SEMINAR SEHARI
IATMI KOMISARIAT JATENG & DIY

“Pemberdayaan Masyarakat dalam Pengelolaan Lapangan Migas Tua yang Sudah Ditinggalkan”

Yogyakarta
27 Agustus 2004

ConocoPhillips
ExxonMobil
PetroChina
IMECO
bp
DOH JABATI
Santos

Menghadapi Tantangan Energi Dunia
PROSIDING

SEMINAR SEHARI IATMI
KOMISARIAT JATENG & DIY 2004

UPN "Veteran" Yogyakarta 27 Agustus 2004

"Pemberdayaan Masyarakat dalam Pengelolaan Lapangan Migas Tua yang Sudah Ditinggalkan"

Editor:

Aris Buntoro
Bambang Bintarto
IB. Jagranatha
Sayoga Heru
Bernadeta
Amara
R. Bagus Swasono
M. Lazuardi Fajar D.

IKATAN AHLI TEKNIK PERMINYAKAN INDONESIA
KOMISARIAT JATENG & DIY

Telepon/Faximile: (0274) 487815

e-mail: iatmi-yogy@ygy.centrin.net.id
<table>
<thead>
<tr>
<th>Halaman</th>
<th>Judul</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>DAFTAR ISI</td>
</tr>
<tr>
<td>ii</td>
<td>KATA PENGANTAR</td>
</tr>
<tr>
<td>v</td>
<td>SUSUNAN PANITIA</td>
</tr>
<tr>
<td>1</td>
<td>IATMI 2004-01 Reservoir Surveillance: Konsep Pemelajaran Reservoir Terpadu</td>
</tr>
<tr>
<td></td>
<td>untuk Kepentingan Perencanaan Pengembangan Lanjutan</td>
</tr>
<tr>
<td></td>
<td>Lapangan Gas Lepas Pantai L-Parigi, PERTAMINA DOH JBB</td>
</tr>
<tr>
<td></td>
<td>Andrie Haribowo / Chalid Said Salim / Tubagus Nasiruddin,</td>
</tr>
<tr>
<td></td>
<td>(PT. PERTAMINA (PERSERO) DOH JBB)</td>
</tr>
<tr>
<td>10</td>
<td>IATMI 2004-02 Peran Pelayanan Data dan Informasi Migas Lapangan-lapangan</td>
</tr>
<tr>
<td></td>
<td>Tua yang Sudah Ditinggalkan Bagi Calon Investor,</td>
</tr>
<tr>
<td></td>
<td>Sudarmoyo (Jur. Perminyakan, UPN “Veteran” Yogyakarta)</td>
</tr>
<tr>
<td>16</td>
<td>IATMI 2004-03 Efek Laju Alir Terhadap Pembentukan Water Cresting dan</td>
</tr>
<tr>
<td></td>
<td>Strategi Produksi Sumur Horisontal Dengan Model Media</td>
</tr>
<tr>
<td></td>
<td>Berpori, Hariyadi, Jur. Teknik Perminyakan, UPN “Veteran” Yogyakarta)</td>
</tr>
<tr>
<td>27</td>
<td>IATMI 2004-04 Usaha Penentuan Model Perembesan Air dan Peramalan Perilaku</td>
</tr>
<tr>
<td></td>
<td>Reservoir Dengan Metoda Caret Pada Lapangan X, Sumindyo / Dyah Rini R / Reny Dina Sari (Jur.</td>
</tr>
<tr>
<td></td>
<td>Tek Perminyakan, UPN “Veteran” Yogyakarta)</td>
</tr>
<tr>
<td>36</td>
<td>IATMI 2004-05 Re-Evaluasi Cadangan Gas Pada Struktur Gebang - Area</td>
</tr>
<tr>
<td></td>
<td>Operasi Pangkalan Susu PT. PERTAMINA (PERSERO) DOH NAD SUMBAGUT, Joko Pamungkas (Jur. Teknik</td>
</tr>
<tr>
<td></td>
<td>Perminyakan, UPN "Veteran" Yogyakarta) / Budiyono / Rachmad Wijaya (PT. PERTAMINA (PERSERO) DOH</td>
</tr>
<tr>
<td></td>
<td>NAD SUMBAGUT)</td>
</tr>
<tr>
<td>45</td>
<td>IATMI 2004-06 Perkiraan Harga Saturasi Air (Sw) Dari Data Produksi dan</td>
</tr>
<tr>
<td></td>
<td>Analisa Core, Suranto (Jur. Teknik Perminyakan, UPN "Veteran" Yogyakarta)</td>
</tr>
<tr>
<td>48</td>
<td>IATMI 2004-07 Prediksi Permeabilitas Relatif Air-Minyak pada Batupasir</td>
</tr>
<tr>
<td></td>
<td>Berdasarkan Data Resistivitas, Avianto Kabul P. (Jur. Tek Perminyakan, UPN "Veteran" Yogyakarta)</td>
</tr>
</tbody>
</table>
EFEK LAUJ ALIR TERHADAP PEMBENTUKAN WATER CRESTING
DAN STRATEGI PRODUKSI SUMUR HORIZONTAL
DENGAN MODEL MEDIA BERPORI

oleh
Hariyadi
Jurusan Teknik Perminyakan UPN “Veteran” Yogyakarta

ABSTRAK
Teknologi sumur horizontal meskipun masih tergolong relatif baru dan mahal tetapi telah terbukti lebih efektif dan efisien dalam memproduksikan minyak bumi. Namun demikian strategi pengaturan laju produksi untuk memperoleh hasil optimal belum diperhatikan dengan seksama. Hal ini sebagai akibat ketidakmampuan mengidentifikasi pengaruh gaya-gaya yang bekerja dalam reservoar terhadap mekanisme aliran.

Khususnya reservoar minyak bumi yang berhubungan dengan aquifer di bawahnya, proses pergerakan batas minyak air di reservoar dipengaruhi oleh interaksi beberapa gaya yang bekerja, misalnya : gaya hisap sumur (viscous force), dan gaya gravitasi fluida (gravity force). Gaya-gaya ini sangat mempengaruhi kestabilan pergerakan batas minyak-air dan akibatnya ini sangat berpengaruh pada perilaku produksi dan faktor perolehan minyak.

Penelitian dilakukan dengan membuat suatu model fisik/media berpori di laboratorium. Pensaftaan (scaling down) dilakukan menggunakan analisis dimensional terhadap semua parameter yang berpengaruh. Aplikasi hasil penelitian dilakukan dengan menggunakan kaidah kesamaan (similarity) antara model dengan prototipe yang direpresentasikan.

Untuk bisa meneliti banyak kasus dalam waktu yang relatif cepat dibuat juga model numerik dengan perangkat lunak yang diselaraskan terhadap hasil dari model media berpori untuk suatu kasus yang sama. Hasil simulasi model media berpori menunjukkan bahwa semakin besar harga ratio gravity to viscous forces (R) atau semakin kecil laju alir maka waktu embus air dan faktor perolehannya juga semakin besar, begitu juga dengan pergerakan batas minyak-air akan lebih merata sepanjang sumur horizontal.

Kata kunci : sumur horizontal, model fisik, pensaftaan, media berpori, laju alir, rasio gaya gravitasi terhadap gaya isap, waktu embus air, faktor perolehan.

1. PENDAHULUAN
Sumur horizontal yang sudah banyak diaplikasikan di lapangan mempunyai banyak keuntungan dibandingkan dengan sumur vertikal adalah terutama dalam hal peningkatan perolehan minyak dan percepatan perolehan, sehingga banyak sumur horizontal digunakan untuk pengembangan lapangan marginal.

Pada laju produksi yang sama akan memberikan waktu embus air (breakthrough time) yang lebih lama jika dibandingkan pada sumur vertikal. Atau dengan kata lain penerapan sumur horizontal dapat memperlambat terjadinya water cresting/coning

Reservoir yang mempunyai tenaga dorong bottom water merupakan jenis jebakkan yang banyak dijumpai di lapangan. Proses produksi minyak akan menyebabkan bidang batas minyak-air bergerak ke atas. Kestabilan pergerakan bidang batas ini sangat dipengaruhi oleh laju alir produksi sumur atau gaya hisap sumur. Laju alir produksi sumur yang tinggi akan menyebabkan tekanan drawdown yang tinggi juga, dimana apabila laju produksi sumur yang tinggi melebihi laju produksi kritis. Ketidakstabilan pergerakan bidang batas tersebut yang merata menuju ke sumur produksi, biasanya disebut dengan rujungan air (water cresting/coning).

2. TINJAUAN PUSTAKA
Studi terdahulu menyatakan bahwa tidak ada graden tekana di sepanjang sumur horizontal, sehingga koneksiunsinya pergerakan batas air-minyak akan membentuk coning/cresting yang simetri dan seragam terhadap bidang vertikal sumbu sumur, akibatnya aquifer akan breakthrough di sepanjang sumbu horizontal. Asumsi tersebut belum tentu benar. Pemadi14 dengan menggunakan model fisik Hale-Shaw menunjukkan runjungan air (cresting) yang terbentuk tidak simetris. Breakthrough air terjadi terjadi pertama kali pada pangkal sumur horizontal. Murphy7 menunjukkan bahwa laju alir tidak mempengaruhi perolehan dan water cut pada sumur horizontal. Fenomena ini belum tentu benar, oleh karena itu studi lebih lanjut mengenai pengaruh laju alir terhadap perilaku produksi sumur horizontal masih layak dilakukan, dan ini merupakan bagian dari sasaran penelitian ini dengan menggunakan model fisik media berpori.

Sumur horizontal adalah suatu sumur yang dibor sejajar/parallel dengan lapisan reservoar. Banyak kelebihan aplikasi sumur horizontal yang dapat diperoleh ditanding sumur vertikal,2 yaitu terutama peningkatan perolehan minyak dan percepatan perolehan. Sedikitnya jumlah sumur yang diperlukan, tingginya produktivitas
sumur, dan meningkatnya perolehan minyak dari aplikasi sumur horizontal, menjadikannya lapangan yang diuji cintakan lapangan marginal menjadi ekonomis/meritik untuk dikembangkan. Dari beberapa literatur dilaporkan bahwa beberapa lapangan marginal telah dikembangkan dan terbukti berhasil secara ekonomis.

2.2. Water Cresting pada Sumur Horizontal

\[
\Delta P_{\text{sumur}} \leq \Delta P_{g} h \pm \text{Tekanan kapiler} \rightarrow \text{stabil}
\]

\[
\Delta P_{\text{sumur}} > \Delta P_{g} h \pm \text{Tekanan kapiler} \rightarrow \text{tidak stabil}
\]

Kemudian bilamana rujungan air sampai pada sumur produksi (*water breakthrough*), maka dengan cepat produksi sumur akan didominasi oleh air yang ditunjukkan dengan fraksi air (*water cut*) pada fluida produksi yang tinggi.

Untuk memperlambat terjadinya *water cresting*, maka perlu dilakukan kegiatan stabil bidang batas minyak-air dengan cara memproduksikan fluida di bawah laju produksi kritis (laju alir maksimum dimana keadaan bidang batas minyak-air masih terjaga).

Faktor-faktor yang berpengaruh terhadap perkembangan *water cresting* antara lain adalah [13], densitas, viscositas, panjang sumur horizontal, letak sumur horizontal, ukuran aquifer. Pada sumur horizontal titik masuk fluida reservoir ke lubang sumur lebih banyak, sehingga distribusi tekanan (*drawdown*) lebih luas dan lebih kecil dibandingkan dengan yang terjadi pada sumur konvensional (sumur tegak).

3. PENSKALAAN DAN ANALISA

DIMENSIONAL MODEL FISIK

Suatu model fisik yang terskala (*scaled model*) adalah jika semua parameter model terskala dengan baik terhadap prototipenya. Model yang paling ideal adalah jika mempunyai ukuran yang sama dengan prototipenya, tetapi hal ini tidak mungkin dilakukan di laboratorium. Oleh karena itu proses penskalaan dari suatu model adalah sangat penting untuk dilakukan.

Tabel 1 adalah perbandingan dimensi prototipe dan model fisik.

Analisis dimensional dilakukan dengan membagi/menggolongkan parameter-parameter di atas menjadi grup-grup bilangan penskala tak berdimensi (*dimensionless scaling groups*). Hal ini dimaksudkan untuk memodelkan kondisi sebenarnya ke skala laboratorium sehingga faktor dimensi tidak lagi. Parameter tak berdimensi ini sangat dibutuhkan jika hasil penelitian yang diperoleh nantinya akan diterapkan pada kondisi sebenarnya di lapangan. Dalam hal ini analisis dimensional dilakukan dengan menggunakan Teori Buckingham-\(\pi\) [14] dengan variabel utamanya adalah \(h_m\), \(\lambda_m\), dan \(q\). Dengan memilih tiga parameter utama tersebut, maka akan terbentuk 7 grup parameter tak berdimensi. Secara lengkap hasil analisis dimensional ditampilkan dalam Tabel 2.

4. RANCANGAN PERCOBAAN

4.1. Model Fisik

Media berpori dibuat dari pasir kwarsa dengan ukuran 20 – 40 mesh. Perekatnya adalah *epoxy resin* terasparan sebanyak 4.2 persen berat. Pleksiglass tebal 1 cm n sebagai penutup bagian samping aquifer. Pada permukaan dan bagian samping model dilapis dengan *local resin* terasparan yang berfungsi sebagai payekat agar fluida tidak keluar melalui sisi samping dari model. Tekanan aquifer sebagai bottom water drive diguna tetap konstan dengan cara mensuplai air ke aquifer dilakukan kontinyu.

Sumur horizontal sepanjang 55 cm dan berdiameter 4 mm ditempatkan dibagian atas-tengah model. Sistem produksi dilakukan dengan memompa fluida dari sumur menggunakan pompa peristaltik dengan diameter dalam pipa 0.0315 in (OD=0.1625 in). Skema model yang diteliti terlihat pada Gambar 1.

4.2. Fluida

Fluida yang digunakan dalam penelitian adalah fluida yang tidak saling bercampur. Dalam kasus ini digunakan air dan kerosin. Densitas air dan kerosin yang digunakan adalah 1.0008 g/cc dan 0.8116, sedangkan viscositas air dan kerosin sebesar 0.919cp dan 1.675 cp.

4.3. Laju Alir

Rentang harga laju alir yang digunakan dalam model disesuaikan dengan laju yang biasa digunakan dalam prototipe. Dalam kasus ini Lapangan Heven, Belanda [2], yang digunakan sebagai prototipe. Perbandingan laju alir pada model dan prototipe dapat dilihat pada Tabel 4.3.

Lapangan Heven [2] dalam berproduksi menggunakan rentang laju alir 1000-5500 BPD sehingga untuk menstimulasi pada model dipilih harga 1.3-7.3 cc per menit. Laju alir 15 cc per menit di terapkan pada
model fisik untuk mensimulasikan bila prototipe diproduksi dengan laju alir yang sangat tinggi, yaitu diatas 10,000 BPD.

4.4. Prosedur penelitian
Penvakuman model media berpori dilakukan, hal ini bertujuan untuk mengeluarkan gas/udara yang terdapat di dalam media berpori. Setelah tahap ini valve bagian atas ditutup dan valve yang menuju ke reservoar air dibuka sehingga air akan mengalir masuk ke dalam media berpori sampai semua pori terisi air.

Penjenuhan minyak dari reservoar melalui pipa berdiameter 0.25 in menuju valve-valve pada bagian atas model, reservoar minyak ditempatkan pada ketinggian 60 cm diatas sumur horizontal. Penjenuhan ini dihentikan bila kolom minyak mencapai ketebalan 7 cm.

Proses produksi fluida dilakukan setelah pompa di set pada laju alir yang telah ditentukan sebelumnya dan valve yang menuju pompa dibuka, valve pada bagian atas model yang digunakan untuk penjenuhan minyak ditutup sedangkan valve yang menuju ke reservoar air dibuka. Pengukuran fluida produksi dilakukan setiap 5 menit sampai produksi water cut mendekati harga 100%. Waktu tembus air dicatat dengan menggunakan stopwatch, sedangkan pengukuran fluida produksi diukur dengan gelas ukur.

4.5. Model Reservoar Simulasi Numerik
Model simulasi reservoar berukuran sama seperti model fisik. Ukuran grid reservoar simulasi pada arah-x, 4x5.62625 cm, 13x4.23 cm dan 4x5.62625, sedangkan pada arah-y, 15x1.5, cm, dan pada arah-z, 1x10 cm. Simulator yang digunakan adalah CMG (Computer Modelling Group). Tujuan digunakan simulasi numerik ini adalah untuk melakukan running pada kasus yang lebih komplek dan waktu yang lebih singkat dari model fisik.

5. HASIL PENELITIAN DAN PEMBAHASAN
5.1. Simulasi Reservoar dengan Model Fisik

Efek Laju Alir terhadap Waktu Tembus Air

Pada laju alir 15 milliliter per menit atau pada harga R = 1.205, karena terproduksinya fluida di sekitar lubang sumur, akan menyebabkan terjadinya graden tekanan yang besar disekitar lubang sumur dan aquier. Gaya gravitasi yang ditimbulkan oleh perbedaan densitas antara minyak dan air akan cenderung mengimbangi graden tekanan ini. Bila gaya yang bekerja akibat graden tekanan yang disebabkan oleh gaya hasiap lebih besar dari pada gaya gravitasi yang mengimbangi di sekitar lubang bor seperti pada kasus harga R = 1.205 ini, maka seiring dengan waktu produksi akan menyebabkan terjadinya water cresting. Waktu dimana air mulai masuk dalam lubang sumur dan ikt terproduksi disebut dengan waktu tembus air.

Pada haga rasio perbandingan gaya gravitasi terhadap gaya hisiap atau R = 13.90 waktu tembus air lebih lambat dibanding dengan kasus dengan harga R = 1.205 atau R = 2.476 , hal ini disebabkan karena gaya gravitasi fluida pada harga R yang lebih tinggi manupi mengimbangi gaya hasiap (viscous force) yang terjadi akibat terproduksinya fluida di sekitar lubang sumur, seperti terlihat pada Gambar 2.

Pada haga R = 13.90 dimana gaya gravitasi fluida manupi mengimbangi gaya hasiap yang terjadi di sekitar lubang sumur maka kestabilan zona batas minyak air akan terjaga. Akibat proses produksi fluida batas minyak air akan bergerak naik mendekati lubang sumur, karena batas minyak air cukup stabil front air akan masuk secara merata pada setiap titik sepanjang sumur. Pada saat waktu tembus air tersebut air akan terproduksi dalam jumlah besar sehingga menyebabkan harga water cut pada saat itu meningkat secara ekstrim, seperti terlihat pada Gambar 3.

Berbeda dengan kedua harga R yang lebih rendah, karena gaya gravitasi tidak mampu mengimbangi gaya hasiap disekitar lubang sumur sehingga kestabilan batas minyak air relatif tidak terkontrol. Pada waktu batas minyak air bergerak naik, karena sifat air yang merpunyai mobilitas yang lebih tinggi dibanding dengan minyak, air akan menerobos masuk ke dalam lubang sumur, dan masuknya air tidak dapat merata seperti pada harga R = 13.90, oleh sebab itulah waktu tembus air pada kasus R yang lebih rendah menjadi lebih cepat.

Hubungan antara rasio perbandingan gaya gravitasi terhadap gaya hasiap versus waktu tembus air terlihat pada Gambar 4, bahwa semakin besar harga R maka akan semakin besar pula waktu tembus ainya. Untuk kasus di lapangan akan lebih tepat bila dinyatakan dalam bentuk tak berdimensi (dimensionless) seperti pada Gambar 5. Waktu tembus air dapat ditentukan setelah sumur menghasilkan fluida sebesar unit volume tertentu dengan R'yang tertentu pula.

Efek Laju Alir terhadap Perolehan
Kestabilan batas minyak air cenderung bergerak naik, karena terjadinya penurunan tekanan di lubang sumur
yang lebih besar daripada gaya gravitasi yang mengimbangi dan juga air lebih mobil daripada minyak serta sifat air sendiri yang bergerak menuju daerah yang bertekanan atau berpotensial rendah. Maka jika laju alir besar atau pada kasus ini harga R = 1,205 maka batas minyak air menjadi tidak stabil. Keadaan ini disebabkan perbandingan mobilitas air terhadap minyak lebih besar satu, sehingga air bersifat mudah mengalir daripada minyak sehingga pada saat terjadi water creasing aliran minyak akan terhalangi oleh air yang masuk menuju lubang sumur. Akibat dari peristiwa ini air yang terproduksi akan semakin banyak sedangkan minyak yang terproduksi akan mengalami penurunan. Hal ini dimulai pada saat setelah terjadinya waktu tembus air atau breakthrough. Kondisi ini menyebabkan perolehan minyak akan mengalami penurunan dibanding pada saat belum terjadi breakthrough, seperti terlihat pada Gambar 6. Pada kasus R = 1,205 setelah terjadi tembus air mempunyai harga perolehan yang terendah dibanding dengan harga R = 13.90 atau R = 2.476 pada harga kumulatif fluida yang sama.

Hubungan antara rasio gravitasi terhadap harga gaya hipas versus faktor perolehan terlihat pada Gambar 7. Pada harga water cut yang sama, semakin besar harga R maka akan semakin besar pula faktor perolehannya. Pada harga R = 1,205 – 2.476 menunjukkan bahwa gaya gravitasi fluida tidak mampu mengimbangi gaya hipas, sehingga terjadi water creasing yang akan berakibat turunya faktor perolehan secara signifikan, tetapi untuk harga R yang lebih besar 2.476 sampai dengan R = 13.90 kenaikan faktor perolehan tidak begitu signifikan, disebabkan gaya gravitasi mampu mengimbangi gaya hipas sehingga kestabilan batas minyak air lebih terkontrol.

5.2. Simulasi Reservoir dengan Model Simulasi Numerik

Pemodelan reservoir dengan metoda numerik dilakukan dengan menggunakan software CMG. Hasil dari pemodelan dengan simulasi numerik hanya digunakan sebagai pembanding hasil simulasi model fisik. Melalui model simulasi numerik diharapkan bisa melakukan simulasi untuk kasus-kasus yang lebih kompleks dimana simulasi model fisik tidak memungkinkan.

Langkah pertama yang harus dilakukan adalah history matching. Proses ini bertujuan untuk menyamakan kondisi yang berlaku pada model fisik dengan kondisi model simulasi numerik. History matching pada penelitian ini dilakukan pada laju alir 7,3 milliliter per menit atau pada harga R = 2,476. Alasan dipilihnya history matching pada laju alir ini diantaranya adalah tidak adanya gangguan teknis (selang/pipa pompa tersumbat) selama proses simulasi model fisik, serta harga laju alir atau R ini merupakan harga tengah dari rentang harga laju alir atau R yang disimulasikan. Hasil matching seperti terlihat di Gambar 8, dimana laju alir dan waktu tembus air kedua model simulasi relatif hampir sama.

Hubungan rasio gravitasi terhadap gaya hipas versus Faktor perolehan dari kedua model menunjukkan perbedaan yang tidak terlalu signifikan, seperti pada Gambar 10. Pada model simulasi numerik perubahan harga R tidak terlalu berpengaruh terhadap faktor perolehan, tetapi tetap menunjukkan keceraherangan yang sama dengan model fisik, dimana semakin besar harga R maka akan semakin besar pula faktor perolehannya.

6. KESIMPULAN

1. Rasio gaya gravitasi terhadap gaya isap sumur mempengaruhi waktu tembus air dan faktor perolehan. Dimana semakin besar rasio gaya gravitasi terhadap gaya isap sumur semakin besar pula waktu tembus air/pembentukan water creasing dan faktor perolehannya.

2. Pergerakan batas air minyak lebih merata pada harga R yang besar (laju alir kecil). Hal ini terlihat dari harga water cut yang naik secara ekstrim pada saat waktu tembus air.

3. Pengaru h arga rasio gaya gravitasi terhadap gaya isap sumur tidak selalu memberikan hasil yang sama pada kedua model. Misalnya pada harga R = 2,476 perbandingan faktor perolehan pada water cut 90 % faktor perolehan model 2,1 % lebih banyak daripada faktor perolehan model simulasi numerik.

Data-data penelitian Media berpori

- Porositas : 0.327 fraksi
- Permeabilitas absolut : 4,437 Darcy
- Swi : 0.0835 fraksi
- Sor : 0.0716 fraksi
- Kro@Swi : 0.987 fraksi
- Krw@Sor : 0.726 fraksi
DAFTAR PUSTAKA

7. Murphy, P.J., Performance of Horizontal Wells in the Hevel Field, JPT, Juni 1990.

UCAPAN TERIMA KASIH

Para Penulis mengucapkan terima kasih yang sebesar-besarnya kepada Penyelenggara dan Pemberi Dana Riset Unggulan Terpadu (RUT) ke –VIII, sehingga penelitian dapat berjalan sebagaimana yang diharapkan, juga kepada Prof. Dr. Purwanto M, Prof. dr. Puji Permadi, Dr Wahju Wibowo atas bantuan dan bimbinganya dalam penelitian ini.

Tabel 1.
Perbandingan Dimensi Prototipe dan Model Fisik

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Keterangan</th>
<th>Prototip</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Lebar reservoir</td>
<td>650 ft</td>
<td>22.5 cm*</td>
</tr>
<tr>
<td>L</td>
<td>Panjang reservoir</td>
<td>1450 ft</td>
<td>100 cm</td>
</tr>
<tr>
<td>L<sub>h</sub></td>
<td>Panjangsumur horizontal</td>
<td>800 ft</td>
<td>55 cm</td>
</tr>
<tr>
<td>h<sub>o</sub></td>
<td>Tebal kolom minyak</td>
<td>75 ft</td>
<td>5 cm</td>
</tr>
</tbody>
</table>
Gambar 1.
Skema Peralatan Model

Tabel 2.
Scaling Groups Untuk Model Fisik Reservoar

<table>
<thead>
<tr>
<th>Scaling Groups</th>
<th>Simbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok Geometri (Geometry Groups)</td>
<td></td>
</tr>
<tr>
<td>Perbandingan lebar reservoar thd tebal kolom minyak</td>
<td>$\frac{W}{h_o}$</td>
</tr>
<tr>
<td>Perbandingan panjang reservoar thd tebal kolom minyak</td>
<td>$\frac{L}{h_o}$</td>
</tr>
<tr>
<td>Perbandingan panjang sumar thd tebal kolom minyak</td>
<td>$\frac{L_n}{h_o}$</td>
</tr>
<tr>
<td>Kelompok Kondisi Operasi (Operating Condition Groups)</td>
<td></td>
</tr>
<tr>
<td>Perbandingan mobilitas fluida pada bidang batas (moving front)</td>
<td>$\frac{\lambda_w}{\lambda_o}$</td>
</tr>
<tr>
<td>Perbandingan gaya gravitasi thd gaya hisap sumur (ratio gravity to viscous forces)</td>
<td>$\frac{q\Delta \rho \lambda_w A\phi_d}{q}$</td>
</tr>
<tr>
<td>Kelompok Produksi (Production History Groups)</td>
<td></td>
</tr>
<tr>
<td>Fraksi kumulatif produksi total fluida</td>
<td>$\frac{q_t}{V_b\phi_d}$</td>
</tr>
<tr>
<td>Fraksi produksi air (water cut)</td>
<td>$\frac{q_w}{q}$</td>
</tr>
</tbody>
</table>
Gambar 2.
Perbandingan Water Cut terhadap Waktu

Gambar 3.
Perbandingan Water Cut terhadap Kumulatif Fluida Produksi
Gambar 4.
Hubungan R terhadap Waktu Tembus Air pada Model Fisik

Gambar 5.
Hubungan R terhadap Kumulatif Fluida dalam Satuan Unit Volume pada Saat Breakthrough pada Model Fisik
Gambar 6.
Perbandingan Faktor Perolehan terhadap Kumulatif Fluida Produksi

Gambar 7.
Hubungan Antara R terhadap Faktor Perolehan pada Berbagai Harga Water Cut pada Model Fisik
Gambar 8
Hasil History Matching pada Laju Alir 7.3 Cc Per Menit

Gambar 9.
Hubungan R terhadap Waktu Tembus Air pada Model Simulasi Numerik
Gambar 10.
Perbandingan Hubungan Antara R terhadap Faktor Perolehan pada Model Fisik dan Model Simulasi Numerik Saat Breakthrough