International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 08, August 2019, pp. 333-344, Article ID: IJMET_10_08_026 Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=8 ISSN Print: 0976-6340 and ISSN Online: 0976-6359 © IAEME Publication

TECHNOLOGY ACCEPTANCE MODEL IN SHIP NAVIGATION OF YOGYAKARTA'S TRADITIONAL FISHERMEN

Sabihaini

Department of Management, Faculty of Economics and Business, UPN "Veteran" Yogyakarta, Yogyakarta, Indonesia

Awang Hendrianto Pratomo

Department of Informatics, Industrial Engineering Faculty, UPN "Veteran" Yogyakarta, Yogyakarta, Indonesia

Heru Cahya Rustamaji

Department of Informatics, Industrial Engineering Faculty, UPN "Veteran" Yogyakarta, Yogyakarta, Indonesia

Sudaryatie

Department of Management, Faculty of Economics and Business, UPN "Veteran" Yogyakarta, Yogyakarta, Indonesia

ABSTRACT

This research tries to explore the characteristics of fishermen related to the model of technology usage and technology acceptance. The acceptance model developed here is a traditional fisherman ship navigation technology model. The benefits of this study are for a basis in the design and manufacture of appropriate communication technology (TTG) products that will be utilized in order to increase the catches of traditional fishermen. By using this technology, fishermen can find out the fish area and cover further range which then affects the results of caught fish. This research was conducted in Depok Beach, Bantul, Yogyakarta, with traditional fisherman respondents who also members of the Mina Bahari Fishermen Cooperative. The number of respondents was 31 traditional fishermen. The survey method is used as data collection technique. Data analysis was done using SmartPLS. The research findings show that the model of receiving ship navigation technology in traditional fishermen includes: ease of use affects their interest in the technology continuity; ease of use affects the sense of innovation; interest in continuing to use influences innovative feelings; and an assessment of the benefits affecting technology acceptance; and the discomfort factor influences the insecurity factor.

Key words: Model of technology acceptance, users, interest, traditional fishermen

Cite this Article: Sabihaini, Awang Hendrianto Pratomo, Heru Cahya Rustamaji, Sudaryatie, Technology Acceptance Model in Ship Navigation of Yogyakarta's Traditional Fishermen. *International Journal of Mechanical Engineering and Technology* 10(8), 2019, pp. 333-344.

http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=8

1. INTRODUCTION

In order to support the regional government blueprint to increase the economy and welfare of fishermen in coastal areas of Depok, Kretek, Bantul Regency, the concept of institutional development and strengthening in accordance with the potentials and opportunities of the region is needed. The use of human resources (HR) and marine science and technology to support the improvement and strengthening of human resources and the development of science and technology in the field of marine affairs, so that optimal national fishing requires accurate data and technology that is appropriate to the characteristics of fishermen.

The successful implementation of technology is influenced by the acceptance of the technology by its users. On the other hand, the user's readiness for the technology application will affect its acceptance. However, the condition of fishermen in the coastal area of Depok, Kretek, Bantul Regency currently shows that (1) there are still many fishermen who do not want to accept new technological innovations, (2) the low number of fish catches because fishermen still use traditional vessels that are not equipped with navigation systems and information, (3) the low level of education and knowledge of the traditional fishermen community causes limited access to information. The navigation system used by traditional fishermen use the star function at night and use land position on daytime, meaning that using the known land position, fishermen can see the range, mean while they used the sun to see the time.

This research tries to clarify the characteristics of fishermen related to model of technology usage and acceptance. The technology acceptance model that was developed is a traditional fishing boat navigation technology model. The expected benefits of the results of this study are for a basis in the design and manufacture of appropriate communication technology products that will be utilized in increasing the catches of traditional fishermen. By using this technology: (1) fishermen can find out the area / certainty of finding the fishes; and (2) further coverage range, which eventually increases the fish catch.

Technology acceptance model can be explained using the Theory Acceptance Model (TAM) developed by Davis, Bagozzi, and Warshaw (1989) [1]. This model is an information systems theory that models how users accept and use technology. This model also shows that when users are presented with new technology, a number of factors will influence users' decisions about how and when to use them. There are three main factors that influence technology use behavior: 1) attitude towards use, 2) perception of usefulness, and 3) perceived ease of use. The concept of perceived usefulness refers to the tendency of people (fishermen) to use or not to use an application depending on one's belief that with the application will be able to help someone become better. Mean while, the concept of perceived ease of use refers to the application even though someone feels that the application can improve the quality of life but they feel the technology used is too heavy to use and the benefits of using the application are very difficult.

2. METHOD

2.1. Data Collection Technique

This research was conducted on Depok Beach, Bantul – Yogyakarta, Indonesia, with respondents from traditional fishermen who are members of the Mina Bahari Fishermen Cooperative. The number of respondents are 31 people. The survey method was used as a data collection technique. There are 39 statements that represent indicators in the survey. Each respondent gives an answer at the level of agreement for each statement. The degree of agreement is based on Likert scale [2] 5-point equidistance expressed ordinally in the choice of strongly disagree (1), disagree (2) neutral (3), agree (4) and strongly disagree (5). Each indicator is a reflexive indicator that determines one aspect of latent variables.

2.2 Data Analysis

Data analysis was performed by SmartPLS [3]. The reason for using SmartPLS is that it can be applied at all data scales, it does not require a lot of assumptions, the sample size does not have to be large and can be used to build relationships that do not have a theoretical basis, or for testing propositions can also be used for structural modeling with reflexive indicators [4]. Table 1 shows the relationship of statements, indicators and latent variables. Latent constructs affect the measurement variation and the assumption of causality relationships from latent constructs to indicators.

NO	Statement	Indicator	Code for Latent Variables
1	The use of systems / tools contributes to the better quality of my work	work contribution (ID01 L1)	L1
2	The use of systems / tools facilitates access to work	ease of access (ID02 L1)	L1
3	Using a system / tool gives me better control over my work	better control (ID03 L1)	L1
4	Using the system makes me more productive at work	work productivity (ID04 L1)	L1
5	I can explain the use of the system to my coworkers	usage explanation (ID01 L2)	L2
6	I quickly mastered the system within the scope of work	system mastery (ID02 L2)	L2
7	I am able to understand the use of systems that are used independently	system understanding (ID03 L2)	L2
8	I follow the development of a system that suits my line of work	following updates (ID04 L2)	L2
9	I feel confused when facing problems with the system used	confused by the system (ID01 L3)	L3
10	I feel the technical support provided is not very helpful and difficult to understand	limited technical assistant (ID02 L3)	L3
11	I feel insecure about using the system	not confident (ID03 L3)	L3
12	I have difficulty understanding the system guidelines used	difficult to understand the manual (ID04 L3)	L3
13	I am too dependent on the system in my work	dependency on the system (ID01 L4)	L4
14	I feel that the overall use of the system to work tends to be dangerous	dangerous system (ID02	L4

Table 1 Relation of Statements, Indicators and Latent Variables

15	I feel the use of a system decreases the	decreasing individual	L4
	quality of relationships because it reduces	interaction (ID03 I 4)	
	interaction between individuals		
16	I feel unsure if doing work with the system	disbelieve on the online	I A
10	anline	ansterne (ID04 L 4)	L4
15	online The full is a large state	system (ID04 L4)	x <i>-</i>
17	The use of the system makes my work	The work done in short	L5
	completed faster	time or fast (ID01 L5)	
18	Using the system improves my performance	Increasing performance	L5
	at work	(ID02 L5)	
19	Using the system makes me more productive	system productivity (ID03	L5
		I 5)	20
20	The use of the system provides effectiveness	work effectivity (ID04 I 5)	15
20	of work	work encentivity (ID04 E5)	LJ
0.1	at work		x <i>-</i>
21	The use of the system provides convenience	easy to work (ID05 L5)	L5
	in work		
22	Overall, the current system is useful and	useful system (ID06 L5)	L5
	beneficial for you		
23	The system used today is easy to learn	easy to be learn (ID01 L6)	L6
24	The system used today is easy to control	easy to control (ID02 L6)	L6
25	The system used today is easy to understand	easy to understand (ID03	16
25	The system used today is easy to understand	L 6)	LO
26	The cruster word to dow malves would man	LU)	IC
20	The system used today makes work more	work flexibility (ID04 L6)	LO
	flexible		
27	The system used today provides convenience	ease of work (ID05 L6)	L6
	in work		
28	Overall, the system used today is easy to use	easy to use (ID06 L6)	L6
29	Overall, you are interested in continuing to	interest to use continuosly	L7
	use the system in your work	(ID01 L7)	
30	Overall, you are interested in updating	interest in upgrading the	L7
20	(ungarade) the system to support the work	system (ID02 I 7)	27
31	I feel comfortable with the fishing gear you	comfortable (ID01 I 8)	18
51	have now	connortable (ID01 E0)	LO
20	Library was stored the same of fighting as an that		τo
32	I have mastered the use of fishing gear that	mastering usage (ID02 L8)	L8
	you currently have		
33	Technological innovation can encourage	encourage updates (ID03	L8
	updates in society	L8)	
34	Technological innovation can encourage the	welfare increase (ID04 L8)	L8
	level of welfare of fishermen		
35	I have the desire to learn more about	curiousity (ID05 L8)	L8
	something related to the technology offered	•	
36	I accept / apply tenology with confidence	assessment and trial (ID06	L8
20	hased on assessments and trials that have		20
	been corried out and observed by myself	L0)	
27	Level and out and observed by mysen.		τo
37	Local governments play a role in helping,	government role on	L8
	encouraging, sharing and facilitating	technology adoption (ID07	
	fishermen in adopting technological	L8)	
	innovations		
38	Fellow fishermen who have applied	inovation of new	L8
	innovation, the role of technology is to help	technology (ID08 L8)	
	get information about new technological		
	innovations		
20	Fisherman organizations play a rale in	role of fisherman	το
39	Fisherman organizations play a role in		Lð
	helping to apply innovations that are	organisation (ID09 L8)	
	profitable and affordable to fishermen		

Technology Acceptance Model in Ship Navigation of Yogyakarta's Traditional Fishermen

No	Latent Variables	Code
1	Sense of optimism	L1
2	Sense of innovation	L2
3	Discomfortability factor	L3
4	Insecurity factor	L4
5	Assessment of the benefits	L5
6	Easy to use	L6
7	Interest to use continuously	L7
8	Technology acceptance	L8

Table 2	Latent	Variables
I UDIC A	Lucon	, anabies

The 39 reflexive indicator statements form 8 latent variables, which are the number indirectly observed, to construct hypotheses (Table 2). This model hypothesizes that changes in latent constructs affect changes in indicators [5].

2.1.1 Hypothesis

Hypothesis is a statement that contains smart guess or educated guess [6]. Based on the latent variables that are formed (Table 2) there are 10 research hypotheses that will be tested against the effect between latent variables.

H1: The ease of use of tools influences your interest to continue using

H2: Interest in using has an effect on optimism

H3: The ease of use of influential tools comes with an innovative taste

H4: Interest in using has an effect on innovative sense

H5: The ease of use of tools influences the assessment of benefits

H6: Innovative sense affects the assessment of benefits

H7: Innovative taste influences optimism

H8: The assessment of benefits affects the acceptance of technology

H9: Discomfort factor influences the insecurity factor

H10: The insecurity factor influences the technology acceptance factor

2.1.2 Outer Model

Anaylsis of outer model was used to study the relationship between latent variables and its indicators. The outer model defines the connection between each indicator and the latent variables. Three criteria were used in data analysis using SmartPLS to evaluate the model, namely convergent validity [7], reliability test (Composite reliability dan Chronbach Alpha) [8], and Discriminant validity [9].

3. RESULT AND DISCUSSION

3.1 Convergent validity

An indicator is valid if the factor loading value is above 0.5 (the original sample value). After applying the convergent validity (multistep validity test and multistep deletion of invalid item), total of 10 items were deleted, namely speed, easy of access, work productivity, government's role on technology adoption, understanding the way of using the technology, comfortable, encouraging updates, understanding the system, easy to learn, and easy to control. These items have loading factor below 0.5, some of them were lower than 0.7 but with lower AVE values. The outer loading output is presented in table 3.

Code	Indicator	Value	Latent Variable
ID01 L1	Work contribution	0.85	Sense of optimism
ID03 L1	Better control	0.894	Sense of optimism
ID01 L2	Usage explaination	0.663	Sense of innovation
ID03 L2	Understanding of the system	0.771	Sense of innovation
ID04 L2	Following updates	0.802	Sense of innovation
ID01 L3	Confused by the system	0.689	Discomfort factor
ID02 L3	Limited technical assistant	0.865	Discomfort factor
ID03 L3	Not confident	0.735	Discomfort factor
ID04 L3	Difficult to understand the manual	0.77	Discomfort factor
ID01 L4	System dependency	0.83	Insecurity factor
ID02 L4	Dangerous system	0.864	Insecurity factor
ID03 L4	Decreasing indivual interaction	0.553	Insecurity factor
ID04 L4	Disbelieve on online system	0.592	Insecurity factor
ID01 L5	Fast or quick	0.836	Assessment of the benefits
ID02 L5	Increasing the performance	0.873	Assessment of the benefits
ID03 L5	System productivity	0.878	Assessment of the benefits
ID04 L5	Work efficiency	0.591	Assessment of the benefits
ID05 L5	Easy to work	0.942	Assessment of the benefits
ID02 L6	Easy to control	0.69	Ease of use of the tools
ID03 L6	Easy to understand	0.827	Ease of use of the tools
ID04 L6	Work flexibility	0.631	Ease of use of the tools
ID05 L6	Facilitate the work	0.805	Ease of use of the tools
ID06 L6	Easy to use	0.707	Ease of use of the tools
ID01 L7	Interest to use continuosly	0.939	Interest to use continuosly
ID02 L7	Interest to do upgrading	0.789	Interest to use continuously
ID01 L8	Assessment and trial	0.784	Technology acceptance
ID04 L8	Role of fishermen organization	0.805	Technology acceptance
ID07 L8	Curiousity	0.727	Technology acceptance

 Table 3 Outer Loading

3.2 The Developed Model of Technology Acceptance

Figure 1 Path diagram using SmartPLS

3.3 Reliability Test (Composite Reliability and Cronbach Alpha) and Average Variance Extracted (AVE) Test

Reliability test is a tool to measure a questionnaire which is an indicator of a variable or construct. A measuring instrument or instrument in the form of a questionnaire is said to be able to provide stable or constant measurement results, if the measuring instrument is reliable. The reliability of the research instrument in this study was tested using composite reliability and Cronbach's Alpha coefficient. A construct is said to be reliable if the composite reliability and Cronbach alpha values are above 0.70 [10]. In other studies, the instrument is said to be reliable if the Composite reliability value ≥ 0.6 and Cronbach alpha ≥ 0.6 for exploratory research [11]. Table 4 shows the result of data analysis from composite reliability and Cronbach alpha testing.

No	Latent Variable	Cronbachs Alpha	rho_A	Composite Reliability	Average Variance Extracted (AVE)
1	Sense of optimism	0.687	0.700	0.864	0.761
2	Sense of innovation	0.604	0.618	0.791	0.559
3	Discomfort factor	0.776	0.817	0.851	0.589
4	Insecurity factor	0.706	0.747	0.809	0.523
5	Assessment of the benefits	0.882	0.893	0.917	0.693
6	Ease of use of the tools	0.785	0.794	0.854	0.541
7	Interest to use continuosly	0.693	0.859	0.858	0.752

 Table 4 Reliability Test

Test results based on the above output indicate that the results of composite reliability and Cronbach alpha show satisfactory values, in which the value of each variable is above the minimum value of 0.600. This shows the consistency and stability of the instruments that was used are high. In other words, all the constructs or variables of this study have become a fit measurement tool, and all the questions used to measure each construct have good reliability.

3.4 Average Variance Extracted (AVE) Test

AVE values can describe the magnitude of variance or diversity of manifest variables that can be contained by latent constructs. Ideally, AVE is 0.5 which means that the convergent validity is good, meaning that the latent variable can explain an average of more than half the variants of the indicators. Mean while, AVE criteria for a valid variable must be above 0.50 [12]. The results of SmartPLS output can be seen in the above output (see column Average Variance Extracted (AVE)). From the output, it can be seen that all variables have a AVE value of more than 0.5, so that the variable has good validity.

3.5 Discriminant Validity Test

Discriminant Validity shows that latent constructs predict whether certain construct values are better than other construct values by looking at construct correlation values in cross loadings. The way to assess the Discriminant validity is to check the Cross loading value or to compare the root values of AVE.

3.6 Cross Loading

Discriminant validity can be measured by looking at the value of Cross loading [13]. If all indicators have a greater correlation coefficient with each construct than the indicative correlation coefficient value in the construct block in the other column, then it is concluded

that each indicator in the block is the constructor of the construct in that column. From this output (Table 5), it can be seen that all indicators have a greater correlation coefficient with each construct compared to the value of the indicator correlation coefficient on the construct block in the other column. Thus, it is concluded that each indicator in the block is the constructor of the construct in the column.

Code	Indicators	L1	L2	L3	L4	L5	L6	L7	L8
ID01 L1	Work contribution	0.85	-0.22	-0.23	-0.34	-0.13	-0.04	0.25	0.53
ID03 L1	Better control	0.89	0.03	-0.31	-0.09	-0.07	0.25	0.31	0.31
ID01 L2	Usage explanation	0.12	0.66	-0.14	0.32	-0.02	0.29	-0.20	0.03
ID03 L2	System understanding	-0.26	0.77	0.05	0.30	0.26	0.11	-0.32	-0.02
ID04 L2	Following updates	-0.05	0.80	0.32	0.38	0.31	0.43	-0.05	0.26
ID01 L3	Confused by the system	-0.12	-0.22	0.69	0.27	-0.10	-0.19	0.05	-0.17
ID02 L3	Limited technical assistant	-0.32	0.24	0.87	0.70	0.12	0.04	-0.11	0.04
ID03 L3	Not confident	-0.26	0.11	0.74	0.59	-0.06	-0.26	-0.11	-0.12
ID04 L3	Difficult to understand the manual	-0.20	0.09	0.77	0.46	-0.25	-0.28	-0.26	-0.16
ID01 L4	System dependency	-0.37	0.49	0.59	0.83	0.12	0.09	-0.19	-0.15
ID02 L4	Dangerous system	-0.19	0.39	0.61	0.86	-0.09	0.15	-0.19	-0.23
ID03 L4	Decreasing individual interaction	0.28	0.30	0.15	0.55	-0.20	0.16	-0.05	-0.09
ID04 L4	Disbelieve on online system	-0.06	0.08	0.50	0.59	0.15	-0.03	-0.04	0.22
ID01 L5	Fast or quick	-0.26	0.30	0.05	0.08	0.84	0.41	0.31	0.39
ID02 L5	Incresing the performance	-0.04	0.24	-0.15	-0.01	0.87	0.61	0.50	0.40
ID03 L5	System productivity	-0.15	0.19	-0.08	0.00	0.88	0.43	0.42	0.54
ID04 L5	Work efficiency	0.08	0.17	0.04	0.13	0.69	0.67	0.65	0.22
ID05 L5	Easy to work	-0.11	0.21	-0.08	-0.02	0.94	0.54	0.50	0.59
ID02 L6	Easy to control	0.03	0.65	-0.10	0.31	0.46	0.69	0.14	0.27
ID03 L6	Easy to understand	0.00	0.20	-0.17	0.02	0.49	0.83	0.47	0.35
ID04 L6	Work flexibility	0.51	-0.04	-0.30	-0.16	0.39	0.63	0.62	0.28
ID05 L6	Facilitate the work	0.02	0.21	-0.01	0.14	0.55	0.81	0.57	0.29
ID06 L6	Easy to use	-0.03	0.39	-0.17	0.12	0.47	0.71	0.25	0.17
ID01 L7	Interest to use continuosly	0.46	-0.26	-0.10	-0.08	0.45	0.53	0.94	0.40
DI02 L7	Interest to do upgrading	-0.03	-0.15	-0.20	-0.32	0.63	0.46	0.79	0.20
ID01 L8	Assessment and trial	0.18	0.19	0.13	0.07	0.44	0.07	0.12	0.78
ID04 L8	Role of fishermen organization	0.31	0.13	-0.07	-0.06	0.49	0.46	0.30	0.81
ID07 L8	Curiousity	0.72	-0.07	-0.39	-0.34	0.21	0.31	0.52	0.73

Table	5	Cross	Loading
	-	01000	

3.7. Comparing the root value of AVE

Discriminant Validity is then measured by comparing the AVE values of each construct with the correlation between constructs and other constructs in the model. If the AVE square value of each construct is greater than the correlation value between constructs and other constructs in the model, then it has a good discriminant validity value. The root value of AVE can be seen in Fornell Larcker Criterion. Based on these results (Table 6), the root value of AVE for each construct is higher than the correlation value between constructs and other constructs in the model. Thus, it can be said that according to the test with AVE roots, this model has good discriminant validity.

Technology Acceptance Model in Ship Navigation of Yogyakarta's Traditional Fishermen

Table V Discriminant Validity								
Latent	L1	L2	L3	L4	L5	L6	L7	L8
Variables								
L1	0.75							
L2	0.45	0.72						
L3	0.13	0.71	0.77					
L4	0.26	0.04	-0.06		0.83			
L5	-0.25	-0.19	-0.16		0.58	0.87		
L6	0.38	0.12	-0.20		0.65	0.57	0.74	
L7	-0.09	-0.23	-0.32		-0.11	0.32	0.13	0.87
L8	0.13	-0.11	-0.10		0.52	0.37	0.37	0.47

 Table 6 Discriminant Validity

3.8 Inner Model Test

Testing the inner model or structural model was conducted to find the relationship between constructs, the significance value and the R-square of the research model. Based on the inner model in Table 7, several information were obtained, as follows:

- The R-square value of the sense of optimism in the use of tools is 0.105. This means that the variability of constructs of *optimism in the use of tools* can be explained by the variability of *sense of innovation* constructs and *interest in continuing to use* by 10.5%, while the rest is explained by other variables outside the model under study.
- The R-square value of the *sense of innovation* is 0.454. This means that the construct variability of *sense of innovation* can be explained by the construct variability of *ease of use of tools* and *interest in continuing to use* by 45.4%, while the rest is explained by other variables outside the model under study.
- The R-square value of the *insecurity factor* is 0.499. This means that the *insecurity factor* construct variability can be explained by the *inconvenience* construct variability of 49.9%, while the rest is explained by other variables outside the model studied.
- R-square value of the *assessment of the benefits* of 0.418. This means that the construct variability of the *assessment of the benefits* can be explained by the variability of *sense of innovation* constructs and *ease of use* by 41.8%, while the rest is explained by other variables outside the model under study.
- R-square value of *interest to use continuosly* is 0.32. This means that the construct variability of *interest to use continuosly* can be explained by the constructability variability of *ease of use* by 32%, while the rest is explained by other variables outside the model under study.
- R-square value of *technology acceptance* is 0.291. This means that the variability of the construct of *technology acceptance* can be explained by the *insecurity* construct variability factor and the *assessment of the benefits* of 29.1%, while the rest is explained by other variables outside the model studied.

Indicators	Value
Sense of optimism	0.105
Sense of innovation	0.454
Insecurity factor	0.499
Assessment of the benefits	0.418
Interest to use continuosly	0.32
Technology acceptance	0.291

3.9 Hypothesis Test (Effect between variables)

In hypothesis test, the significant influence between the independent variables on the dependent variable are analysed. Testing the proposed hypothesis was conducted by looking at the path coefficients which show the parameter coefficient and the statistical significance value t. The significance of the estimated parameters can provide information about the relationship between the research variables. The limit for rejecting and accepting the proposed hypothesis is to use a probability of 0.05. Table 8 presents the estimated output for testing structural models:

	21				
Hypothesis	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
H1: Easy of use \rightarrow interest to use continuously	0.565	0.453	0.403	1.401	0.162
H2: Interest to use continuously \rightarrow sense of optimism	0.32	0.239	0.324	0.99	0.323
H3: Ease of use \rightarrow sense of innovation	0.761	0.782	0.233	3.27	0.001
H4: Interest to use continuously \rightarrow sense of innovation	-0.675	-0.614	0.292	2.315	0.021
H5: Ease of use \rightarrow assessment of the benefits	0.638	0.569	0.346	1.847	0.065
H6: sense of innovation \rightarrow assessment of the benefits	0.022	0.073	0.262	0.083	0.934
H7: sense of innovation \rightarrow sense of optimism	-0.015	0.088	0.373	0.039	0.969
H8: Assessment of the benefits \rightarrow technology acceptance	0.529	0.544	0.181	2.917	0.004
H9: Discomfort factor \rightarrow insecurity factor	0.706	0.74	0.081	8.735	0.0
H10: Insecurity factor \rightarrow technology acceptance	-0.127	-0.146	0.254	0.499	0.618

Table 8 Hypothesis Test Result

Explanation

H1: Ease of use affects the interest to use continuosly. This can be seen from the Path Coefficient output obtained $t_{count} > t_{table}$ (1.401 > 1.96) or P values < 0.05 (0.162 < 0.05), hence H0 is rejected.

H2: Interest to use continusly has no effect on sense of optimism. This can be seen from the Path Coefficient output obtained by $t_{count} < t_{table}$ (0.999 < 1.96) or P values > 0.05 (0.323 > 0.05), hence H0 is accepted.

H3: Ease of use affects the sense of innovation. This can be seen from the Path Coefficient output obtained $t_{count} > t_{table}$ (3.27 > 1.96) or P values < 0.05 (0.001 < 0.05), hence H0 is rejected.

H4: Interest to use continuosly influences the sense of innovation. This can be seen from the Path Coefficient output obtained $t_{count} > t_{table}$ (2.315 > 1.96) or P values < 0.05 (0.021 < 0.05), hence H0 is rejected.

H5: Ease of use affects the assessment of benefits. This can be seen from the Path Coefficient output obtained t_{count} > t_{table} (2.425 > 1.96) or P values < 0.05 (0.016 < 0.05), hence H0 is rejected.

H6: Sense of innovation has no effect on assessment of benefits. This can be seen from the Path Coefficient output obtained $t_{count} < t_{table}$ (0.083 < 1.96) or P values > 0.05 (0.934 > 0.05), hence H0 is accepted.

H7: Sense of innovation does not affect the sense of optimism in the use of tools. This can be seen from the Path Coefficient output obtained $t_{count} < t_{table}$ (0.039 < 1.96) or P values > 0.05 (0.969 > 0.05), hence H0 is accepted.

H8: Assessment of the benefits influences technology acceptance. This can be seen from the Path Coefficient output obtained $t_{count} > t_{table}$ (2.5741 > 1.96) or P values < 0.05 (0.010 < 0.05), hence H0 is rejected.

H9: The discomfort factor influences the insecurity factor. This can be seen from the Path Coefficient output obtained $t_{count} > t_{table}$ (8.735 > 1.96) or P values < 0.05 (0.000 < 0.05), hence Ho is rejected.

H10: Insecurity factor has no effect on technology acceptance. This can be seen from the Path Coefficient output obtained by the value of $t_{count} < t_{table}$ (0.499 < 1.96) or P values > 0.05 (0.618 > 0.05), hence H0 is accepted.

4. CONCLUSION

The technology acceptance model of ship navigation in Yogyakarta's traditional fishermen are as follow: (1) ease of use affects the interest in using continuously, (2) ease of use affects the sense of innovation, (3) interest in using continuously influences the sence of innovation, and (4) assessment of the benefits influences technology acceptance, and (5) the discomfort factor influences the insecurity factor.

ACKNOWLEDGMENTS

This research is supported by (1) Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Technology Research and Higher Education (Kemenristekdikti) of the Republic of Indonesia through the Republic of Indonesia Act 2019 Number: 202/SP2H/LT/DRPM/2019, and (2) UPNYK Research Institutions and Community Service.

REFERENCES

- [1] Davis, F. D.; Bagozzi, R. P.; Warshaw, P. R., "User acceptance of computer technology: A comparison of two theoretical models", Management Science, 35 (8): 982–1003, Aug.1989
- [2] "(PDF) Likert Scale: Explored and Explained," *ResearchGate*. [Online]. Available: https://www.researchgate.net/publication/276394797_Likert_Scale_Explored_and_Explained. [Accessed: 18-Aug-2019].
- [3] C. Ringle, D. da Silva, and D. Bido, "Structural Equation Modeling with the SmartPLS," Social Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 2676422, Oct. 2015.
- [4] M. Sarstedt and J.-H. Cheah, "Partial least squares structural equation modeling using SmartPLS: a software review," *Journal of Market Analysis*, Jun. 2019.
- [5] K. A. Bollen and A. Diamantopoulos, "In defense of causal-formative indicators: A minority report," *Psychological Methods*, vol. 22, no. 3, pp. 581–596, 2017.

Sabihaini, Awang Hendrianto Pratomo, Heru Cahya Rustamaji, Sudaryatie

- [6] T. Orr and J. Flowers, "An Experimental Approach to ... Everything!," *Technology and Engineering Teacher*, vol. 73, no. 8, p. 8, May 2014.
- [7] P. Mussel, J. Rodrigues, S. Krumm, and J. Hewig, "The convergent validity of five dispositional greed scales," *Personality and Individual Differences*, vol. 131, pp. 249–253, Sep. 2018.
- [8] D. McNeish, "Thanks coefficient alpha, we'll take it from here," *Psychological Methods*, vol. 23, no. 3, pp. 412–433, 2018.
- [9] "A new criterion for assessing discriminant validity in variance-based structural equation modeling | SpringerLink." [Online]. Available: https://link.springer.com/article/10.1007/s11747-014-0403-8. [Accessed: 18-Aug-2019].
- [10] K. S. Taber, "The Use of Cronbach's Alpha When Developing and Reporting Research Instruments in Science Education," *Res Sci Educ*, vol. 48, no. 6, pp. 1273–1296, Dec. 2018.
- [11] S. Ahmad, N. N. A. Zulkurnain, and F. I. Khairushalimi, "Assessing the Validity and Reliability of a Measurement Model in Structural Equation Modeling (SEM)," 1, pp. 1–8, Mar. 2016.
- [12] R. Yadav and G. S. Pathak, "Young consumers' intention towards buying green products in a developing nation: Extending the theory of planned behavior," *Journal of Cleaner Production*, vol. 135, pp. 732–739, Nov. 2016.
- [13] C. M. Voorhees, M. K. Brady, R. Calantone, and E. Ramirez, "Discriminant validity testing in marketing: an analysis, causes for concern, and proposed remedies," *J. of the Acad. Mark. Sci.*, vol. 44, no. 1, pp. 119–134, Jan. 2016.