Proceedings of International Symposium on Earth Science and Technology 2019 December 5 - 6, 2019 Shiiki Hall Kyushu University, Fukuoka, Japan Organized by Cooperative International Network for Earth Science and Technology (CINEST) Sponsored by MITSUI MATSUSHIMA CO.,LTD. KAJIMA FOUNDATION YASHIMA ENVIRONMENT TECHNOLOGY FOUNDATION ASSOCIATION FOR DISASTER PREVENTION RESEARCH Assisted by The Mining and Materials Processing Institute of Japan Supported by Mining and Materials Processing Institute of Japan (MMIJ) Kyushu Branch MMIJ-Division of Coal Mining Technology # Contents | Paper
No. | Paper Title | Authors | Page | |---------------|---|--|------| | Premary
 | Underground Coal Gasification Development in Japan | Ken-ichi Itakura | 1 | | Prenary
II | Acid Mine Drainage Mitigation Using Industrial
Byproducts | Amde M, Amde | 3 | | A-01 | Three-Dimensional Gravity Modeling for Imaging the
Geothermal Reservoir Border in Eburru Geothermal
Field, Kenya | Investors Advision of Manufacture Contracts of | 13 | | A-02 | Optimization of geothermal Binary Unit by Energy,
Exergy and Sustainability Index: Comparative study of
Olkaria Geothermal Field in Kenya and Chiweta
Geothermal field in Malawi | Alvin Kiprono Bett, Dyson Moses, Saeid | 19 | | A-03 | Multi-dimensional Resistivity Imaging from
Magnetotelluries Data and its Geological Interpretation
in Kiejo-Mbaka Geothermal Field, South-West
Tanzania. | Tumbu Lucas Boniface, Hideki Mizunaga | 25 | | A-04 | Numerical Simulation of Thermosiphon's Sustainability
for Estimating Energy and Cost with Closed-Loop
Geothermal Power Generation Using SCCO2 | Zhenyu Ma, Masaatsu Aichi | 32 | | A-05 | Geochemistry and origin of the host rocks of Mbesa
Cu-Ni-PGE prospect, Southern Tanzania | Hidaya HASSAN, Kotaro YONEZU, Akira
IMAI, Thomas TINDELL, Koichiro
WATANABE | 36 | | A-06 | Mineralogy and mineral associations of platinum group
elements in the ultramafic cumulates of Molopo Farms
Complex at the Tubane area, southern Botswana | Jacob KAAVERA, Akira IMAI, Kotaro
YONEZU, Thomas TINDELL, Kenzo
SANEMATSU, Koichiro WATANABE | 42 | | A-07 | Characteristics of ore-forming fluids at the Hakurei
Site, Izena Hole, middle Okinawa Trough | Yushi Sekiya, Nobuhiro Mukae, Kotaro
Yonezu, Thomas Tindell, Jun-Ichiro
Ishibashi, Tatsuo Nozaki, Akira Imai | 47 | | A-08 | Petrography and mineralogy of tin pegmatite deposit in
the Yamon-Kazat area, southern Myanmar | Hiroki Kinoshita, Kyaw Thu Htun, Kotaro
Yonezu, Akira Imai | 51 | | A-09 | Relation between concentration of Sc and Ni and
bedrock in Ni laterite deposit, Berong in Palawan
Island, Philippines | T. Yamada, K. Yonezu, Jillian Aira S. Gabo-Ratio, R. A. Santos, Marc Raymund L. Zamora | 55 | |------|---|--|----| | A-10 | Mineralogical study of chimney and mound sulfide ore at the Gondo hydrothermal field in the Okinawa Trough | Yuuki Tada, Kotaro Yonezu, Thomas
Tindell, Shu-hei Totsuka, Akira Miyamoto,
Jun-lchiro Ishibashi, Junichi Miyazaki, Ryo
Okumura, Yuto Iinuma, Koichi Takamiya | 59 | | A-11 | Geochemistry, Mineralization and Fluid Inclusion
Study of The Bayan-Uul Porphyry Cu-Au-Mo Deposit,
Central Mongolia | Bilegsaikhan Bolor-Erdene, Kotaro
Yonezu, Akira Imai, Thomas Tindell,
Jargalan Sereenen | 63 | | A-12 | Mineralization and Fluid Inclusion Microthermometry
in EE3 Gold Prospect, Sagaing Region, Northern
Myanmar | Htet Sandar Aung, Kotaro Yonezu, Akira
Imai, Thomas Tindell, Koichiro Watanabe,
May Thwe Aye | 67 | | A-13 | MINERALOGY AND GEOCHEMISTRY OF TAGUN -KHIN-DAN GOLD MINERALIZATION AREA IN SLATE BELT OF CENTRAL MYANMAR | Sai PYAE SONE, Kotaro YONEZU,
AKIRA IMAI, Kotchiro WATANABE,
Kenzo SANEMATSU | 72 | | A-14 | Environmental impact of amino acids on the stability of layered double hydroxides bearing 39SeO2-4 | Mengmeng WANG, Keiko SASAKI | 78 | | A-15 | Novel ultrasonic-assisted modulated hydrothermal synthesis of Zr-furnarate framework (MOF-801) for adsorption of antimonate in aqueous solutions: A comparison study with conventional solvothermally synthetic methods | Shunsuke Imamuru, Radheshyam Rama
Pawar, Keiko Sasaki | 82 | | A-16 | Suppression of anionic pollutants released from fly ash
by different Ca additives and its application to cement. | Shingo NAKAMA, Keiko SASAKI,
Ryoichi TAKAGI, Tadahiro KAWAHARA | 85 | | A-17 | Characterization and Flotation Separation of Bitumen from Indonesian Asbuton | Aldiyansyah, Bonita Dilasari, Ismi
Handayani | 89 | | A-18 | Strontium ion (Sr2-) separation from water using nanoscale zero valent iron-zeolite composite | Tamer SHUBAIR, Osama ELJAMAL | 95 | | A-19 | Experimental Study on Correlation Between
Spontaneous Combustion and Surface CO ₂ Flux in
Abandoned Coal Mine Gouf | Yongjun WANG Xinoming ZHANG,
Hemeng ZHANG Wei DONG Kyuro
SASAKI | 97 | | A-20 | "Leave the Carbon in the Ground": in-situ combustion
by injecting air into abandoned shale reservoirs | Kazuki Sawayama, Kewen Li, Roland
Home | 103 | |------|--|--|-----| | A-21 | Study of Models of Hydration Force to Calculate the
Wettability of CO ₂ /Brine/Mineral System | Masashige Shiga, Masaatsu Aichi, Masao
Sorai, Hiromi Honda | 109 | | A-22 | The influence of polymorphs of CaCO ₃ on CO ₂ mineralization | Yutian Zhang, Takeshi Tsuji, Fei Jiang | 115 | | A-23 | Numerical Study of the Effects of Interfacial Tension
on Production of Foamy Oil by CO ₂ -gas Foaming | Sovanborey MEAKH, Chanmoly OR | 118 | | A-24 | In-Situ Gelation. Characterization and Pore Blocking
Performance In Heterogeneous Reservoir | Samneang Chea, Sasaki Kyuro, Ronald
Nguele, Sugai Yuichi | 124 | | A-25 | Nanofluid Flooding for Enhanced Oil Recovery: Study
on Ion Tracking of Produced Fluid | Tola Sreu, Kyuro Sasaki, Ronald Nguele,
Yuchi Sugai | 129 | | A-26 | Alteration of Physical Properties of Heavy Crude oil in
High Temperature Range by Adding Fine Particles | Vatana Mom, Kyuro Sasaki, Ronald
Nguele, Yuichi Sugai | 132 | | B-01 | Performance of Open Fly Ash Channel: Result of
Laboratory Study | Sendy Dwiki, Rudy Sayoga Gautama,
Ginting Jalu Kusuma, Mohammad Salman
Said | 136 | | B-02 | Study of Wetland for Management of Acid Mine
Drainage on the Porphyry Copper-Gold Mine in
Indonesia | Waterman Sulistyana Bargawa, Untung
Sukamto, Muhammad Nurcholis, Maharani
Rindu Widara, Agus Panca Adi Sucahyo | 142 | | B-03 | Geochemical Characterization of Rare Earth Elements
(REE) in Acid Mine Drainage from Coal Mine | Abie Badhurahman, Rudy Sayoga
Gautama, Ginting Jalu Kusuma | 148 | | B-04 | Application of Isotope Methods for Identifying
Groundwater Flow Paths into Closed Mine Sites in
Japan | S. Matsumoto, M. Ono, I. Machida | 152 | | B-05 | Analysis on the Geological Factors and
Countermeasures of Geological Risk Events in
Mountain Tunnel | Yoshio UDAGAWA | 156 | | B-06 | Study of Ground Reaction Curve (GRC) In
Non-Circular Shallow Twin Tunnels Using Finite
Element Methods and Convergent Measurement
Results | Priagung WIDODO, Simon Heru | 162 | | B-07 | Stability Analysis of Sill Pillar on Underground Mining
Sublevel Stoping with Analytical Methods | Calvin Leonard, Simon Heru Prassetyo,
Ganda Marihot Simangunsong | 168 | |------|---|---|-----| | B-08 | Designing a Drill-and-Blast Tunnel Excavation Method
to Minimize Vibration Impact on the Surrounding
Structures | Ganda M. Simangunsong, Simon H. Prassetyo, Jordi Fatah | 174 | | B-09 | Subsidence Calculation Model of Different Zone after
Mining Based on Optical Fiber Sensor | Meng Fanfei, Takushi Sasaoka, Hideki
Shimada, Akihiro Hamanaka, Sugeng
Wahyudi, Piao Chunde | 178 | | B-10 | Geochemistry and Petrography Characteristics of
Magmatic Rare Earth Elements Deposit in Belitung
Island with Special Reference to S-type Tanjungpandan
Granite | Muhammad Dzulfikar Faruqi, Faishal
Arkhanuddin, Natalia Aritonang, Angga
Widya Yogatama, Sutarto | 183 | | B-11 | First Step of Gold Mining Exploration To Discovery:
Determining Area of Prospect by Intersection of GIS &
Geology Information | Bella Wijdani Sakina, Zulfahmi Roskha,
Trifatama Rahmalia, Abdul Bari, Bronto
Sutopo | 191 | | B-12 | Characteristic of Gold Mineralization of the Santoy
Vein, Sangilo Mine, Baguio Mineral District,
Philippines | Naoto Kugizaki, Kotaro Yonezu, Akira
Imai, Jillian Aira S. Gabo-Ratio, Eric S.
Andal | 197 | | B-13 | Geometry of Paleovolcanic Area Groundwater Basin
System Based On Geoelectric & Geological Data in
Wediombo beach and Surrounding, Gunungkidul
Regency, Yogyakarta Province | Arbananta, Avellyn Shinthya Sari, Aditya
Rizky Wibowo, Agung Prayoga, Suko
Prakoso, Abdul Aziz Makarim, Haikal
Fadhil Pamungkas, Anggita Mahyudani
Rkt, Favian AvilaRestiko | 201 | | B-14 | Analysis of Physical and Mechanical Rock Properties
Based on Geological Domain in the Nickel Laterite
Zones at PT Antam Tbk Site Pomalaa, Southeast
Sulawesi | Februanti Tricabyani, Riko Ardiansyah,
Barlian Dwinogara | 205 | | B-15 | An Evaluation of Excavatability Criteria for
Sedimentary Rocks: A Correlation from Mechanical
Properties | Oktarian W. Lusantono, Prasodo D.
Prabandaru. Shofu R. Haq, Barlian
Dwinagaru | 210 | | B-16 | PROBABILISTIC OF PLANE FAILURE USING MONTE CARLO SIMULATION IN SLOPE STABILITY ANALYSIS WITH LIMIT EQUILIBRIUM METHOD | | 216 | | B-17 | Overburden Dump Stability in Coal Open Pit Mine with Weak Coal-Bearing Strata | Tri Karian, Budi Sulistianto, Ginting Jalu
Kusuma | 222 | |------|--|---|-----| | B-18 | Effect of Firing Pattern on the Size Distribution of
Rock Fragmentation in Open Pit Mine | Takahiro SHIOMORI, Takashi SASAOKA,
Sugeng WAHYUDI, Akihiro
HAMANAKA,Hideki SHIMADA | 228 | | B-19 | Fundamental Study on Recycling of Returned Concrete
as Ground Materials: Strength Properties of Modified
Soils Produced from Returned Concrete | Ryota ICHINOHE, Tomoaki SATOMI,
Hiroshi TAKAHASHI | 233 | | B-20 | Experimental Evaluation of Shear Strength Parameters of Fiber-Cement-Stabilized Soil | Kuzumi RYUO, Haruka KUBOTA
Tomouki SATOMI, Hiroshi TAKAHASHI | 238 | | B-21 | Study on Soft Soil Reinforcement by Liquefied
Stabilized Soil Method using Paper Sludge Ash based
Geopolymer | Vu Minh CHIEN, Tomouki SATOMI,
Hiroshi TAKAHASHI | 244 | | B-22 | Experimental Investigation of Effect of Gravel Content
on Soil Failure Process and Excavating Force during
Soil Excavation by Bucket | Kohei SHIOTA, Tomouki SATOMI,
Hiroshi TAKAHASHI | 250 | | B-23 | Quality improvement of Cambodian ceramic using
Kandal clay incorporating with rock dust for ceramic
brick | Chea Monyneath, Bun Kim Ngun | 255 | | B-24 | Revisiting the Method of Groundwater Flux Estimation
from Underground Temperature Profile Considering the
Joule-Thomson Effect and Gravitational Potential
Energy Dissipation | Kento Akitaya, Masaatsu Aichi | 261 | | B-25 | Spatial-Temporal Analysis of Landscape Ecological
Connectivity Changes in Makassar City | Nurul Masyiah Rani HARUSI, Yasuhiro
MITANI, Yuki OKAJIMA, Hisatoshi
TANIGUCHI | 266 | | B-26 | Relationship between land use changes during 1900-2014 and Kyushu heavy rain disaster in 2017 | Lu TIAN, Yasuhiro MITANI, Yuki
OKAJIMA, Satoru KIMURA, Taiga
TABUCHI | 273 | | C-01 | Comparison on the Catalytic Mechanism of Activated
Carbon in Bioleaching of Chalcopyrite and Enargite | Keishi Oyama, Kyohei Takamatsu, Hajime
Miki, Keiko Sasaki, Naoko Okibe | 280 | | C-02 | Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacteria on the oxidation of arsenite | Ryohei NISHI, Santisak KITJANUKIT,
Kohei Nonaka, Naoko OKIBE | 282 | | C-03 | Importance of sulfur oxidizing microorganisms for
chalcopyrite bioleaching with saline water | Hanski NOGUCHI, Naoko OKIBE | 284 | |---------|---|--|-----| | C-04 | Sequential Bio-treatment of Carbonaceous Silver Ore | Diego M. Mendoza Flores, Kojo T.
Konadu, Ryotaro Sakai and Keiko Sasaki | 286 | | C-05 | Environmental Impact of Au Artisanal Mining on
Plampang River, Yogyakarta, Indonesia | Dewi Ayu Kusumaningsih, Barlian
Dwinagara, Shofa Rijalul Haq | 290 | | C-06 | Heavy metal removal from aqueous solution using
Na ₂ S treated sheep wool at different concentration | Solongo Enkhzaya, Koichiro Shiomori,
Bolormaa Oyuntsetseg | 297 | | C-07 | How Does Organizational Culture Support Company
Safety Performance, Evidence from Indonesia | Yosep Irsana, Yoshiyuki Matsuura | 301 | | C-08 | Outliers Treatment in the Grade Determination for
Economic Feasibility (Case Study: Limestone Mining) | Hidayatullah Sidiq, Aldin Ardian, Shofa
Rijalul Haq | 307 | | C-09 | Economic Valuation of Mining Project Using Fuzzy
Real Option Method: Case Study of Underground Gold
Mine | Fadhila Achmadi ROSYID, Arjo Prawoto
Wibowo, Sari Uly SIBARANI, Lilik Eko
WIDODO, Mohamad Nur HERIAWAN | 312 | | C-10 | Automatic Interpretation of Nankai Trough Seismic
Data Using Convolutional Neural Networks (CNNs) | Ahmad. B Ahmad. Takeshi Tsuji | 318 | | C-11 | SLOPE CONSERVATION IN GUCI GEOTHERMAL
AREA, SLAMET MOUNTAIN, CENTRAL JAVA,
INDONESIA BASED ON GEOLOGY AND
GEOPHYSICAL DATA | Avellyn Shinthya Sari, Arhananta, Anggita
Mahyudani Rkt, Sari Bahagiarti
Kusumayudha | 322 | | C-12 | Development of Magnetotelluric 1-D Sparse Inversion | Yosuke Kiyomoto, Hideki Mizunaga,
Toshiaki Tanuka | 328 | | 0-13 | The research on the application of Hilbert-Huang
Transformation to time series magnetotelluric data | Hao Chen, Hideki Mizunaga, Toshiaki
Tanaka | 332 | | UT 178 | Potential Assessment of Gas hydrate and Free gas
reservoir in Kumano Basin, Japan | Hiroki Matsur, Takeshi Tsuji | 336 | | C-14-60 | Fault detection using pre-trained Convolutional Neural
Networks by synthetic seismic data | Liu Yuhan, Takeshi Tsuji | 340 | | 5-16 | passes seistine velocity variation on Kyushu Island | Fernando Lawrens Hutapen, Takeshi Tsuji,
and Tatsunori Ikeda | 346 | | C-17 | Analysis of Seismic Waves from Continuous and
Controlled Seismic Signal System in Kyushu Area | Ryosuke Matsuura, Tatsunori Ikeda,
Takeshi Tsuji | 350 | |------|--|--|-----| | C-18 | Impact of Seasonal Rainfall on Crustal Pore Pressure:
Insight from Monitoring of Seismic Velocity Changes | Rezkia Dewi Andajani, Takeshi Tsuji,
Tatsunori Ikeda, Fernando Lawrens
Hutapea | 354 | | C-19 | Water content delineation using Ground-Penetrating
Radar Q Tomography | Wahyudi W. Pamadi, Djoko Santoso, Warsa
Warsa | 358 | | C-20 | Comparison of the Deformation Characteristics of
Lowwall on Pit C2 and Pit 7 West Based On Radar
Monitoring Data – PT Berau Coal | Nurbaiti Melistia Akhmadi, Ridho Kresna
Wattimena | 362 | | C-21 | An Analysis of Materials Adhesivity Level on
Excavator's Bucket in Open Pit Coal Mining | Prasodo D. Prabandanz, Tubagus Hendario,
Oktarian W. Lusantono, Bartian
Dwinagara, Shofa Rijalul Haq | 368 | | C-22 | Analyses of Seasonal Temperature Difference in
Underground Surrounding Rocks - Field Verifications | Jianwei Cheng | 374 | | C-23 | Visible-Shortwave Infrared Reflectance Spectroscopy
Features of Samples from Mamuju, Indonesia
Containing Radioactive Minerals | Arie Naftali Hawu Hede, Yogi Prianata,
Syafrizal, Mohamad Nur Heriawan, Heri
Syaeful | 380 | | P-01 | Coal Geology and Coal Depositional Environtmental of
Keban Area, Lahat Sub-District, South Sumatera,
Indonesia | Basuki RAHMAD, Sugeng RAHARJO,
EDIYANTO, Fadhil ZUHDI, Indra
DARMAWAN | 384 | | P-02 | The Affect Coal Facies to the Adsorption of Methane
Gas in Coal of Tanjung Formation at Arangalus Area,
South Kalimantan Province, Indonesia | Sugeng, Sari BAHAGIARTI, Heru
SIGIT PURWANTO, Basuki RAHMAD | 389 | | P-03 | Numerical Analysis on Retained - GOAF Side - Gate
Road in a Weak Rock Properties of Longwall Coal
Mine | Harry KUSUMA, Takashi SASAOKA,
Hideki SHIMADA, Akihiro
HAMANAKA, Pisith MAO, Sugeng
WAHYUDI | 394 | | P-04 | Preliminary Study of Mine Closure for Underground
Mines in Myanmar | Cho Thae Oo, Takashi SASAOKA, Hideki
SHIMADA, Akihiro HAMAKA, Sugeng
WAHYUDI, Tun Naing | 400 | | P-05 | Investigation on Slope Stability of Internal Dump of the
"Baganuur" Open Pit Mine in Mongolia | Bilguun Enkhbold, Hideki Shimada,
Takashi Sasaoka, Akihiro Hamanaka,
Sugeng Wahyudi | 404 | |-------|--|---|-----| | P-06 | Numerical Study on Rock-Breaking Effect of Shield
Hob in Contact Surface of Upper Soft and Lower Hard
Strata | Cheng Jone Com Vin Thou Olore Va | 407 | | P-07 | Design of Contiguous Pile Wall and Lateral Supporting
System for Deep Excavation at Chroy Changva Region,
Phnom Penh City, Cambodia | Tongon LANN Chandson ENG Vorber | 413 | | P-08 | Upgrading the quality of Cambodian ceramic using
Kampong Cham clay incorporating with rock dust for
ceramic roof tile | | 419 | | P-09 | Gas Production Characteristics and
Plasma-Desulfurization in Hybrid Underground Coal
Gasification (H-UCG) System | Kazuhiro TAKAHASHI, Ken-ichi
ITAKURA, Akihiro HAMANAKA, Gota
DEGUCHI, Jun-ichi KODAMA | 425 | | P-10 | Oil Migration Counteracting Against Chemical
Osmosis in Stagnant Pores: A Potential Mechanism of
Low Salinity Waterflooding | Mikio Takeda, Mitsuo Manaka, Yoshito
Nakashima | 427 | | P-11 | Strategies and problems of groundwater monitoring in radioactive waste disposals | Kazumasa Ito | 431 | | P-12 | Characterization and acid leaching behavior of spent
Mo/Co-catalyst | Ya TANAKA, Naoko OKIBE | 435 | | P-13 | Recovery of Ilmenite from Sand Using Wet
High-Intensity Magnetic Separator (WHIMS) | Lytheng THORNG, Nallis KRY, Somsak
SAISINCHAI | 437 | | P-14 | Study of selective flotation of copper sulfide and As containing copper minerals | Yuta Orii, Gde Pandhe Wisnu Suyantara,
Hajime Miki, Keiko Sasaki, Tsuyoshi
Hirajima, Shigeto Kuroiwa, Yoji Aoki | 443 | | P-15. | Decontamination of zinc leach residues by recovering
lead and zinc: An approach of concurrent dissolution
and cementation using chloride solution and aluminum
powder | Marthias SILWAMBA, Ryota
HASHIZUME, Ilwan PARK, Sangbee
JEON, Meki CHIRWA, Kawawa BANDA,
Imasiku NYAMBE, Carlito Baltazar
TABELIN, Mayumi ITO, Naoki
HIROYOSHI | 445 | | P-16 | The effects of co-existing metal ions on the recovery of
gold from ammonium thiosulfate solutions using
aluminum and activated carbon | Sanahar Japa Characidas Dalahi Illinois | 449 | |------|--|--|-----| | P-17 | Selective coating for improving MoS2/CuFeS2 Flotation | Ilhwun Park, Seunggwan Hong, Mayumi
Ito, Naoki Hiroyoshi | 452 | | P-18 | Polymerization state of silicic acid adsorbed on anion exchange resin 29Si MAS NMR relaxation time | Takaaki Chuuman, Kinnosuke Eguchi,
Marina Akinaga, Daisuke Kawamoto,
Kotaro Yonezu, Koichiro Watanabe,
Takushi Yokoyama | 455 | | P-19 | Landsat 8 and Airborne Geophysical Data
Interpretations to Investigate the Radioactivity Hazards
at El Gilf El Kiber Area, South Western Desert, Egypt | Tamer Farag, Nehal Soliman, Atef El
Shayat, Hidiki Mizunaga | 458 | | P-20 | A study on detection of anomalous groundwater level using Machine Learning | Soshi KAMITAKI, Yasuhiro FUJIMITSU,
Jun NISHIJIMA, Tatsuya WAKEYAMA | 462 | | P-21 | The Understanding of Volcanoclastics Model in Tebing
Breksi Geotourism By Digital Outcrop Model | Muchamad Ocky Bayu NUGROHO,
Muhamad SYAIFUDIN, Bambang
YUWONO, Basuki RAHMAD | 466 | | P-22 | Identification of Characteristics Tsunami Pacitan Bay,
East Java Province, Indonesia Based on Surface and
Subsurface Data | Dissa Firlina Aya Chania, Alviani
Permatasari, Arhananta, Aditya Rizky
Wibowo, Yuli Wibowo | 470 | | P-23 | Structural Control of Gunungsewu Karst Landform
Based on Geomorphological Aspect Guide | Favian Tiko, Nazwa Khoiratun Hisan,
Arhananta, Hambang Kuncoro Prasongko | 476 | | P-24 | Tectonic history in Hidaka-oki basin and Sanriku-oki
basin estimated by sedimentation rates using 3D
seismic reflection data | Kosuke Takahashi, Takeshi Tsuji | 480 | | P-25 | An Enhanced Edge Detection Technique for Potential
Field Data; Case Study of Western USA | Mohammad SHEHATA, Hideki
MIZUNAGA | 484 | | P-26 | Resistivity measurement technique using capacitor electrodes | Soichiro Hashimoto, Toshiaki Tanaka,
Hideki Mizunaga | 488 | | P-27 | Subsurface Void Investigation using Ground
Penetrating Radar in the Garuda Wisnu Kencana
(GWK) Bali | Warsa Warsa, Jeoreinhard Munandar, IB
Suanduna Yogi | 492 | | P-28 | Non-linear inversion study for long grounded wire
TDEM Data | Warsa Warsa, Rai Sudha Prabawa | 496 | |------|---|--|-----| | P-29 | Study on elucidation of hydrothermal system around
Shishimuta caldera | Ryo TODA, Yasuhiro FUHMITSU, Jun
NISHIJIMA | 501 | | P-30 | Research on improving accuracy of heat discharge
estimation system by observing fumarolic gas | Tetsuya YAMAMOTO, Yasuhiro
FUJIMITSU, Jun NISHIJIMA | 504 | | P-31 | Subsurface structure analysis in Beppu area by gravity
survey to clarify of hot spring eruption mechanism | Ryosuke TSUTSUL, Jun NISHIJIMA,
Yasuhiro FUJIMITSU | 508 | | P-32 | Monitoring geothermal reservoir by measuring gravity
change in Ogiri geothermal area | Kentaro SHIMODA, Jun NISHIJIMA,
Yasuhiro FUJIMITSU | 512 | | P-33 | Geothermal Structure in the Western Part of Kirishima
Volcano | Hiroki SHIMADA, Yasuhiro FUJIMITSU,
Jun NISHIJIMA | 516 | | P-34 | Aluminum Species in Acidic and Neutral pH
Geothermal Water | Sachi MASUNAGA, Kotaro YONEZU,
Koichiro WATANABE, Takushi
YOKOYAMA | 520 | | P-35 | GEOTHERMAL MANIFESTATION IDENTIFICATION IN ARJOSARI SUBDISTRICT PACITAN REGENCY, EAST JAVA PROVINCE, INDONESIA BASED ON SURFACE AND SUBSURFACE DATA | Anggita Mahyudani Rkt, Dinantina Ahyani
W, Aditya Rizky Wibowo, Arhananta,
Avellyn Shinthya Sari | 525 | | P-36 | Geological Mapping and Interpretation of Wild Boar
Prospect Area in Ratanakiri Province, Cambodia | Chantra CHHORN, Chandoeun ENG | 531 | | P-37 | Geology and fluid inclusion studies on the Shwetagun
gold mineralization at Yamethin Township, Mandalay
Region, central Myanmar | Myo Kyaw HLAING Kotaro YONEZU,
May Thwe AYE, Day Wa AUNG, Koichiro
WATANABE | 537 | | P-38 | Physicochemical Condition of Gold Mineralization in
the Masara Mine, Southeastern Mindanao, Philippines | Ryota Kokubu, Akira Imai, Kotaro Yonezu,
Thomas Tindell | 542 | | P-39 | Study on Applicability of Sealing Material with Low
Specific Gravity for Suction Mining of Rare-Earth Rich
Mud | Yoshihiro TAGASHIRA, Takashi
SASAOKA, Akihiro HAMANAKA,
Hideki SHIMADA, Keisuke TAKAHASHI | 546 | d | P-40 | Study of Critical Concentration on Coul Dust-Air
Explosion in 10 L and 20 L Closed Chambers | Nuhindro Priagung Widodo, Ahmad Ihsan, Anggraini Widiya Astuti, Raden Muhammad Imam K., Alan Gassadesna Arisandi, Budi Sulistianto, Sugeng Wahyudi | 549 | |------|---|--|-----| | P-41 | Cost Estimation Model for Open-pit Nickel Mining in
Indonesia | Lidana Erfiandri, Sri Marliana, Aldin
Ardian, Oktarian W Lusantono, Barlian
Dwinagara, Shofa Rijalul Haq | 555 | | P-42 | Mineralogical and Geochemistry Characteristic of
Hydrothermally Altered Rock at Guci Geothermal
Fields, Tegal, Central Java | Abdul Aziz Makarim, Dwi Fitri Yudiantoro,
Iwan Setiawan, dan Andrie Al Kausar | 562 | | P-43 | LANDSLIDE SUCEPTIBILITY INDEX OF
BRONDONG AREA AND SURROUNDINGS,
KECAMATAN BRUNO, PURWOREJO DISTRICT,
CENTRAL JAVA | Suko Prakoso, Arhananta, Aditya Rizky
Wibowo, Anggita Mahyudani Rkt, Prod.
Dr. Ir. Sari Bahagiarti K. M.Sc, Dr. Ir. Heru
Sigit Purwanto | 569 | # An Evaluation of Excavatability Criteria for Sedimentary Rocks: A Correlation from Mechanical Properties Oktarian W. Lusantono¹, Prasodo D. Prabandaru¹, Shofa R. Haq¹, and Barlian Dwinagara² ¹PT. Studio Mineral Batubara (Mining Consultant), Yogyakarta 55581, Indonesia ²University of Pembangunan Nasional "Veteran" Yogyakarta, Yogyakarta 55283, Indonesia #### ABSTRACT Study of excavability criterion has been derived from empirical methods based on the specific condition of materials. This study aimed to evaluate excavatability criterions based on standard methods such as Franklin et al., 1971; Pettifer and Fookes, 1994;, and Equipment Handbook (Caterpillar and Komatsu). This study was undertaken through data collection on a similar geological condition on underdevelopment coal mining site. Sedimentary rocks formation, such as claystone, sandstone, and siltstone were the main rock-type investigated in this study. The parameters observed were Point Load Index (PLI), Fracture Index (FI), Unconfined Compressive Strength (UCS), and seismic velocity. The parameters were obtained from field testing and laboratory testing according to ASTM and ISRM standard. The investigated materials had a maximum value of PLI, UCS, and seismic velocity of 0.55 MPa, 15.75 MPa, and 2803 m/s, respectively. The evaluation of the prediction methods in this study undertaken by looking at the correlation of the selected parameters on the same set of samples. This study is continued on further study to provide more solid evaluation criterions. #### INTRODUCTION The prediction of rock excavations criteria usually stated as excavatability/rippability criterion. The correct prediction methods are subjects to the data sets and empirical approach on specified location around the world. The more understanding of rock behavior through its material properties for excavatability criterions will lead to the economic efficiency of the projects. This study aimed to evaluate of excavatability criterions that commonly used in practices such as Franklin, Broch and Walton, 1971; Pettifer and Fookes, 1994; and equipment manufacture handbooks. This study is part of a series research of rippability criterions evaluations on the selected area of study. The research includes: - Data collection and evaluation of rock properties. - Database creations and analysis to determine the dominant factors which influence selected criterion. - Productivity evaluation on the on-going project in the same location where the database has taken. - Formulation and simulation of the proposed rippability criterion using numerical and mathematical modeling. This research presented in this paper only focus on point (a) — the datasets obtained from a coal mining site concession in East Kalimantan Province, Indonesia. ## METHODOLOGY The primary methodology of this research was the indirect methods of excavatability criteria. Data collection obtained through primary methods; geological drilling in the designated research area. The sample obtained from geological drilling was selected according to the material type, depth, and core length. Field studies and laboratory tests are described in Table 1. Table 1. Field Studies and Laboratory Tests | Field Studies | Laboratory Tests | |-----------------------|----------------------| | Rock Quality | Uniaxial Compressive | | Designation | Strength | | Discontinuity spacing | Point Load Index | | | Seismic Velocity | Regression analysis was conducted as an evaluation from field studies and laboratory test to show the correlation between field and laboratory test. Prediction methods used in this research were graphical methods and seismic velocity. # PREDICTION CRITERION STATE-OF-THE-ART The prediction criterions of excavatability of materials have been conducted by research from multiple researchers based on indirect methods (Basarir and Karpuz, 2004). There are three main indirect methods as follows: #### Graphical Method Graphical methods pioneered by Franklin et al., 1971 and updated by Pettifer and Fookes, 1994. The graphical method is not using the detailed field and laboratory experiments. The main parameter for graphical methods is Point Load Index (PLI – L_{0.00}) and joint spacing (stated as Fracture Index – I₀)/Point Load Index is a method to determine rock mass strength based on applied pressure on a certain point of the rock sample (Hock and Bray 1981). Fracture Index is a function of Rock Quality Designation (RQD) with fracture frequency (λ) from the result of log drilling. The fracture Index equation (Hudson and Priest 1983) shown as follows: $$RQD = 110.4 - 3.68\lambda$$ (1) $$\lambda = \sum_{l_f}^{\pm}$$ (2) The example of graphical methods of Franklin et al., 1977 and Pettifer and Fookes, 1994 are shown in Fig. 1 and Fig. 2, respectively. Fig. 1 Size-Strength Graphs (Franklin et al., 1971). Fig. 2 Updated Size Strength Graph (Pettifer and Fookes, 1994) # Grading Methods The former pioneer of grading method is Weaver, 1975 followed by a couple of researchers such as Scoble et al., 1984 and MacGregor et al., 1994. The principles of grading methods are similar with rock mass classification systems such as Rock Mass Rating (RMR) (Bienawski, 1989) and Q-system (Barton et al., 1974) except for the groundwater condition. Each parameter of rock mass are classified and graded in certain ways based on the researcher criterions. The excavatability class is determined from the cumulative grades. Rock strength and seismic velocity (P-wave velocity) are the dominant parameters used in the most grading methods. Rock strength is stated using UCS (Uniaxial Compressive Strength) to determine criteria for strength or weak rock. Seismic velocity is used to determine the fracture condition of the rock. # Seismic Velocity Based Methods The seismic velocity of rock mass is related to geological and physical properties such as density, fracturing, and rock strength (Clark, 1996). Seismic velocity method pioneered by Atkinson (Atkinson, 1971). This method also commonly used by equipment manufacturers such as Caterpillar and Komatsu. The seismic criteria for Atkinson are shown in Fig. 3. Excavatability criteria from mining equipment separated by type of materials and type of the equipment, shown in Fig. 4 and Fig. 5. Fig. 3 Excavatibility Criteria (Atkinson, 1971) Fig. 4 Rippability Criteria for CAT D8R (Caterpillar, 2017) Fig. 5 Rippability Criteria for Komatsu D155A (Komatsu, 2016) # GEOTECHNICAL DATABASE The database for this study was taken in East Kalimantan Province, District of Kutai Kartanegara, Indonesia. The data was collected through a series of geological drilling in the coal mining concession in the same geological area. The location of the data collection is shown in Fig. 6. Fig. 6 Geological Maps and Sampling Location The datasets are classified as sedimentary rocks category that consist of claystone, sandstone, siltstone, carbonaceous claystone, and coal. The classification of the stratigraphy based on the physical properties obtained from geological drilling. There are 115 samples obtained with classification 35.65% claystone, 26.96% sandstone, 25.22% siltstone, 5.22% coal, 4.35% carbonaceous claystone, and 2.61% sandy sandstone (Fig. 7). Fig. 7 Material Distribution in the Research Area # RESULT AND DISCUSSION Data Distribution The data distribution from the laboratory testing and field studies shown in the Fig. 8. The datasets have relatively low strength material based on the laboratory tests result (PLI, UCS, and seismic velocity). Based on the literature review, relatively low strength material is classified to easy-digging with typical excavator used in mining operation (i.e. Komatsu PC-200) and easy-ripping with a typical mining equipment such as CAT Dozer D8R and Komatsu Dozer D115A. Fig. 8 Data Distribution from Field Studies and Laboratory Test Result ## Correlation Analysis Correlation analysis observed a relationship between field parameter and laboratory tests. The dependent variable is the Fracture index as a representative from field parameter. The result of regression model is displayed in Fig. 9. In general, fracture index has a low correlation to the laboratory tests (PLI, seismic velocity, and UCS) and dominated with negative correlation coefficient. The only positive correlation occurs on regression model of seismic velocity and in Sandstone material. This explained that the higher the seismic velocity will be followed by fracture index. The degree of correlation (R2) for any regression model is indicates small strength of association between field parameter and laboratory tests. The highest R2 occurred on regression model for PLI versus fracture index in Sandstone material. The result also indicates and confirms that Sandstone samples are denser and more compact than the other. Based on regression analysis, indirect prediction method of excavatability may have an unfortunate result from the direct methods although it should be investigated for further studies. The multi-variate regression using linear model is conducted to investigate the relationship between field parameter with three variables from laboratory tests. The result of multi-variate regression shown in the Table 2. Table 2. Multi-variate Regression Result | Parameter | Claystone | Material
Sandstone | Siltstone | |--------------|-----------|-----------------------|-----------| | UCS | -0.159 | -0.508 | -0.237 | | PLI | -0.135 | -0.293 | -0.075 | | Seismic Vel. | -0.024 | 0.241 | -0.269 | Fig. 9 Linear Regression Model for Correlation Analysis of Field Studies and Laboratory Test Result #### Prediction Methods The prediction methods used in this research refers to the result of correlation analysis and the availability of data. Graphical methods and seismic velocity based methods is used for excavatability criterion. # Graphical Methods The graphical method used on this research refers to Pettifer and Fookes, 1994 since they stated the most updated chart for excavatability criterion. The result shown in Fig. 10. Fig. 10 Excavatability Prediction Result (chart based on Pettifer & Fookes, 1994). Claystone materials (85.37%) are suitable for digging, meanwhile 14.63% are suitable for ripping. 93.55% of Sandstone materials are suitable for digging meanwhile 6.45% are suitable for ripping. 89.65% of Siltstone materials are suitable for digging meanwhile 10.35% are suitable for ripping. Based on the result above, the materials (claystone, sandstone, siltstone) are suitable for digging and ripping. # Seismic Velocity Based Methods Seismic velocity based methods in this research refers to rippability criteria from the mining equipment manufacture. The predictions based on criteria for Dozer CAT D8R and Komatsu D155A (Fig. 11). Seismic velocity criterion on Caterpillar D8R and Komatsu D155R displayed different result from Graphical Methods. Using seismic velocity criterions, there are a couple of materials datasets which may need blasting (non-rippable criteria) especially from Caterpillar D8R. Fig. 11 Seismic Velocity Prediction Methods. (Caterpillar, 2017 and Komatsu, 2016) The discrepancy between graphical methods and seismic velocity-based methods aligned with the correlation analysis result. The seismic velocity-based prediction methods only based on laboratory parameters and the graphical methods is merely combination of field and laboratory parameters. The correlation analysis stated that the relationship between field parameter and laboratory test parameters are relatively low (R² < 0.25). The difference needs to be investigated for the further study. #### CONCLUSION The excavability/rippability research study on this paper has a conclusion as follows: - a. The correlation analysis shows a relatively low correlation between field parameters and laboratory tests result. Sandstone has the highest correlation coefficient from the other materials. - There is a difference of excavatability criteria based on graphical and seismic velocity prediction methods that need to be investigated in the future. # **ACKNOWLEDGEMENTS** This study was directed by the research project of PT Studio Mineral Batubara, We would like to thank PSME Universitas Pembangunan Nasional "Veteran" Yogyakarta and PT Bayan Resources, Tbk for field and laboratory support. #### REFERENCES Atkinson, T., Selection of Open Pit Excavating and Loading Equipment, Trans. Ins. Of Mining and Metallurgy, 80, pp.101-129 (1971). Barton, N., Lein, R., and Lunde J., Engineering Classification of Rock Masses for The Design of Tunnel Support, Rock Mechanics, pp. 189-239 (1974). Basarir, H., and Karpuz, C., A Rippability of Classification System for Marls in Lignite Mines, Engineering Geology, 74, pp.135-142 (2004). Bienawski, E.T., Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. New York: John Wiley and Sons (1989). Braybrooke, J. C., The State-of-the-art of Rock Cuttability and Rippability Predictions, Fifth Australia New Zealand Conference on Geomechanics, pp.13-42 (1988). Caterpillar, Caterpillar Performance Handbook 47, Peoria (2017). Clark, Phillip B., Rock Mass and Rippability Evaluation for A Proposed Open Pit Mine At Globe-Progress, Near Refton, University of Canterburry (1996). Fowell, R. J., The Mechanic of Rock Cutting. In Comprehensive Rock Engineering, Principles, Practice, and Project by Hudson, J. A., Oxford: Pergammon Press (1993). Franklin, R. J., Broch, E., and Walton, G., Logging The Mechanical Character of Rock, Transactions of The Institution of Mining and Metallurgy, 80A, pp.1-9 (1971). Hoek, Evert and Bray, Jonathan., Rock Slope Engineering 3th, New York: Spoon Press (1981). Hudson, J., and Priest, S.D., Discontinuity Frequency in Rock Masses, Int. Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 20(2), pp. 73-89 (1983). Komatsu., Komatsu Performance Handbook (2016). MacGregor, F., Fell, R., Mostyn R., Hocking, G., and McNally G., The Estimation of Rock Rippability, Quarterly Journal Of Engineering Geology, 27, pp. 123-144 (1994). Pettifer, G. S., and Fookes, P. G., A Revision of The Graphical Method for Assessing Excavatability of Rock, Quarterly Journal of Engineering Geology, 27, pp.145–164 (1994). Scoble, Malcolm and Muftuoglu, Y. V., Derivation of A Diggability Index for Surface Mine Equipment Selection, Mining Science and Technology, pp 305 – 322 (1984). Weaver, J. M. Geological Factor Significant in The Assessment of Rippability, Civil Eng. In South Africa, 17, pp.131-136 (1975).