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Abstract 

 

The open loop on off experiment for tuning of Proportional Integral 

Derivative (PID) controller in a 10 L mixing tank has been successfully done in 

laboratory. A 10 L tank was designed for mixing of salt solution (as a stream-1) and 

water (as a stream-2). An electric stirrer was used to achieve uniform characteristic 

in tank. The tank system was designed overflow to keep its volume constant. The 

two configurations of composition control in a mixing tank have been proposed; 

they are Configuration-1 and Configuration-2. Stream-1 and stream-2 were chosen 

as manipulated variables for Configuration-1 and Configuration-2, respectively. In 

the open loop on-off experiment, the valve of each manipulated variable was 

suddenly fully open (on position) for several seconds and then fully closed (off 

position) for several seconds. The on off response of salt concentration in tank to 

on off input change in manipulated variable has been investigated. The resulted on 

off curves were then used to determine the PID parameters. This experiment gave 

the controller gain Kc [ml2/(g.sec)] for Configuration-1 and Configuration-2 are 

68790 and –61146, respectively. The integral and derivative time constants for 

both configurations are the same, i.e. I = 80 seconds, D = 19 seconds. In order to 

evaluate the resulted tuning parameters, closed loop dynamic simulation using 

computer was also done. The mathematical model of composition control in a 

mixing tank was numerically solved and rigorously examined in Scilab 

environment. The closed loop dynamic simulation revealed that PID controller 

acted very well and its responses were faster than those in P and PI controllers. 
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1 Introduction 
 

The mixing processes are often met in industries such as blending, dilution, 

and reaction processes. Composition uniformity in the tank is a success key for 

mixing or chemical reaction processes. However, the composition in the tank is 

not at static value but it is dynamic due to the input disturbance changes to the 

process. Therefore, the composition control must be implemented to maintain its 

composition constant at its desired value [14].   

 

Tuning of Proportional Integral Derivative (PID) control parameters such as 

proportional gain (Kc), integral time constant (τI), and derivative time constant (τD) 

is an important activity that should be done before running the plant 

automatically. Since the PID control parameters seriously affect the stability of 

the plant, they should be tuned properly [4]. Therefore, study on controller tuning, 

dynamic simulation and control are very important to be done. 

Some researches on controller tuning, process dynamic and control have been 

done previously. Shamsuzzohaa et al [5] have studied on-line PI controller tuning 

using closed-loop setpoint response. Dharan et al [8] has proposed the optimization 

techniques for tuning of PID controller in a Multi-Input-Multi-Output (MIMO) 

process. Hermawan [13] implemented the Process Reaction Curve (PRC) for tuning 

of temperature controller parameters in a 10 L stirred tank heater. Hermawan and 

Haryono [14] also implemented the PRC for tuning of composition controller 

parameters in a 10 L mixing tank. Recently, Dalen and Ruscio [2] proposed a semi-

heuristic PRC for tuning of PID.  

 

Hermawan et al [12] utilized Routh-Hurwitz (RH) stability criteria to predict 

PI parameters in flow control system with pump’s voltage as a manipulated 

variable. Hermawan et al [15] have also used RH stability criteria to predict P 

parameter of level control in a pure capacitive tank. Rao et al [3] have proposed 

design of PID controller for pure integrator system with time delay. Recently, 

Álvaro et al. [6] utilized Xcos software to simulate the level control in the 

interacting tank system. 

 

This work was aimed to propose two composition control configurations in a 

10 L mixing tank, and to use the open loop on off method for tuning of composition 

control parameters (PID control parameters). The open loop on off method for tuning 

of PID control parameters was done experimentally in laboratory instead of the relay 

feedback testing (RFT). The resulted PID control parameters of the proposed 

configurations were then examined trough dynamic simulation. In order to achieve 

our goals, this work was done in 2 parts, i.e. open loop experiment in laboratory for 

tuning of PID control parameters and closed loop simulation using computer 
programming to examine the resulted PID control parameters and to explore the dynamic 
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behavior of the proposed composition control configurations. The developed 

mathematical model was solved numerically with easiest way of explicit euler. The 

scilab software was used to carry out the closed loop dynamic simulation [7].    

 

2 Material and Method  
 

Figure 1 shows the experimental apparatus setup. Tank No. 1 in Figure 1 is 

the main tank that represents a 10 L mixing tank. The mixing tank has 2 input 

streams (Stream-1 and Stream-2) and 1 output stream (Stream-3). Stream-1 is a salt 

solution with its volumetric flowrate f1(t) [ml/second] and salt concentration c1(t) 

[g/ml] and Stream-2 is water with its volumetric flowrate f2(t) [ml/second]. The 

volumetric flowrates of Stream-1 and Stream-2 can be adjusted by valve No. 7b and 

7a, respectively. Stream-3 has volumetric flowrate f3(t) [ml/second] and salt 

concentration c3(t) [g/ml]. The salt concentration is measured by means of 

conductivity-meter. In order to keep the liquid volume in tank constant, the mixing 

tank is designed overflow. A stirrer is employed to achieve uniform concentration 

in tank. In normal condition, Stream-1 and Stream-2 come from tanks No. 2a and 3, 

respectively. If we want to give a concentration disturbance of Stream-1, the tank 

No. 2b is utilized. The input concentration disturbance can be made by revolving 

the gate of three-way-valve No. 9, so that Stream-1 comes from the tank No. 2b 

which is specifically prepared for making concentration disturbance. 

The material balance of the mixing tank can be written as follows:  

 
𝑑𝑐3(𝑡)

𝑑𝑡
= (𝑓1(𝑡)𝑐1(𝑡) − 𝑓1(𝑡)𝑐3(𝑡) − 𝑓2(𝑡)𝑐3(𝑡))/𝑉  (1) 

 

In this work, the 2 composition control configurations are proposed, i.e. 

Configuration-1 and Configuration-2 as shown in Figure 2. Stream-1 and Stream-2 

are chosen as manipulated variables (MVs) to control salt concentration in tank (c3) 

constant at its set point for Configuration-1 and Configuration-2, respectively. The 

open loop on off experiment for tuning of PID parameters is done for either 

configurations by changing the opening valve of Stream-1 (No. 7b in Figure 1) or 

Stream-2 (No. 7a in Figure 1) to fully open (on position) or fully closed (off position) 

for several seconds. The output concentration (c3) response to an on off change in 

input volumetric rate is then investigated. The resulted on off response is then used to 

determine ultimate period (Tu), relay’s height (h), and maximum amplitude of 

controlled variable (a). Ultimate gain (Ku) can be calculated as follows: 

 

𝐾𝑢 =
4ℎ

𝑎π
 (2) 

 

PID parameters are then tuned using Ziegler-Nichols model as shown in Table 1 [10]. 
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Notes: 

1: Main tank (Mixing Tank) 3: Feeding tank of water 8: protractor 

2: Feeding tank of salt solution  

a. Used at normal condition 

b. Used for giving a composition 

disturbance  

4: Storage tank  

5: Stirrer 

6: Pump 

7: Valve  

9: Three way valve  

 

Figure 1. The experimental apparatus setup. 

 

 

 

Figure 2. Composition control configurations. 

           

 

Table 1. Ziegler-Nichols model for tuning of PID control parameters 

 

Controller Kc I D 

P 
𝐾𝑢

2
 - - 

PI 
2 𝐾𝑢

5
 

4 𝑇𝑢

5
 - 

PID 
3 𝐾𝑢

5
 

𝑇𝑢

2
 

3 𝑇𝑢

25
 

  

 

f2(t), c2(t) 

f1(t), c1(t) 

f3(t), c3(t) 

Feed water 

1 

2a 2b 
3 

4a 4b 4c 

5a 

5b 5c 

6a 6b 6c 

7a 7b 

8a 

9 

Fluid outlet 

8b 

 

f1(t) f2(t) 

f3(t), c3(t) 

CT CC 

Keterangan: 

CV : c3(t)  

MV : f1(t) 

DV : f2(t) 

CT : Composition 

Transmitter 

CC : Composition 

Controller 

.  

f1(t), c1(t) f2(t) 

f3(t), c3(t) 

CT CC 

Keterangan: 

CV : c3(t)  

MV : f2(t) 

DV : f1(t) atau c1(t) 

CT : Composition 

Transmitter 

CC : Composition 

Controller 

. 

(a) Configuration-1

Conf. CV MV DV

1 c3 f1 f2

Conf. CV MV DV

2 c3 f2 f1 and c1

(b) Configuration-2
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       The resulted PID control parameters are then evaluated through closed loop 

dynamic simulation using computer programming. The equations of manipulated 

variables for both configurations are as follows:  

 

Configuration-1: 

𝑓1(𝑡) = 𝑓1̅ + 𝐾𝑐𝑒(𝑡) +
𝐾𝑐

𝜏𝐼
∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑐𝜏𝐷

𝑑𝑒(𝑡)

𝑑𝑡
  (3) 

Configuration-2: 

𝑓2(𝑡) = 𝑓2̅ + 𝐾𝑐𝑒(𝑡) +
𝐾𝑐

𝜏𝐼
∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑐𝜏𝐷

𝑑𝑒(𝑡)

𝑑𝑡
  (4) 

Error (e) can defined as follow: 

 𝑒(𝑡) = 𝑐3̅ − 𝑐3(𝑡) (5) 

Dynamic performance of the composition control system will be formulated 

from the complete closed loop response, from time t = 0 until steady state has 

been reached. Integral of the absolute value of the error (IAE) for composition 

controller would be used for the formulation of the composition dynamic 

performance. The equation of IAE is then calculated as bellows [9]:  

 𝐼𝐴𝐸 = ∫ 𝑒(𝑡)𝑑𝑡
∞

0
 (6) 

The mathematic equation system is solved numerically with the easiest way, 

i.e. Explicit Euler. The free software Scilab [7] is utilized to carry out the closed 

loop dynamic simulation. The closed loop responses of composition control in a 

10 L mixing tank will then be explored in this work. 

 

3 Result and Discussion  
 

Steady state parameters of mixing tank system are shown in Table 2. 

According to those steady state parameters, the process time constant is found to 

be 61.7 seconds (1.03 minutes). The system is therefore considered quiet sensitive 

to the input disturbance changes.  

 

Table 2. Steady state parameters  

No Variable Value 

1 Input salt solution flowrate; f1 [ml/second] 96.3 

2 Input water flowrate; f2 [ml/second] 75.7 

3 Output salt solution flowrate; f3 [ml/second] 172.0 

4 Input salt concentration; c1 [gr/ml] 0.0050 

5 Output salt concentration; c3 [gr/ml] 0.0028 

6 Salt solution volumen in tank; V [ml]  10613 

 

The open loop on off responses resulted from laboratory investigation are 

shown in Figure 3. The ultimate gains (Ku) for Configuration-1 and Configuration-2 
are found to be 114650 and 101911, respectively. Ultimate periods (Tu) for both configu- 
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rations are the same, it is 160 seconds. The resulted Ku and Tu are then used to 

calculate PID control parameters as shown in Table 3.   

 

   

    

    
                    (a) Configuration-1                                (b) Configuration-2 

 

Figure 3. Open loop on-off responses: (a) Configuration-1, (b) Configuration-2 

 

Table 3. Tuning results of PID controller parameters 

 
Type of 

Feedback 

Control 

Proportional Gain Kc 

[ml2/(g.second)] 

Integral Time Constant  

I [second] 

Derivative Time Constant 

D [second] 

Kc Conf-1 Conf-2 I Conf-1 Conf-2 D Conf-1 Conf-2 

P 
𝐾𝑢

2
 57325 -50955  - - - - - - 

PI 
2 𝐾𝑢

5
 45860 -40764 

4 𝑇𝑢

5
 128 128 - - - 

PID 
3 𝐾𝑢

5
 68790 -61146 

𝑇𝑢

2
 80 80 

3 𝑇𝑢

25
 19 19 

 

   In Configuration-1 and Configuration-2, salt concentration in tank (c3) is 

kept constant at its set point, c3
SP=0.0028 g/ml, by manipulating the input salt 

solution flowrate (f1) and the input water flowrate (f2), respectively. Controller 

acting of Configuration-1 is reverse acting, where if the controlled variable of c3 

increases from its set point, the controller attempts to return c3 to its set point by 

decreasing the manipulated variable of f1. Therefore, controller gain (Kc) value of  

0
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4ℎ
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= 101,911   
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Configuration-1 is positive. And vice versa, controller acting of Configuration-2 is 

direct acting, where if controlled variable of c3 increases, the controller attempts 

to return c3 to its set point by increasing the manipulated variable of f2. Controller 

gain (Kc) value of Configuration-2 with direct acting is thus negative [1], [11]. 

 
 

Figure 4. Closed loop responses of Configuration-1 to step input changes in f2(t) 

with f2=±40 ml/sec: (a) CV=c3(t), (b) MV=f1(t). 

 

 

Table 4. Closed loop performances of Configuration-1 to step input changes f2 

 
Type of Feedback 

Control 
Step increase f2 with f2=+40ml/s Step decrease f2 with f2=–40ml/s 

IAE Offset [gr/ml] IAE Offset [gr/ml] 

P 0.6230 -0.0003 0.9542  0.0005 

PI 0.1407 0.0000 0.1421 0.0000 

PID 0.0592 0.0000 0.0621 0.0000 

 

The closed loop dynamic simulation is done to examine the robustness of the 

resulted PID control parameters in Table 3. The closed loop responses of 

Configuration-1 to step input changes in the input water flowrate (f2) are illustrated 

in Figure 4. While the closed loop performances of Configuration-1 are listed in 

Table 4. The disturbances are made by following both functions of step increase 

and step decrease. For step increase of f2, flowrate of f2 is increased immediately by 

an amount of +40 ml/s. The solid line in Figure 4 represents the closed loop 

responses to a step increase change in f2. The salt concentration in tank (c3) 

decreases with increasing of the input water flowrate (f2); the controller then 

attempts to return c3 to its set point by increasing the manipulated variable of f1. As 

can be seen in Figure 4, P-Control produces an offset of –0.0003 g/ml. 

Combination of proportional and integral control modes leads to eliminate an offset 

[4], [14]. PI and PID-Controls are able to return c3 to its set point. Closed loop 

response of PID-Control is fastest compared with P and PI-Controls; concentration 

c3 can be returned to its set point at time about 900 seconds. 
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The dashed line in Figure 4 represents the closed loop responses to a step 

decrease change in f2. The concentration c3 increases first, and then drops to its set 

point. P Control still results an offset of 0.0005 g/ml. The closed loop response of 

PID-Control is the fastest one compared with P and PI-Controls; the set point of c3 

can be obtained at time about 800 seconds.  

 

 
Figure 5. Closed loop responses of Configuration-2 to step input changes in f1(t) 

with f1=±35 ml/sec: (a) CV=c3(t), (b) MV=f2(t). 

 

Table 5. Closed loop performances of Configuration-2 to step input changes f1 

 
Type of Feedback 

Control 
Step increase f1 with f1=+35ml/s Step decrease f1 with f1=–35ml/s 

IAE Offset [gr/ml] IAE Offset [gr/ml] 

P 0.4231 0.0002 0.5725 -0.0003 

PI 0.0860 0.0000 0.0863 0.0000 

PID 0.0360 0.0000 0.0364 0.0000 

 

Figure 5 shows the closed loop responses of Configuration-2 to step input 

changes in the input salt solution flowrate (f1). Whereas the closed loop 

performances of Configuration-2 to step input changes f1 are listed in Table 5. The 

disturbances are made by following both functions of step increase and step 

decrease of the input salt solution flowrate (f1). For step increase of f1, flowrate of f1 

is increased immediately by an amount of +35 ml/s. The solid line in Figure 5 

represents the closed loop responses of Configuration-2 to a step increase change in 

f1. The salt concentration in tank (c3) increases with increasing of the input salt 

solution flowrate (f1); then, the controller attempts to back c3 to its set point by 

increasing the manipulated variable of the input water flowrate (f2). Again, as 

shown in Figure 5, P-Control results an offset of 0.0002 g/ml. But, PI and PID-

Controls can return the concentration of c3 to its set point of 0.0028 g/ml. PID-

Control gives the fastest responses compared with P and PI-Controls; the 

concentration of c3 can be returned to its set point at time about 800 seconds. 
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The dashed line in Figure 5 represents the closed loop responses of 

Configuration-2 to a step decrease change in the input disturbance of f1. The 

concentration c3 decreases with decreasing of flowrate f1. P-Control still produces 

an offset of –0.0003 g/ml. Both PI and PID-Controls are able to eliminate an offset, 

i.e. concentration c3 can be kept constant at its set point of 0.0028 g/ml. Again, PID-

Control produces the fastest response compared with P and PI-Controls; the 

controlled variable of c3 can be returned to its set point at time about 500 seconds. 

 

 
Figure 6. Closed loop responses of Configuration-2 to step input changes in c1(t) 

with c1=±0.002 ml/sec: (a) CV=c3(t), (b) MV=f2(t). 

 

Table 6. Closed loop performances of Configuration-2 to step input changes c1 

Type of Feedback 

Control 
Step increase c1 with c1=+0.002g/ml Step decrease c1 with c1=–0.002g/ml 

IAE Offset [gr/ml] IAE Offset [gr/ml] 

P 1.1111 0.0006 1.3572 -0.0007 

PI 0.2151 0.0000 0.2160 0.0000 

PID 0.0900 0.0000 0.0914 0.0000 

 

The closed loop responses of Configuration-2 to step input changes in the input 

salt concentration (c1) are shown in Figure 6. While the closed loop performances of 

Configuration-2 to step input changes in c1 are listed in Table 6. The disturbances are 

made by following both functions of step increase and step decrease of the input salt 

concentration (c1). For step increase of c1, concentration of c1 is increased 

immediately by an amount of +0.002 g/ml. The solid line in Figure 6 represents the 

closed loop responses of Configuration-2 to a step increase change in c1. The salt 

concentration in tank (c3) increases with increasing of the input salt concentration 

(c1); then, the controller attempts to back c3 to its set point by increasing the 

manipulated variable of the input water flowrate (f2). Again and again, as shown in 

Figure 6, P-Control results an offset of 0.0006 g/ml. But, PI and PID-Controls have 

no offset. PID-Control produces the fastest responses compared with P and PI-

Controls; the concentration of c3 can be returned to its set point at time about 900 

seconds. 
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The dashed line in Figure 6 represents the closed loop responses of 

Configuration-2 to a step decrease change in the input disturbance of c1. The 

concentration c3 decreases with decreasing of concentration of c1. P-Control still 

results an offset of –0.0007 g/ml. Both PI and PID-Controls are able to eliminate an 

offset. Again and again, PID-Control produces the fastest response compared with P 

and PI-Controls; the controlled variable of c3 can be returned to its set point at time 

about 700 seconds. 

In general, closed loop responses of PID-Control are the same qualitative 

dynamic characteristics as those resulting from PI-Control. By increasing the value 

of proportional gain (Kc) and/or decreasing the value of integral time constant (I), 

the speed of closed loop response increases significantly. However increasing Kc 

and/or decreasing I, the response become more oscillatory and may lead to 

instability. This problem could be overcome by introducing the derivative mode 

that conveys a stabilizing effect to the system. Thus, the derivative control action 

not only gives faster response but also results more robust response [4], [14]. 

 

4 Conclusion  
 

   The two composition control configurations in a 10 L mixing tank have 

been proposed. The open loop on off method for tuning of composition control 

parameters for both configurations has been successfully done in laboratory. The 

open loop experiment gave controller gains 68790 [ml2/(g.sec)] and –61146 

[ml2/(g.sec)] for Configuration-1 and Configuration-2, respectively. The integral 

time constant (I) and the derivative time constant (D) were the same, they were 

80 seconds and 19 seconds, respectively. Based on our closed loop simulation 

results, the resulted PID parameters of the two configurations were able to 

produce stable responses to step input changes in water volumetric flowrate, salt 

solution volumetric flowrate, and salt concentration. This study reveals that by 

tuning of PID control parameters properly, the control system is able to give 

stable responses to the input disturbance changes. This study also reveals that PID 

control gives fastest responses compared with P and PI controls.     
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