DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
PERNYATAAN KEASLIAN KARYA ILMIAH	iii
KATA PENGANTAR	iv
ABSTRAK	vi
ABSTRACT	vii
DAFTAR ISI	viii
DAFTAR GAMBAR	xi
DAFTAR TABEL	xvii
DAFTAR LAMPIRAN	xviii
BAB I. PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Perumusan Masalah	2
1.3. Maksud dan Tujuan	3
1.4. Batasan Masalah	3
1.5. Lokasi Penelitian	3
BAB II. TINJAUAN PUSTAKA	5
2.1. Tatanan Tektonik Pulau Jawa	5
2.2. Geologi Regional Jawa Timur	16
2.3. Geologi Regional Kendeng	24
2.3.1. Fisiografi	24
2.3.1.1. Zona Kendeng	24
2.3.1.2. Zona Solo	26
2.3.2. Stratigrafi	27
2.4. Potensi Migas	32
2.5. Penelitian Terdahulu	37
BAB III. DASAR TEORI	51
3.1. Fold-Thrust Belt	51
3.1.1. Sesar Anjak	51
3.1.2. Pembentukan Sesar Anjak	51

		3.1.3. Geometri Sesar Anjak	52
		3.1.4. Sistem Sesar Anjak	54
		3.1.5. Setting Di Zona Fold-Thrust Belt	57
		3.1.6. Geometri Fold-Thrust Belt	62
	3.2.	Metode Gravitasi	63
		3.2.1. Gaya Gravitasi	63
		3.2.2. Medan Gravitasi Dan Potensial Gravitasi	64
		3.2.3. Permukaan Geoid	66
		3.2.4. Koreksi Pada Metode Gravitasi	67
		3.2.5. Penentuan Nilai Densitas	74
	3.3.	Filtering Data	76
		3.3.1. Bandpass Filter	76
		3.3.2. Lowpass Filter	79
		3.3.3. Total Horizontal Derivative (THD)	80
		3.3.4. Tilt Derivative (TDR)	81
		3.3.5. Second Vertical Derivative (SVD)	82
	3.4.	Analisis Spektrum	84
	3.5.	Pemodelan Bawah Permukaan	86
		3.5.1. Forward Modelling	86
		3.5.2. Inverse Modelling	87
		3.5.3. Konsep Pemodelan 2,5 Dimensi (2,5D)	88
BAB	IV.	METODE PENELITIAN	90
	4.1.	Skema Penelitian	90
	4.2.	Desain Survey Penelitian	91
	4.3.	Pengolahan Data	92
BAB	V.	HASIL DAN PEMBAHASAN	98
	5.1.	Peta Anomali Bouguer Lengkap	98
	5.2.	Peta Anomali Regional	100
	5.3.	Peta Anomali Residual	102
	5.4.	Peta Stacking Residual	106
	5.5.	Analisis Kedalaman	108
		5.5.1. Analisis Kedalaman Sayatan A-A'	110

	5.5.2. Analisis Kedalaman Sayatan B-B'	111
	5.5.3. Analisis Kedalaman Sayatan C-C'	112
5.6.	Peta Total Horizontal Derivative (THD)	113
5.7.	Peta Tilt Derivative (TDR)	115
5.8.	Peta Second Vertical Derivative (SVD)	117
5.9.	Analisis Struktur Sesar Berdasarkan Derivative	120
	5.9.1. Analisis Struktur Sesar Sayatan A-A'	120
	5.9.2. Analisis Struktur Sesar Sayatan B-B'	122
	5.9.3. Analisis Struktur Sesar Sayatan C-C'	124
	5.9.4. Analisis Struktur Sesar Sayatan D-D'	126
5.10	. Model 2,5D Gravitasi Bawah Permukaan	128
	5.10.1. Model 2,5D Gravitasi Sayatan A-A'	128
	5.10.2. Model 2,5D Gravitasi Sayatan B-B'	132
	5.10.3. Model 2,5D Gravitasi Sayatan C-C'	135
	5.10.4. Model 2,5D Gravitasi Sayatan D-D'	139
5.11	. Zonasi Daerah Prospek Hidrokarbon	142
BAB VI.	KESIMPULAN DAN SARAN	145
6.1.	Kesimpulan	145
6.2.	Saran	146
DAFTAR	PUSTAKA	
LAMPIRAN		

DAFTAR GAMBAR

Gambar 1.1	Peta Lokasi Penelitian (World Imagery, 2018)	4
Gambar 2.1	Evolusi Tektonik Indonesia bagian Barat (Sribudiyani, 2003)	6
Gambar 2.2	Skema Cross-Section Pulau Jawa selama 70-35Ma	
	(Sribudiyani, 2003)	7
Gambar 2.3	Skema Cross-Section Pulau Jawa selama 35-20Ma	
	(Sribudiyani , 2003).	8
Gambar 2.4	Rekonstruksi Tektonik Sundaland pada Jurassic Akhir (Hall,	
	2009)	9
Gambar 2.5	Rekonstruksi Tektonik Sundaland pada zaman Kapur (Hall,	
	2009)	10
Gambar 2.6	Rekonstruksi Tektonik Sundaland pada Eosen (Hall, 2009)	11
Gambar 2.7	Rekonstruksi Tektonik Sundaland pada Miosen Tengah (Hall,	
	2009)	12
Gambar 2.8	Skema Paleogeografi pada Sunda Shelf di Jawa bagian Barat	
	pada Eosen Akhir, Eosen Tengah, dan Oligosen Awal	
	(Clements dan Hall, 2011)	13
Gambar 2.9	Rekonstruksi Tektonik Baru di Sundaland bagian Timur dan	
	Tenggara pada Kapur Awal (Satyana, 2016)	14
Gambar 2.10	Rekonstruksi Tektonik Baru di Sundaland bagian Timur dan	
	Tenggara dari Jurassic Awal sampai Kapur Akhir (Satyana,	
	2016)	15
Gambar 2.11	Peta Geologi Jawa Timur secara regional oleh (Smyth, 2007)	17
Gambar 2.12	Peta Anomali Bouguer Gravity Jawa Timur (Smyth, 2007)	18
Gambar 2.13	Skema Tektonik dan Pengendapan Pre-Thrusting Pulau Jawa	
	(Hall, 2007)	20
Gambar 2.14	Profil Anomali Bouguer Jawa Timur yang disayat oleh	
	(Waltham, 2008)	21
Gambar 2.15	Analogi Pengendapan Sedimen di Jawa bagian Barat (Hall,	
	2007)	22

Gambar 2.16	Skema Blok Diagram Pengendapan Sedimen ketika Eosen dan	
	Sesudah Eosen di Jawa Timur (Sribudiyani, 2003)	23
Gambar 2.17	Tektonik Framework Jawa Timur (Sribudiyani, 2003)	23
Gambar 2.18	Zonasi fisiografi Pulau Jawa bagian tengah dan timur (Husein,	
	2016) modifikasi dari (van Bemmelen, 1949)	24
Gambar 2.19	Fisiografi Zona Kendeng (Husein, 2016) modifikasi dari (van	
	Bemmelen, 1949)	25
Gambar 2.20	Fisiografi Zona Solo (Husein, 2016) modifikasi dari (van	
	Bemmelen, 1949)	26
Gambar 2.21	Urutan Stratigrafi Zona Kendeng (de Genevraye dan Luki	
	Samuel, 1972)	28
Gambar 2.22	Lokasi Lapangan Wunut pada Area Jawa Timur (Kusumatuti	
	, 2000)	32
Gambar 2.23	Penampang Seismik Selatan-Utara Lapangan Wunut	
	(Kusumatuti, 2000)	34
Gambar 2.24	Post-Pleistosen Detachment melewati Lapangan Wunut	
	(Kusumatuti, 2000)	35
Gambar 2.25	Migrasi Hidrokarbon dari Porong Reef ke Lapangan Wunut	
	(Kusumatuti, 2000)	36
Gambar 2.26	Konfigurasi Cekungan Kendeng berdasarkan Anomali	
	Bouguer Gravity (Novianto, 2020)	37
Gambar 2.27	Konfigurasi Cekungan Kendeng berdasarkan Anomali	
	Regional yang telah dipisahkan dari Anomali Bouguer	
	Gravity (Novianto, 2020)	38
Gambar 2.28	Struktur Regional yang berkembang di Daerah Kendeng	
	berdasarkan data Anomali Regional Gravity (Novianto, 2020)	
		39
Gambar 2.29	Struktur Regional yang berkembang di Daerah Kendeng	
	berdasarkan data Anomali Regional Magnetik (Novianto,	
	2020)	40
Gambar 2.30	Interpretasi Konfigurasi Cekungan Kendeng berdasarkan	
	HGM dan SVD data Gravity (Novianto, 2020)	41

Gambar 2.31	Analisis Stuktur dari Cekungan Kendeng dari derivative data	
	magnetik (Novianto, 2019)	42
Gambar 2.32	Konfigurasi dari cekungan Kendeng dari model Block 3D	
	yang dibangun dari gabungan data regional Gravity dan	
	Magnetik (Novianto, 2020)	43
Gambar 2.33	Peta TMI Kubah Sangiran (Hidayat, 2020)	44
Gambar 2.34	Peta RTP Kubah Sangiran (Hidayat, 2020)	44
Gambar 2.35	Model insisi cross section 2D anomali magnetik (Hidayat,	
	2020)	45
Gambar 2.36	Lokasi Cekungan Amadeus di Australia dan sistem trap	
	hidrokarbon pada Cekungan Amadeus (Dentith, 2009)	46
Gambar 2.37	Respon Magnetik terhadap Fold-Thrust Cekungan Amadeus	
	(Dentith, 2009)	48
Gambar 2.38	Peta Anomali Magnetik yang telah di-filtering dan peta	
	Residual Gravity dari daerah Garam pada cekungan Amadeus	
	(Dentith, 2009)	49
Gambar 2.39	Daerah potensial dan Jalur Migrasi dari peta anomali	
	Magnetik dan Gravitasi pada Cekungan Amadeus (Dentith,	
	2009)	50
Gambar 3.1	Pemendekan (Shortening) lapisan dapat menghasilkan	
	berbagai macam rezim dan struktur regangan (Fossen, 2010).	52
Gambar 3.2	Geometri Sesar Anjak (Pluijm, 2004)	53
Gambar 3.3	Sistem Sesar Naik. (a) imbricate fan. (b) sistem duplex	
	(Pluijm, 2004)	54
Gambar 3.4	Kipas imbricate ideal yang berkembang dengan dorongan	
	break-forward progresif (Pluijm, 2004)	55
Gambar 3.5	Roof-thrust duplex yang ideal yang dikembangkan oleh	
	patahan breakforward yang progresif. (Pluijm, 2004)	56
Gambar 3.6	Cross section regional tahapan perkembangan Fold-Thrust	
	Belt selama tektonisme batas konvergen dan kemudian selama	
	tabrakan antar benua (Pluijm, 2004)	59

Gambar 3.7	Cross section regional sebuah rift basin ketika terbentuk (a)	
	dan inverted rift basin setelahnya (b) (Pluijm, 2004)	60
Gambar 3.8	Cross-section dari Fold-Thrust Belt yang terbentuk di tepi laut	
	dari cekungan passive-margin (Pluijm, 2004)	61
Gambar 3.9	Cross-section dari Fold-Thrust Belt yang dibentuk oleh	
	transpression pada tikungan penahan di sepanjang sesar	
	strike-slip (Pluijm, 2004)	61
Gambar 3.10	Penampang skematik yang menunjukkan dasar dari thin-	
	skinned dan thick-skinned (Pfiffner,2017)	62
Gambar 3.11	Gambaran skala besar pembengkokan pada geoid, dan	
	spheroid referensi (Telford, 1990)	67
Gambar 3.12	Data pembacaan Gravitasi yang dipengaruhi oleh pasang surut	
	air laut Montreal, April 1969 (Telford, 1990)	68
Gambar 3.13	Koreksi kelelahan alat (Reynolds, 1997)	69
Gambar 3.14	Skema pengukuran looping (Reynolds, 2011)	70
Gambar 3.15	Parameter yang menggambarkan perkiraan bentuk bumi	
	(Blakely, 1995)	70
Gambar 3.16	Koreksi udara bebas (Reynolds, 2011)	71
Gambar 3.17	Koreksi Bouguer (Zhou, 1990)	72
Gambar 3.18	Pengaruh dari (a) bukit, (b) lembah, di area pengukuran	
	(Reynolds, 2011)	73
Gambar 3.19	Hammer Chart dari Dobrin (1976) dan Milsom (2002)	
	didalam (Reynolds,2011)	74
Gambar 3.20	Penentuan nilai densitas dengan metode nettleton (Telford,	
	1990)	75
Gambar 3.21	Ilustrasi Filter Panjang Gelombang (Hinze, 1996)	77
Gambar 3.22	Prinsip Bandpass Filter Oasis Montaj (Geosoft Guide)	78
Gambar 3.23	Prinsip Lowpass Filter Oasis Montaj (Geosoft Guide)	79
Gambar 3.24	Contoh Filter THD pada anomali bawah permukaan (Arisoy,	
	2013)	80
Gambar 3.25	Contoh Filter TDR pada anomali bawah permukaan (Arisoy,	
	2013)	81

Gambar 3.26	THD dan TDR dalam bidang 3 dimensi (Arisoy, 2013)	82
Gambar 3.27	Hubungan skematik antara kontras densitas dip serta orientasi	
	dip dengan nilai SVD (Grandis, 2018)	83
Gambar 3.28	Pola hasil transformasi dalam domain spasial yang digunakan	
	untuk mengestimasi kedalaman (Sarkowi, 2011)	86
Gambar 3.29	Efek Gravitasi Poligon (Talwani, 1959)	88
Gambar 4.1	Diagram Alir Penelitian	90
Gambar 4.2	Desain Survey Daerah Penelitian	92
Gambar 4.3	Diagram Alir Pengolahan Data	93
Gambar 4.4	Tampilan Lowpass Filter pada Oasis Montaj	94
Gambar 4.5	Tampilan Bandpass Filter pada Oasis Montaj	95
Gambar 4.6	Tampilan Software MatLab untuk Analisis Spektral	96
Gambar 4.7	Tampilan pengolahan Analisis Spektral di Ms. Excel	96
Gambar 5.1	Peta Anomali Bouguer Lengkap (ABL)	98
Gambar 5.2	Diagram Skematik konsep bentuk cekungan dikarenakan	
	volcanic arc loading (Waltham, 2008)	100
Gambar 5.3	Peta Anomali Regional	101
Gambar 5.4	Peta Anomali Residual	103
Gambar 5.5	Peta Zonasi Tinggian Residual	105
Gambar 5.6	Peta Stacking Residual	107
Gambar 5.7	Peta Sayatan Anomali Residual untuk Analisis Spektrum	109
Gambar 5.8	Grafik Analisis Spektrum Sayatan A-A'	110
Gambar 5.9	Grafik Analisis Spektrum Sayatan B-B'	111
Gambar 5.10	Grafik Analisis Spektrum Sayatan C-C'	112
Gambar 5.11	Peta Total Horizontal Derivative (THD)	114
Gambar 5.12	Peta <i>Tilt Derivative</i> (TDR)	116
Gambar 5.13	Peta Second Vertical Derivative (SVD)	118
Gambar 5.14	Profil Sayatan A-A' untuk Analisis Struktur	121
Gambar 5.15	Profil Sayatan B-B' untuk Analisis Struktur	123
Gambar 5.16	Profil Sayatan C-C' untuk Analisis Struktur	125
Gambar 5.17	Profil Sayatan D-D' untuk Analisis Struktur	127
Gambar 5.18	Model 2,5D Gravitasi Sayatan A-A'	129

Gambar 5.19	Model 2,5D Gravitasi Sayatan B-B'	132
Gambar 5.20	Model 2,5D Gravitasi Sayatan C-C'	136
Gambar 5.21	Model 2,5D Gravitasi Sayatan D-D'	140
Gambar 5.22	Peta Zona Prospek Hidrokarbon	143

DAFTAR TABEL

Tabel 3.1	Nilai rapat massa beberapa batuan (Telford, 1990)	76
Tabel 5.1	Hasil Kedalaman Sayatan A-A'	110
Tabel 5.2	Hasil Kedalaman Sayatan B-B'	111
Tabel 5.3	Hasil Kedalaman Sayatan C-C'	112
Tabel 5.4	Kedalaman Regional dan Residual Sayatan	113
Tabel 5.5	Analisis Nilai SVD Sayatan A-A'	121
Tabel 5.6	Analsis Nilai SVD Sayatan B-B'	123
Tabel 5.7	Analisis Nilai SVD Sayatan C-C'	125
Tabel 5.8	Analisis Nilai SVD Sayatan D-D'	127

DAFTAR LAMPIRAN

Lampiran 1 Peta Geologi Daerah Penelitian

Lampiran 2 Pengolahan *Filtering* yang lain

Lampiran 3 Overlay Peta Olahan dengan Peta Geologi