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Abstract

Following the adoption of the plan of PT Adaro Indonesia to increase its coal production from 36 to 38 Mtpa
in 2008, the pit wall slope stability will be one of the important factors to be monitored. The wall stability
can be assessed, as mining proceeds, by high-quality displacement monitoring and sophisticated data
analysis.

Robotic Theodolite is a system that is designed for automatic slope displacement monitoring. The system can
produce displacement-versus-time graphs quickly and accurately and, compared to the manual system, fewer
persons are required. The Robotic Theodolite system can also provide information of rock mass behaviour,
as well as data for predicting the stability of the mining slopes. Furthermore, by applying the threshold limit
value (THLV) to the system, an early warning system can be constructed. However, the THLV data available
in PT Adaro Indonesia are derived from case histories from different rock masses and they cannot be
directly imported into the Robotic Theodolite system. The data acquired by the Robatic Theodolite system at
the Tutupan mine must therefore be validated by rheology modelling through laboratory creep shear tests, as
the rheology model can be utilised to theoretically predict the failure time of the rock mass under a constant
load.

1 Introduction

Maintaining the staﬂlity of steep slopes is an important geotechnical engineering component of any open pit
mining operation. Monitoring the surface displacement of a rock mass slope makes available valuable
information on the dynamics of any movements or changes within the rock mass structure. The magnitude,
velocity and acceleration of displacements can then provide input data to assess the stability of the slope and
rock mass behaviour. If the movements can be detected early, this will obviously help the geotechnical
engineers to anticipate any worst-case scenario that could affect the slopes.

The authors’ technique for monitoring slope displacements, especially in low wall applications, uses total
station instruments. This method prd&ides information such as slope angle and distance between prisms as
well as prisms and reference point. As with any observational technique, total station system instruments
have both, advantages and disadvantages associated with their use. The main advantage of using total station
instruments is that it provides three-dimensional (3D) coordinate information of the points that are measured.

2 Background

Tutupan mine is one of the PT Adaro Indonesia open pit coal mines which currently consists of the Pama,
Sis, Buma and RA pits (Figure 1). Pama pit is excavated in a better quality rock mass than that of RA pit.
The Pama pit will be developed down to RL-204 mRL and will be the deepest pit in the Tutupan mine.
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Having experienced minor slope failures of the low wall within the Pama, presumably associated with rock
mass deformation, it can be concluded that this pit will need slope stability monitoring of its low wall.

Figure 1 Tutupan coal mine site overview

Currently, there are over 42 km” of pit walls exposed within the four operational pits and they are equipped
with approximately 70 slope monitoring prisms (SMPs) installed on low wall slopes which are deemed to be
vulnerable to slope failure. The monitoring systems of these low wall movements employ a total station
system consisting of digital theodolites and a data acquisition system. Information collected from the prism
monitoring is used to track down the development and extent of any unstable conditions along the slopes and
this enables the geotechnical department to define the magnitude of the problems and to determine
subsequently, the potential failure mechanisms.

This kind of monitoring is undertaken in real time which then allows a rapid assessment of low wall stability
to be carmried out. This permits optimal coal production to be achieved whilst maintaining the safety of
personnel and equipment operating at the floor of the slope.

On 20" March, 2008, a significant slope failure occurred at the Sis pit (Figure 2). Although no injuries were
recorded, this event was considered to be a catastrophic failure. This has, again, made the management aware
of the need for geotechnical monitoring to give early waming of the possible deterioration in slope stability
over the lifetime of a slope.
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Figure 2 Low wall failure in the SIS pit of Tutupan coal mine

3 Geology and hydrology

The coal deposits within this mine site have been tilted and folded due to the regional tectonics.
Approximately
5 to 60 m thick lignite to sub-bituminous coal seams are exposed on the surface stretching for about 20 km
along the Tutupan Hills. The dip of the coal seams varies from 20 to 70° towards the southeast. The coal
bearing strata encompasses coal seams, sandstone and mudstone and individual thicknesses vary along the
20 km outcrop.

The sandstone is described as predominantly fine to medium sand, interspersed irregularly with pebbly
layers. According to the ISRM (1978) classification, the strength (UCS) of weak sandstone is likely to be in
the range of 2.44 to 22.4 MPa, whilst medium strong sandstone is in the range of 26.8 to 46.4 MPa. Minimal
cementation can be observed within the sandstone layer (UCS = 0.13-0.27 MPa) so that the sandstone layer
is defined as uncemented sand and very friable.

The mudstone exhibits varying contents of silt and organic constituents. The strength of the mudstone varies
between weak rocks (1.38 to 22.4 MPa) to medium strong (27.8 to 28.8 MPa). In some places the mudstone
also takes the form of soft clay (UCS = 0.013 MPa).

The sandstone in the area is an aquifer and the mudstone is aquiclude. Prior to the deep mining operation, the
undisturbed groundwater table was around 75 to 95 mRL. As the mine gets deeper, the groundwater has been
lowered to the level of the deepest excavation floor by a water drainage system using vertical and horizontal
dewatering bores.

4  Deformation monitoring of slope

The simplest way to measure the displacement at slope surface is by observing the evolution of slope
failure and this enables the geotechnical engineers to observe and analyse the kinematics of the rock slope
deformation. Ultimately, an engineer could develop appropriate corrective measures to control such slope
movement.

As mentioned earlier, the slope displacement monitorfg is based on the information obtained from recording
of about 70 SMPs using the total station system. The latest total station instruments are equipped with servo-
motors and automatic target recognition algorithms. Fewer personnel are required to retrieve the data

SHIRMS 2008, Perth, Western Australia 453




Low Wall Slope Monitoring by Robotic Theodolite System Likely to Contribute to Increased S. Saptono et al.
Production of Coal in PT Adaro Indonesia

recorded by the total station system. As this total station system works without involvement of many people,
this system is called Robotic Theodolite. The essential parameters obtained from this measurement system
are displacements of vertical, lateral and transversal directions (Dunnicliff and Green, 1993). In addition, by
using this system any slope movements exceeding the previously specified threshold limit values (THLV),
will be identified automatically and directly to the base station as an early warning alert.

The Tutupan mine slope monitoring system uses the total station instruments manufactured by Leica
TCRP1203 and TCRA1201 and they are installed in high wall Pama pits namely Pondok Hijau and Pondok
Biru respectively. Two Leica Theodolites each monitor 16 prisms at Pondok Hijau and 48 prisms at Pondok
Biru (Figure 3).

o

o

Prism survey 14

T e o e e e e AT e L R N I T T

Cross
section

Figure3 Low wall Pama pit showing prisms on Pondok Hijau groups

Due to the time frame limitation and practicality, this paper concentrates on the monitoring of two prism
surveys within one section (north east 20° — south west 200°) at the Pondok Hijau, i.e. prisms numbered 01
and 14 which will then also represent the slope movements at the -204 mRL. The prisms numbered 01 and
14 represent the dumping slope and virgin slope, respectively. At the time of monitoring, the floor level on
these slopes were -48 mRL, equivalent to slope height of 148 mRL with low wall slope of 14° (Figure 4).
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1

- Prism survey 01 and 14
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Figure 4 Cross section A — A’ on survey prism No. 01 and 14 in low wall pit Pama

Figures 5 and 6 present curves of displacement versus time for prisms 01 and 14 respectively. Based on the
monitoring of the Robotic Theodolite for the two prism survey lines the average lateral displacement rate
over a seven month period (June 07 to December 07) was 10 mm/day. It is however, important to note that a
rainfall event that yielded 106 mm in five hours, resulted in a significant increase of the lateral displacement
rate, as indicated by the sudden rise in lateral displacement from 0.4706 to 0.6855 m and from 0.4879 to
0.6855 m, for the prism surveys of 01 and 14, respectively. On the other hand, ground settlements of 1.1 and
0.6 m were noted for the 01 and 14 prism surveys, respectively, during this same period of time.

As expected, Figures 5 and 6 show that the slope displacement (8) increases with time (t). If the load above
prism survey points remains constant and the displacement of these points increase with time, such
displacement behaviour could then be regarded as a creep behaviour phenomenon. Constant load however,
would only prevail on slopes in an inactive dumping area where the excavation process does not produce a
load reduction. These arguments indicate that creep phenomenon applies for slope stability analysis
purposes.

This information would not have been useful unless the data was manipulated to obtain the displacement rate
per month or per period of a range of rainfalls. This should subsequently be validated with the rheology
equation which can be derived from a series of shear creep tests in a laboratory (Kramadibrata et al., 2007).

The rheology equation actually describes the deterioration process of a geo-material which involves a
reduction in both cohesion and angle of friction over a period of time. In order to be validated, the rheology
equation obtained from the laboratory test and the displacement rate data obtained from field measurements,
accuracy, time series, and consistency of slope displacement data can only be currently obtained by means of
a Robotic Theodolite.
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Figure 5

Figure 6

S. Saptono et al.
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5  Using threshold limit values (THLYV) to detect the onset of slope failure

The intention of having THLYV is that, if the displacement rate exceeds the THLV, the early waming system
will be activated. Despite the fact that no geotechnical study associated with the displacement measurements
using the Robotic Theodolite has been done in investigating the most appropriate standard to be applied, the
THLV put forward by the Golder (2004) based on data obtained from Pama pit. It must be stated that, in the
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absence of slope movement data from the specific pit being monitored, it is acceptable to use data acquired
from similar pits elsewhere as an interim measure, until sufficient local data and site-specific experience has
been acquired.

The Golder (2004) THLVs are divided into four time conditions namely, (1) absolute check, (2) long time,
(3) short time and (4) regression check as given in Table 1. For example, if we had an average displacement
longitudinal of 15 mm/day the slope could be considered safe. On the other hand, when the displacement
reaches 250 mm over 12 hours the activity should be stopped in order to release the load or mass of the
slope.

Table 1 Limit values longitudinal displacement of different rate for different risk scheme proposed
by Golder (2004)

Interval Limit 1 Limit 2 Limit 3

(hours) (m) (m) (m)
Absolute check 0.020 0.040 0.100
Short time check 24 0.015 0.020 0.075
Long time check 72 0.030 0.060 0.150
Regression check 12 0.050 0.100 0.250
Remarks Safe Caution Stop

It appears that the displacement rate of 10 mm/day recorded by the Robotic Theodolite confirms the field
observation that the slopes remain in safe condition. Nevertheless, displacement rate of 10 mm/day obtained
from slope movement monitoring using crack-meter installed at the north east area within the Buma pit
(Table 2) was noted prior to slope failure. This information actually contradicts the THLV of Table 1
suggesting that a displacement rate up 15 mm/day would be safe. In fact, the crack-meter data represented
that the Buma pit, which is mostly dominated by mudstone, has slightly different bearing strata to that of the
Pama pit. Consequently, the THLV from the Pama pit proposed by Golder (2004) could not continue to be
used to analyse slope displacement at the Buma pit, once site-specific data had been obtained from that pit.

Table 2 Displacement rate of crack-meter monitoring on Buma pit

CM 135 CM 136
Date ) ) ) ) ) )

Reading Change Cumulative Daily Reading Change Cumulative Daily
12 October 2006 0 0 0 0.0 0 0 0 0.0
13 October 2006 37 37 37 0.0 49 49 49 0.0
14 October 2006 49 12 49 12.0 59 10 59 10.0
15 October 2006 N/A N/A N/A N/A N/A N/A N/A N/A
16 October 2006 N/A N/A N/A N/A N/A N/A N/A N/A

17 October 2006  Failure

As noted earlier the slope displacement phenomenon recorded by prism surveys 01 and 14 indicated the
trend of creep behaviour. Referring to Kramadibrata and Kushardanto (2002), Wattimena et al (2006), and
Kramadibrata et al. (2007), it has become obvious that creep behaviour affects the stability of rock mass
slope, especially within an area where weathering takes place over the year. In some instances, geotechnical
engineers may have been able to predict the failure of certain slopes. Observation has also indicated that the
failures apparently happened a few months or weeks prior to, or after, the failure time predicted or calculated
by the most suitable rheology equation.

As soon as the ample data that has been recorded by the rheology system and field observations become
available, a comprehensive and reliable failure prediction system is the likely result. If remediation is
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implemented immediately, when early warnings are given by the system, there is a good chance of
minimising the impact of slope failures. This will obviously lead to the maintenance of the coal production.

From the foregoing analysis and, combined with the fact that the Buma and RA pits predominantly consist of
mudstone which is known as even weaker than sandstone (the overburden of Pama pit), it is therefore
appropriate to use the Robotic Theodolite monitoring system in these two pits further to its use in the Pama
pit.

6 Conclusions

Coal production could increase the potential for slope failures. In order to anticipate this, comprehensive
slope monitoring becomes essential and this can be performed by using the Robotic Theodolite. The
monitoring system of the Robotic Theodolite is connected to a network with appropriate software that
enables the geotechnical engineers to further process the data to give any desired kind of presentation.

By putting THLV into the data processing early warning system, early warnings can then be transmitted
when the displacement rate exceeds the THLV, thus indicating that the slope is no longer safe. The current
THLV developed by Golder (2004) from Pama pit cannot be generally applied to assess the stability of all
slopes at the Tutupan coal mine because of the different regimes of rock mass. However, THLV suggested
by Golder (2004) may be applicable to the Pama pit. Site-specific data is required in order to obtain
appropriate THLV for the Buma and RA pits.

In order to develop the basis for comprehensive slope stability analyses applicable to the various rock masses
at the Tutupan coal mine, shear testing to establish creep behaviour is recommended to be carried out on the
different rock types that exist in the Adaro mine.
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