusher tool, will give rise to dust. The wind is blowing the dust will spread to the entire environment around the site. According Suhariyono and Wiyono [5], some of the main sources of dust in the atmosphere is a blast of sea water, soil, household combustion, bushfires, motor vehicles, organic dust from plant materials, and industrial processes. Dust from industrial processing of solid materials in the dust that is of concern. Dust that has a greater ability to penetrate into the lungs is dust smaller than 10 lm. Dust larger than 10 µm are filtered out by the nose hairs, while particles smaller than the size of the bubbles can get into the lungs and exhibit Brownian motion and do not hit the wall. Particles smaller than 2.5 µm (PM2,5) will stick to the lungs due to bubbles can not be filtered out in the upper respiratory system and this condition will be able to lower gas exchange,PM10 particulate materials include particles of aerodynamic diameter less than 10 lm. The dust particles will result in increasingly poor health can reach the lower respiratory tract or the so-called X-ray. It goes it will be attacked by ARI (Acute Respiratory Infection). Reduced public income due to an ARD public can not work so it does not have an income from their tertiary impact of the dust, The decrease in the level of the community's economy is the continuing impact of the decline in public revenue, According Dimitriou and Christidou [1], environmental problems which resulted in a high temperature effects that affect public health, natural ecosystems, animal life, and the man-made environment, caused by air pollution. Air pollution also led to the greenhouse effect, acid rain, climate change, etc.,

Another opinion explains that the dust caused lung disease chronic obstructive, impaired lung function, restrictive lung disease, lung carcinoma, pneumoconiosis, stomach, and colon. (Ather Sultan [6]). Impaired lung function caused by exposure via inhalation of dust particles in the respiratory tract. In accordance with the nature of chemistry, physics, and biology of these dust particles then the dust will accumulate in the respiratory tract. (Nurbiyantara [3]). Dust termed TSP defined as PM (Particulate Material) with aerodynamic diameter not more than 30 lm. (Naqpure [2]).According Otaru et al [4], Hardware controllers dust which is used in the plant that is the Electrostatic Precipitator (ESP) and Bag Filters (BF) and the process used in this study, as the media dust catcher on the appliance dust extraction method of fogging is fog , (Otaru et al [4])

2. MATERIALS & EXPERIMENTAL PROCEDURES

2.1. Research Sites

Location of research in the mining area of andesite and andesite stone processing industry PT. Indokarya Mitra Sejahtera in Hargomulyo, Kokap, Kulon Progo, Yogyakarta.

2.2. Materials and Equipment

This study using materials and equipment such as dust, water, nozzles, tubes, generating tools fog, and dust gauges.

2.3. Method

2.3.1. Perform optimization of operating conditions of equipment on the variable diameter nozzle sprayer on the dust catcher equipment fogging method

In this study, the value of temperature, humidity, and air quality changes is an influential factor in the formation of fog. Dust extraction equipment misting method can be seen in Figure 1.

Dust Control on Andesite Stone Processing Industry

Information: A: Pipes AE: exhauster B: Pipe BP: Tolkit D: Dust Collector

Figure 1. The circuit schematic tool on the fogging method

(Source: the author, 2020)

2.3.2. Dust catcher Laboratory Scale Test

Material and dust extraction tool fogging method will be tested by a laboratory scale. As the independent variable is the diameter of the nozzle (Dn) whereas as fixed variables, namely the distance between the sprayer to the tool (L = 2 m), airspeed in column (Vu = 430 m per min), the distances between the top end of the chimney with the gauge (Z = 100 cm), and the velocity of the water going into the sprayer (Va = 110 ml / min).

2.3.3. Data Analysis

The granules are very small mist managed to capture very fine dust. Cement dust capture rate can be determined by ANOVA analysis with an error rate of less than 5% percent.

The percentage reduction in dust emissions can be calculated as the level of efficiency that is as follows:

% Reduction (efficiency) = 100% - 100 x avg. dust caught fog

avg. before fogging

Efficiency indicates the level of performance of these tools are calculated based on the amount of dust captured by the mist.

3. RESULTS AND DISCUSSION

Work efficiency of the dust catcher tool misting method can be calculated and shown in Tables 1 and 2.

 Table 1. Dust Caught by fog on the Tools Dust Catcher fogging method with Variable Nozzle

 Diameter (Dn)

No.	Nozzle diameter	The	Dust mass (g)			
	(mm)	measurement sequence to	before misting	before misting		
1	1.80	1	19450	7460		
		2	19 375	7380		
		3	19400	7420		
2	1.50	1	18 760	5523		
		2	18 915	5530		

116

J. Purwanta, Suharwanto and T. Ristyowati

		3	18 880	5520
3	1.20	1	15760	5480
		2	15700	5540
		3	15570	5510
4	0.90	1	13400	5670
		2	13360	5750
		3	13700	5850
5	0.60	1	11200	5520
		2	11425	5650
		3	11360	5875

Source: Sports Data, 2020

Table 2. The dust	mass average C	aught by fog a	nd working	efficiency I	Dust Catcher	Equipment
fe	ogging method	average with V	ariable Noz	zle Diamete	er (Dn)	

No.	Nozzle diameter (mm)	The measurement sequence to	The dust mass is caught fog (g)	The average mass of dust caught in the fog (g)	Efficiency (%)	Average efficiency (%)
1	1.80	1	11990	11490.00	58.69	
		2	11995		58.15	58.27
		3	11 980		57.96	
2	1.50	1	13237	11988.33	61.65	
		2	13 385		61.91	61.77
		3	13360		61.75	
3	1.20	1	10280	13327.33	70.56	
		2	10160		70.76	70.69
		3	10060		70.76	
4	0.90	1	7730	10166.67	65.23	
		2	7610		64.71	64.85
		3	7850		64.61	
5	0.60	1	5680	7730.00	57.69	
		2	5775		56.96	57.32
		3	5485		57.30	

Source: Sports Data, 2020

Based on experimental data with a variable nozzle diameter will be graphed to see the relationship between the size of the nozzle diameter with a mass of dust that can be captured by the mist and the efficiency of dust extraction tool such fogging method.

Figure 2. The relationship between the size of the nozzle diameter with a mass of dust caught in the fog

Dust Control on Andesite Stone Processing Industry

Figure 3. The relationship between the size of the diameter of the nozzle with the efficiency of the appliance. penangkap dust fogging method

Based on the graph above it can be seen that the larger the diameter of the nozzle, the more the mass of dust that can be captured by the mist generated in the dust catcher tool fogging method. Optimal conditions occur in the nozzle diameter of 1.50 mm with the average mass of dust that can be captured by the mist that is 13327.33 g but the larger nozzle diameter is 1.80 mm, it is the mass of the dust is caught will be less. This condition will affect the efficiency of the dust extraction tool fogging method. The larger the diameter of the nozzle used in the sprayer, the higher the efficiency of dust extraction tool fogging method. Optimal conditions occur in the nozzle diameter of 1.50 mm with the efficiency of 70.69%, but on a larger nozzle diameter is 1.80 mm, it is the efficiency of the tool will be decreased.

While analysis of the quality of the fog dispraykan associated with a variable nozzle diameter is as follows:

1)	1,80 mm	:	fog sprayer largely shaped so that the water mist is formed is not perfect.
2)	1.50 mm	:	Sprayer mist formed, the exact position of the air flow which carries dust so that it can optimally capture dust.
3)	1.20 mm	:	Sprayer haze that is less than perfect it can not bind the dust perfectly so heavy that there is little difference.
4)	0.90 mm	:	Spayer haze that is less than perfect it can not bind the dust perfectly so heavy that there is little difference.
5)	0,60 mm	:	The fog that has not materialized sprayer caught fog then very little dust.

Based on the analysis above, the optimal conditions for variable nozzle diameter of 1.50 mm occurs on the average mass of dust that can be captured by the mist that is 13327.33 g and the efficiency of 70.69%.

4. SUMMARY

The optimum operating conditions in cement dust extraction tool meteode fogging occurs on the size of the nozzle diameter of 1.50 mm with an average mass of dust that can be captured by the mist that is 13327.33 gand the value of the average efficiency of 70.69%. In such operating conditions, dust catcher tool misting method can capture fine dust optimally. This can reduce the spread of dust into the environment so as to improve air quality.

118

ACKNOWLEDGMENTS

Fogging method used in dust extraction tool is the latest innovation tool that can be developed environmentally-friendly well from the operation and equipment variables to obtain products of better efficiency.

REFERENCES

- [1] Dimitriou, A. and Christidou, V., 2011, Causes and Consequences of Mix Pollution and Environmental Injustice As Critical Issues For Sciences and Environmental Education, p.218, The Impact of Air Pollution on Health, Economy, Environment, and Agricultural Sources, In Tech.
- [2] Naqpure, A.S., et al, 2014, "Human Health Risks In National Caiptal Territory Of Delhi due to Air Pollution", p.373, Atmospheric Pollution Research, India.
- [3] Nurbiyantoro, S., 2010, "*Pengaruh Polusi Udara Terhadap Fungsi Paru-Paru Polisi Lalu Lintas Di Surakarta*", hal.44-45, UNS, Surakarta Dampak Sosial-Ekonomi Pabrik Semen Puger Di Kecamatan Puger Kabupaten Jember, Jember.
- [4] Otaru, A.J., Odigure, J.O., Okafor, J.O., and Abdulkareem, A.S., 2013, Investigation into particulate pollutant concentration from a cement plant: a case study of Obajana Cement Plc, Lokoja, Nigeria, *IQSR Journal of Environmental Science, Toxicology, and Food Technology (IQSR-JESTFT)*, Volume 3, Issue 2, pp.89-96, Nigeria.
- [5] Suhariyono, G. dan Wiyono, M., 2003, "Distribusi Diameter Partikel Debu PM₁₀ dan PM_{2,5} dalam Udara Sekitar Kawasan Pabrik semen Citeureup, Bogor", Prosiding Seminar Aspek Keselamatan Radiasi dan Lingkungan Pada Industri Non Nuklir 18 maret 2003, Jakarta.
- [6] Sultan, A., 2004, "*Health Hazards of Cement Dust*", Saudia Medical Journal 25 (9):1153-9.

119