Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia
6 Maret 2012

PROGRAM STUDI TEKNIK KIMIA
FAKULTAS TEKNOLOGI INDUSTRI
UPN "VETERAN" YOGYAKARTA
PROSIDING

SEMINAR NASIONAL
TEKNIK KIMIA "KEJUANGAN"
2012

Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia

6 Maret 2012

PROGRAM STUDI TEKNIK KIMIA
FAKULTAS TEKNOLOGI INDUSTRI
UPN "VETERAN" YOGYAKARTA
REVIEWER

SEMINAR NASIONAL TEKNIK KIMIA “KEJUANGAN” 2012
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS PEMBANGUNAN NASIONAL “VETERAN”
YOGYAKARTA

1. Prof. Ir. H. Wahyudi Budi Sediawan, SU, Ph.D
2. Prof. Dr. Ir. H. Supranto, SU
3. Ir. Moh. Fahrurozi, M.Sc, Ph.D
4. Dr. Ir. IGS Budiiman, MT
SUSUNAN PANITIA SEMINAR NASIONAL
TEKNIK KIMIA "KEJUANGAN" 2012
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" YOGYAKARTA

Penanggung Jawab: Dekan FTI UPN "Veteran" Yogyakarta

PANITIA PENGARAH
1. Ketua Program Studi Teknik Kimia FTI UPNVY
2. Sekretaris Program Studi Teknik Kimia FTI UPNVY
3. Prof. Dr. Ir. Supranto, SU
4. Prof. Ir. Wahyudi Budi Sediawan, SU, PhD
5. Ir. Moh. Fahrurrozi, MSc, PhD

PANITIA PELAKSANA

Ketua Pelaksana: Ir. Harso Pawignyo, MT
Wakil Ketua Pelaksana: Dr. Yulius Deddy Hermawan, ST, MT
Sekretaris I: Dra. Sri Wahyu Murni, MT
Sekretaris II: Dr. Adi Icham, ST, MT
Bendahara I: Ir. Purwo Subagyo, MT
Bendahara II: Dra. Suci Astutiningih

KOORDINATOR BIDANG

1. Seksi Acara dan Sidang:
 Koordinator: Ir. Endang Sulistyawati, MT
 Anggota: 1. Dr. Ir. Mahreni, MT
 2. Ir. Tunjung Wahyu Widyati, MT

2. Seksi Materi dan Prosiding:
 Koordinator: Siswanti, ST, MT
 Anggota: 1. Dr. Ir. I Gusri S. Budiman, MT
 2. Siti Diyar Kholisoh, ST, MT

3. Seksi Publikasi, Dokumentasi, dan Dekorasi:
 Koordinator: Ir. Zubaidi Achmad, MT
 Anggota: 1. Ir. I Ketut Subawa, MT
 2. Dr. Ir. M. Syahri, MT

4. Seksi Perkara:
 Koordinator: Ir. Wasir Nuri, MT
 Anggota: 1. Ir. Gogot Haryono, MT
 2. Ir. Abdullah Kunta-arsa, MT

5. Seksi Konsumsi:
 Koordinator: Ir. Faizah Hadi, MT
 Anggota: Ir. Dyah Tri Retno, MM

6. Seksi Dana dan Sponsor:
 Koordinator: Dr. Ir. Widayati, MT
 Anggota: 1. Dr. Ir. Ramli Sitanggang, MT
 2. Dr. Ir. Tjukup Marnoto, MT
C12 Pembuatan Perisa Madu Alami melalui Proses Spray Drying
Endang Srihari, Farid Sri Linggoringrum
Jurusan Teknik Kimia – Fakultas Teknik, Universitas Surabaya
Jl. Raya kalirungkut, Surabaya 60292
e-mail: endang_srihari@yahoo.com

C13 Karakterisasi Kerusakan Sistem Anoda Korban dalam Simulator Sistem Proteksi Katodik Jaringan Perpipaan
Nurcahyo *
*Jurusan Teknik Kimia Politeknik Negeri Bandung,
Tlp/Fax 022-2016403, HP 08158064794, E-mail: nurcahyoms@yahoo.com

C14 Pembuatan Penjerap dari Abu Sekam Padi
Sri Suhery de Supranto
Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN “Veteran” Yogyakarta
Jl. SWK 104 (Lingkar Utara), Condong Catur, Yogyakarta 55283
Telp/ Fax. 0274-486889, E-mail: supranto@yahoo.com

C15 Dinamika Komposisi pada Sistem Tangki Pencampur 10 Liter
Yulius Deddy Hermawan*, Gogot Haryono, Marya Agustin, dan Hayani Abid
Program Studi Teknik Kimia, Fakultas Teknologi Industri, UPN ”Veteran” Yogyakarta
Jl. SWK 104 (Lingkar Utara), Condong Catur, Yogyakarta 55283
E-mail: yhermawan@upnyk.ac.id

C16 Screening Criteria EOR dan Analisa Biaya Transportasi Gas CO2 untuk Preliminary Feasibility Penerapan CO2 Flooding pada Lapangan Minyak Jatibarang
Hariyadi*, I. Putu Suarsana**
*Program Studi Teknik Perminyakan UPN ”Veteran” Yogyakarta
**PT. Pertamina EP-EOR, Menara Standard Chartered Jl. Prof. Satrio 164 jakarta
Email: hariydi_upn@yahoo.com

D. Kinetika Reaksi dan Katalisis

Kode Judul, Penulis dan Alamat

D01 Uji Deaktivasi dan Regenerasi Katalis pada Pengolahan Limbah Kromium Heksavalen Industri Elektroplating dengan Fotokatalisis UV/TiO2
Tedi Hudaya*, Winnie Tedjodono, dan Ferdian Budi Saputro
Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan Jalan Ciumberleuit 94, Bandung 40141
Telp/Fax: (022) – 2032 700; E-mail: t_hudaya@yahoo.com; t_hudaya@home.unpar.ac.id.

D02 Transesterifikasi Minyak Kelapa Sawit Mentah dengan Menggunakan Katalis Alumina dari Limbah Padat Lumpur PDAM
Doni Rahmat Wicakso, Soni Miranda dan Renny Eka Setiawati
Program Studi Teknik Kimia, Fakultas Teknik, Universitas Lambung Mangkurat Banjarmasin 70714, Indonesia; E-mail: doni_tkugm@yahoo.com

D03 Uji Kinerja Katalis Heterogen Nanokomposit ZnO/Fe2O3 untuk Reaksi Transesterifikasi pada Pembuatan Biodiesel dari Minyak Kelapa dalam Jumlah Waktu Reaksi
Arif Jumari¹, Agus Purwanto², Denik Widi Astutil¹, dan Yunie Widhyastuti³
¹²³*Jurusan Teknik Kimia UNS Jl. Ir. Sutami 36 A Surakarta
E-mail: arifjumari@yahoo.com
Screening Criteria EOR dan Analisa Biaya Transportasi Gas CO₂ untuk Preliminary Feasibility Penerapan CO₂ Flooding pada Lapangan Minyak Jatibarang

Hariyadi *, I. Putu Suarsana**
*Program Studi Teknik Perminyakan UPN "Veteran" Yogyakarta
Jl. SWK 104 (Lingkar Utara) Condongcatur Yogyakarta 55283
**PT, Pertamina EP-EOR, Menara Standard Chartered Jl. Prof. Satrio 164 jakarta
Email: harvd_UPN@yahoo.com

Abstract

CO₂ injection (CO₂ Flooding) is one method of EOR by injecting CO₂ into oil reservoirs in order to get the addition of a tertiary oil recovery after water injection optimization. Prior to the implementation of the CO₂ injection, the preliminary feasibility study for the implementation of CO₂ flooding in accordance with the SOP (standard operating procedure) implementation of CO₂ gas as a fluid injection in the Field Jatibarang planned to be implemented in Layer F. One consideration of CO₂ injection in the F layer is the amount of oil initially (original oil in place - OOIP) is quite large and recovery factor is still low. Further to the possibility of application of CO₂ injection in the F layer, the layer mapping based on the characteristic parameters of the reservoir. Based on the results of these initial screening criteria, it can be said or recommended that the F layer is suitable for the application of CO₂ gas injection, the investment cost of CO₂ transport in Jatibarang greatly influenced by flow rate of CO₂ gas, the distance field to the location of the source CO₂ purification and also diameter of pipe. Based on the analysis of transportation cost determination Jatibarang structure be a mainstay in the application of CO₂ injection.

Keywords: EOR Screening Criteria, CO₂ Injection, feasibility, and CO₂ Transportation.

Pendahuluan

Injeksi CO₂ (CO₂ Flooding) adalah salah satu metode EOR dengan cara menginjeksikan gas CO₂ ke dalam reservoir minyak dengan tujuan untuk mendapatkan penambahan perolehan minyak secara tertiary setelah dilakukan optimasi injeksi air.

Sebelum pelaksanaan injeksi CO₂ maka preliminary feasibility studi untuk penerapan CO₂ flooding yang sesuai dengan SOP (standard operating procedure) untuk injeksi CO₂ ke dalam reservoir minyak harus dilakukan.

Produksi CO₂ di daerah operasi Pertamina Jawa Bagian Barat sementara ini masih dibuang ke udara, dimana semakin hari jumlah produksi CO₂ yang dihasilkan semakin bertambah besar. Untuk mengurangi kerasakan lingkungan akibat terproduksinya CO₂ yang cukup banyak tersebut, maka perlu dilakukan studi injeksi CO₂. Selain itu sangat memungkinkan secara engineering dilakukan injeksi CO₂ di wilayah Jatibarang untuk meningkatkan produksi dan untuk mengurangi dampat pencemaran udara (polusi) akibat dibuangnya CO₂ ke udara biasa.

Gambaran secara skematis dari Preliminary Feasibility Study untuk Penerapan CO₂ Flooding di Lapangan Jatibarang Lapisan F ditunjukan pada Gambar 1.

Gambar 1. Skematis Preliminary Feasibility Study untuk Penerapan CO₂ Flooding di Lapangan Jatibarang Lapisan F

Dalam tulisan ini langkah pertama yang dilakukan adalah melakukan inventarisasi sumber CO₂ yang berada dilapangan Jatibarang, melakukan screening criteria metode apa yang tepat meningkatkan produksi (EOR) dan juga menganalisa biaya aival tranportasi gas CO₂ untuk EOR di Lapangan Jatibarang.

Metodologi

Dalam melaksanakan penelitian ini akan ditinjau sisi Teknik Perminyakan (Petroleum Engineering), sehingga ada beberapa hal yang perlu diperhatikan adalah:

- Inventarisasi sumur penghasil (sumber) gas CO₂
- Sifat-sifat fisik fluida (minyak, air, dan gas): komposisi, berat molekul, boiling point, critical point, densitas, viskositas, dll.
- Kondisi reservoir (tekanan reservoir, temperatur reservoir, tekanan rekah formasi, bubble point pressure).
- Petrophysics and reservoir properties.
- Mekanisme pendorong (Drive mechanisms).

Untuk mendapatkan hal-hal tersebut di atas, maka pada akhir dilakukan beberapa hal sebagai berikut:

- Collecting and Analysis Data.
- Studi karakteristik reservoir Lapisan F (Pemetaan Lapisan F).
- Identifikasi problem reservoir.
- Studi kelayakan analisa keekonomian.

Inventarisasi Lapangan Sumber Gas CO₂

Inventarisasi sumber gas CO₂ diperlukan untuk mengetahui lapangan-lapangan mana saja yang memiliki kandungan CO₂ yang cukup tinggi, untuk selanjutnya dipilih sumur-sumur yang berpotensi sebagai kandidat sumber CO₂ yang akan diproses pada proses pemisahan CO₂.

Area Tambun terdiri dari 3 (tiga) struktur, yaitu Tambun, Tambun Kelapa, dan Tambun Kulminasi - B. Sedangkan Area Subang terdiri dari 6 (enam) struktur, yaitu Subang, Bojongraong, Cilamaya Utara, Pegaden, Tanjungsari, dan Tunggunghaung. Informasi inventarisasi struktur sebagai sumber gas CO₂ disajikan pada Tabel 1.

Pemetaan Lapisan F Lapangan Jatibarang

Tujuan dari pemetaan Lapisan F Lapangan Jatibarang ini adalah untuk mengevaluasi tingkat kelayakan penerapan metode CO₂ flooding secara full scale guna penentuan metode pengurusan sisa cadangan minyak lebih lanjut. Langkah yang cukup penting sebelum melakukan penerapan injeksi CO₂ di Lapisan F adalah melakukan karakterisasi reservoir yang bersangkutan baik tentang sifat fisik batuan reservoir, sifat fisik dan kimia fluida reservoir, serta kondisi reservoir menjadi faktor yang sangat penting. Selanjutnya kajian secara aspek teknik dan karakterisasi reservoir Lapangan Jatibarang Lapisan F ini nantinya akan dipergunakan sebagai pertimbangan-pertimbangan dan data masukan dalam menentukan kelayakan penerapan injeksi CO₂ di Lapisan F tersebut.

Analisa Inti Batuan (Core Analysis)

Basic core analysis digunakan untuk mengetahui sifat-sifat fisik batuan seperti porositas, permeabilitas, hubungan porositas dan permeabilitas, dan sifat dinamis reservoir yaitu permeabilitas relatif dan tekanan kapiler. Data core yang tersedia untuk Lapisan F pada Lapangan Jatibarang ini hanya berasal dari satu sumur yaitu sumur JTB-182 yang diambil pada tahun 1984 pada selang kedalamannya 1115.45 meter sampai 1116 meter.

Data analisa core yang diperoleh dari sumur JTB-182 mempunyai selang harga porositas antara 0.16 - 0.33 dengan permeabilitas antara 5 - 42 mD. Harga permeabilitas yang diberikan oleh data analisa core ini sangat kecil dan kurang dapat merepresentasikan...
keadaan seluruh reservoir karena data analisa core ini jumlahnya sangat sedikit dan hanya dipeorele pada satu tempat yaitu pada sumur JTB-182 dan juga pada selang kedalaman yang sangat pendek. Bila dibandingkan dengan data produksi dari Lapisan F, harga permeabilitas yang sangat kecil ini tentunya kurang memungkinkan bisa untuk memproduksikan fluida dalam jumlah yang besar. Oleh karena itu harga permeabilitas dari data analisa core ini selanjutnya perlu untuk dikaji ulang dan apabila memungkinkan diperlukan pengambilan core baru di Lapisan F tersebut agar diperoleh hasil analisa dan interpretasi yang lebih representatif.

Sifat Fisik Fluida Lapisan F

Sifat fisik fluida Lapisan F Lapangan Jatibarang berdasarkan hasil PVT analisis ditunjukan seperti pada Tabel II dibawah ini:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Besaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bo (bbl/STB)</td>
<td>1.2671</td>
</tr>
<tr>
<td>αAPI</td>
<td>38.3</td>
</tr>
<tr>
<td>μo (cp)</td>
<td>2.24</td>
</tr>
<tr>
<td>Co (1/psi)</td>
<td>8.10 x 10^-4</td>
</tr>
<tr>
<td>Cw (1/bar)</td>
<td>3.19971 x 10^-6</td>
</tr>
<tr>
<td>Gas Density (kg/m^3)</td>
<td>0.7783</td>
</tr>
</tbody>
</table>

Analisa Pengujian Sumur (Well Testing)

Analisa pengujian sumur diharapkan dapat memberikan evaluasi karakteristik reservoir di sekitar sumur, permeabilitas efektif reservoir dan model reservoir yang dipergunakan sebagai pertimbangan dalam pemodelan simulasi reservoir.

Terdapat 6 (enam) data test PBU (Pressure Build Up) yang dapat dianalisa di Lapangan Jatibarang Lapisan F, yaitu pada sumur JTB-57, JTB-60, JTB-87, JTB-117, JTB-130, dan JTB-137. Berdasarkan hasil analisa data test PBU tersebut menggunakan Metode Horner Plot dan Pressure Derivative dengan Type Curve Matching, menunjukan bahwa harga permeabilitas berkisar antara 0.022 - 137.9 mD dan harga skin -3.9 sampai 0.58.

Analisa Performance Produksi

Gambar 3.
Performance Produksi Lapisan F Lapangan Jatibarang

Berdasarkan hasil penentuan Original Oil in Place (OOIP) yang telah dilakukan oleh studi sebelumnya tahun 2010, yaitu sebesar 55,240.68 MStb dengan produksi kumulatif minyak (Np) per Pebruari 2010 sebesar 10,514.7 MStb, maka di Lapisan F Lapangan Jatibarang masih terdapat remaining oil sebesar 44,715.98 MStb.

Gambar 4.
Performance Produksi Kumulatif Lapisan F Lapangan Jatibarang

Hasil Prediksi Analisa Decline Curve Lapisan F Lapangan Jatibarang Sampai Qlimit sebesar 5 Bbl/D/Well, seperti pada Tabel III, prediksi pada lapisan ini adalah dengan tanpa dilakukan injeksi gas CO₂.

<table>
<thead>
<tr>
<th>No</th>
<th>Keterangan</th>
<th>Np (MStb)</th>
<th>RF</th>
<th>Np (MStb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Np @ Feb 2011</td>
<td>10,514.7</td>
<td>19.03%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Np @ Qlimit</td>
<td>11,032.4</td>
<td>19.97%</td>
<td>517.7</td>
</tr>
</tbody>
</table>

Analisa Mekanisme Pendorong

Dalam praktek di lapangan sangat penting untuk menentukan besar relatif masing-masing mekanisme

Gambar 5.
Penentuan Mekanisme Pendorong di Lapisan F Lapangan Jatibarang

Berdasarkan pada Gambar 5 di atas, maka dapat dikatakan bahwa mekanisme pendorong yang dominan bekerja di Lapisan F Lapangan Jatibarang adalah Solution Gas Drive.

Screening Criteria EOR Lapisan F
Kriteria pemilihan metode EOR yang memadai untuk suatu reservoir minyak didasarkan pada "Implemented Technology Case", yaitu teknologi yang sedang diterapkan pada saat ini atau paling tidak telah terbukti dapat dilaksanakan pada uji coba di lapangan minyak. Teknologi ini meliputi metode thermal, injeksi kimia dan penedesakan tercampur.

Apabila Tabel III digunakan, kemungkinan akan diperoleh berbagai-macam metode EOR yang dapat diterapkan kepada satu reservoir minyak. Untuk mendapatkan jawaban proses mana yang paling memadai (yang memberikan perolehan optimum secara ekonomis), tentu saja harus dilakukan kajian lanjut berupa kajian laboratorium, kajian menggunakan model matematik (Simulator) dan uji coba lapangan (Pilot testing). Penggunaan Tabel III akan memberikan pilihan yang baik apabila digunakan pada reservoir yang memiliki distribusi karakteristik batuan yang seragam. Untuk reservoir yang mempunyai banyak rekahan, banyak patahan, bersifat tidak menerus secara lateral, atau mempunyai tudung gas, haruslah dikaji secara tersendiri pengaruh sifat-sifat tersebut di atas terhadap proses EOR itu sendiri. Kajian tersebut dapat berupa pengamatan laboratorium atau menggunakan model matematik (simulator).

Tabel III
Screening Criteria Pemilihan Metode EOR

<table>
<thead>
<tr>
<th>Method</th>
<th>Steamflood</th>
<th>CO2 Flood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note to work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution Gas Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Faktor atau parameter yang paling berpengaruh didalam pemilihan metode EOR dapat dibagi dalam 3 (iga) kelompok, yaitu:

Gambar 6.
Screening Criteria Pemilihan Metode EOR Didasarkan Pada Kedalaman

<table>
<thead>
<tr>
<th>EOR Method</th>
<th>0</th>
<th>2,000</th>
<th>4,000</th>
<th>6,000</th>
<th>8,000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon Miscible</td>
<td>Deep Enough for Required Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen and Flue Gas</td>
<td>Deep Enough for Required Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Flooding</td>
<td>Limited by Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactant/ Polymer</td>
<td>Limited by Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer</td>
<td>Preferred Zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline</td>
<td>High Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Flood</td>
<td>Deep Enough for Required Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Drive</td>
<td>Normal Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 7.
Screening Criteria Pemilihan Metode EOR Didasarkan PADA Viskositas Minyak

<table>
<thead>
<tr>
<th>EOR Method</th>
<th>0</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon Miscible</td>
<td>Very Good</td>
<td>Good</td>
<td>Fair</td>
<td>Difficult</td>
<td>Very Difficult</td>
</tr>
<tr>
<td>Nitrogen and Flue Gas</td>
<td>Good</td>
<td>More Difficult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Flooding</td>
<td>Very Good</td>
<td>Good</td>
<td>More Difficult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactant/ Polymer</td>
<td>Good</td>
<td>Poor</td>
<td>Very Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer</td>
<td>Good</td>
<td>Fair</td>
<td>Very Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline</td>
<td>Good</td>
<td>Fair</td>
<td>Very Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Flood</td>
<td>May Not Be Feasible</td>
<td>Good</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Drive</td>
<td>Can Be Very Difficult</td>
<td>Good</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sour or Formation</td>
<td>Various Techniques Possible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 8.
Screening Criteria Pemilihan Metode EOR Didasarkan Pada Permeabilitas

<table>
<thead>
<tr>
<th>EOR Method</th>
<th>0</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon Miscible</td>
<td>Not Critical</td>
<td>Good</td>
<td>Preferred Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen and Flue Gas</td>
<td>Not Critical if Uniform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Flooding</td>
<td>High Enough For Good Injection Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactant/ Polymer</td>
<td>Preferred Zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer</td>
<td>Preferred Zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline</td>
<td>Preferred Zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Flood</td>
<td>Preferred Zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Drive</td>
<td>Preferred Zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 9.
Screening Criteria Pemilihan Metode EOR Didasarkan PADA Oil Gravity

Berdasarkan Gambar 6 sampai Gambar 9, ditentukan untuk memilih metode EOR yang tepat pada Lapisan F Lapangan Jatibarang. Setelah terpilih metode yang tepat maka akan dilakukan juga prakiraan biaya awal untuk memilih struktur manfaat yang akan diprioritaskan dalam penerapannya nanti.

Hasil dan Pembahasan
Didasarkan pada screening criteria pemilihan EOR pada Tabel III dan Gambar 6 sampai dengan Gambar 9, maka untuk Lapisan F Lapangan Jatibarang apabila disesuaikan dengan faktor atau parameter yang paling berpengaruh dalam pemilihan metode EOR (karacteristik minyak, karakteristik reservoir dan karakteristik air formasi), maka metode EOR yang sesuai atau layak diterapkan adalah injeksi CO₂, seperti ditunjukkan pada Tabel IV.

Tabel IV.
Screening Criteria CO₂ Flooding Lapisan F Lapangan Jatibarang

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lapisan F JTB</th>
<th>Screening CO₂ Flood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Gravity (API)</td>
<td>38.3</td>
<td>> 27</td>
</tr>
<tr>
<td>Oil Viscosity (cp)</td>
<td>2.24</td>
<td>< 10</td>
</tr>
<tr>
<td>Water Salinity (ppm)</td>
<td>32,511.9</td>
<td>-</td>
</tr>
<tr>
<td>Oil Saturation (% PV)</td>
<td>55.8</td>
<td>> 30</td>
</tr>
<tr>
<td>Depth (ft)</td>
<td>3,927.4</td>
<td>> 2500</td>
</tr>
<tr>
<td>Net Thickness (ft)</td>
<td>1.6</td>
<td>Relative Thin</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td>204</td>
<td>< 250</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>16 - 33</td>
<td>Not Critical</td>
</tr>
<tr>
<td>Permeability (md)</td>
<td>5 - 42</td>
<td>Not Critical</td>
</tr>
<tr>
<td>Lithology</td>
<td>Limestone</td>
<td>Sandstone / Limestone</td>
</tr>
</tbody>
</table>
Injeksi CO₂ dilakukan dengan cara menginjeksikan CO₂ dalam jumlah besar (30% atau lebih dari PV hidrokarbon) ke dalam reservoir. Walauupun CO₂ bukan kontak tercampur yang pertama dalam minyak, CO₂ mengekstrak komponen ringan sampai menengah dari minyak, dan jika tekanan cukup tinggi, membentuk pencampuran untuk mendesak minyak dari reservoir. Pendekatan tak tercampur kurang efektif, tetapi dapat memperoleh minyak lebih banyak daripada injeksi air. Pada kedalaman <1,800 ft, semua reservoir tidak memenuhi kriteria pemilihan teknis baik untuk metode injeksi tercampur maupun tak tercampur dengan CO₂ superkritik.

Mekanisme CO₂ dalam memperoleh minyak:
1. Mengembangkan (swelling) minyak (CO₂ sangat mudah terlarut dalam minyak).
2. Memerintuksi viskositas minyak (jumlah lebih efektif dibanding N₂ atau CH₄).
4. Membentuk pencampuran bila tekanan cukup tinggi (> TIM). Y

Yang perlu diperhatikan adalah sumber CO₂ yang memadai dengan kualitas yang baik (seminimun mungkin mempunyai kandungan air (H₂O) atau dry gas). Sebagai contoh, Korosi dapat menyebabkan masalah, tetamua bila terjadi breakthrough awal CO₂ pada sumur produksi. Seluruh reservoir minyak dengan gravity lebih besar dari 22 °API dapat memenuhi kualifikasi untuk pendekatan tak tercampur pada tekanan kurang dari tekanan tercampur minimum (minimum miscibility pressure - MMP). Pada umumnya, perolehan minyak yang berkuran akan menjadi proporsional dengan perbedaan antara MMP dan tekanan injeksi yang dicapai. Keputusan kriteria ini telah dipilih untuk menyediakan batas aman dari tepat 500 ft di atas kedalaman rekakan reservoir yang tipikal untuk tekanan pencampuran yang dibutuhkan (MMP), dan sekitar 300 psi di atas tekanan kritis CO₂ untuk injeksi tak tercampur pada kedalaman yang dangkal. Temperatur reservoir diukurtarnkan dan diasumsikan dari kedalaman.

Dalam bahasan ini juga dibahas tentang trasportasi dan peralatan proses dari gas CO₂ dari beberapa sumber di Lapangan Jatibarang, beberapa biaya yang dikeluarkan untuk kedua hal tersebut disajikan dalam perhitungan yang sederhana.

Untuk kasus transportasi CO₂ dari struktur-struktur yang ada di sekitar Jatibarang dan Subang Jawa Barat yang tidak memerlukan proses pemurnian. Faktor lain yang menjadi pertimbangan adalah wilayah yang dilaiki meliputi pedesaan dan perkotaan dengan populasi penduduk cukup padat. Hasil perhitungan ukuran pipa yang diperlukan untuk transportasi CO₂ dari berbagai struktur disekitar Jatibarang ditunjukan dalam Tabel VII-1.

Dari Tabel VII-1, terlihat bahwa jarak tempuh yang terlalu adalah antara Subang ke Jatibarang sekitar 240 km dengan diameter pipa yang diperlukan 12 inch (30.48 cm). Diameter pipa ini masih tergolong cukup besar untuk daya angkut 31.0 MMSCFD, karena berpatokan pada tekanan operasi yang tidak terlalu tinggi mengingat faktor keselamatan lingkungan yang dilewati jaringan pipa. Jarak tempuh paling dekat sekitar 12 km yaitu dari struktur Randegan ke Jatibarang dengan diameter pipa 6 inch (15.24 cm). Pemilihan diameter pipa ini tidak diperlukan lagi, karena tekanan operasi telah ditetapkan atas pertimbangan keselamatan. Hal ini tentu berdampak pada biaya investasi pemipaan yang akan diterapkan. Berdasarkan panjang pipa dan diameter pipa yang diperlukan untuk transportasi CO₂ seperti diditunjukan dalam Tabel VII-1, selanjutnya dakukan perhitungan biaya modal/ investasi yang diperlukan.

Perhitungan biaya investasi meliputi biaya material, biaya buruh (labor), biaya lain-lain (misc), biaya pengangkutan (Right of Way RW), biaya tangki perecah (surge tank ST), dan biaya sistem control pemipaan (PCS). Semua perhitungan ini menggunakan persamaan empiris yang telah dikembangkan oleh University of California yang kemudian persamaan aslinya dimodifikasi untuk penyusuaian harga-harga di tahun 2007. Untuk dapat menerapkan persamaan tersebut dalam wilayah Indonesia, maka kami melakukan modifikasi menggunakan indeks harga tahun 2007 sebesar 627.2 dan indeks tahun 2011 sebesar 674.7. Disamping itu juga dilakukan koreksi terhadap semua komponen biaya kecuali biaya material di Indonesia dengan faktor 0.1.

Berikut adalah persamaan yang dikembangkan oleh National Energy Technology Laboratory (NETL), University of California yang telah dipublikasikan dalam Oil and Gas Journal.

\[
Material = 64,632 + 1.85L (330.5D^2 + 686.7D + 26,960) \quad (1)
\]

\[
Labor = 341,627 + 1.85L (343.2D^2 + 2,074D + 170,013) \quad (2)
\]

\[
Misc = 150,166 + 1.58L (8,417D + 7,234) \quad (3)
\]

\[
Right of Way = 48,037 +1.2L (577D + 29,788) \quad (4)
\]

\[
CO₂ Surge Tank = 1,150,636 USD
\]

Pipeline Control System = 110,632 USD
Dalam Tabel V, terlihat rate gas CO₂, diameter dan panjang serta biaya transportasi untuk masing masing struktur yang ada di Lapangan Jatibarang.

Pada Gambar 10 di atas terlihat dimana komponen Material memiliki prosentase paling tinggi yaitu sekitar 64,7% dari total investasi pada seluruh lapangan sumber CO₂. Sedangkan yang terkecil adalah komponen Pipeline Control System sebesar 0,1% dari total investasi.

Gambar 11 menunjukkan prosentase kontribusi masing-masing lapangan terhadap total investasi dari transportasi gas CO₂, dimana Lapangan Subang memberikan nilai investasi yang terbanyak sedangkan Randegan yang memerlukan investasi terkecil dibandingkan dengan total investasi dari secara keseluruhan, hal ini dipengaruhi oleh rate CO₂, jarak dan juga diameter pipa transportasi yang digunakan.

Pada Tabel VI, terlihat unit cost untuk masing masing struktur yang ada di Lapangan Jatibarang, sedangkan pada Gambar 12 adalah digram batang yang menggambarkan unit cost/km/ton CO₂ dalam transportasi CO₂.
Struktur Jatibarang, dari Lapangan Minyak Jatibarang menjadi pilihan utama dalam penerapan injeksi CO2.

Kesimpulan

Rekomendasi

Perlu dilakukan kajian lebih lanjut tentang penerapan injeksi CO2 (CO2 flooding) di Lapisan F Lapangan Jatibarang sampai ke tahapan pilot project sebelum nantinya diimplementasikan secara full scale.

Daftar Notasi

<table>
<thead>
<tr>
<th>Notasi</th>
<th>Deskripsi</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>panjang pipa salur</td>
<td>meter</td>
</tr>
<tr>
<td>D</td>
<td>diameter</td>
<td>in</td>
</tr>
<tr>
<td>Bo</td>
<td>factor volume formasi minyak</td>
<td>bbl/STB</td>
</tr>
<tr>
<td>Cw</td>
<td>kompresibilitas air</td>
<td>1/psi</td>
</tr>
</tbody>
</table>

Co = kompresibilitas minyak, [1/psi]
Np = kumulatif produksi minyak, [barrel]
Gp = kumulatif produksi gas, [SCF]
RF = recovery faktor, [frakst]
μo = viskositas minyak, [cp]

Daftar Pustaka

4. G. Paul Willhite, 2001, “Carbon Dioxide Flooding in Kansas Reservoirs” 14th Oil Recovery Conference
6. Lawrence H. Wickstrom, Geologic CO2 Sequestration” AAPG