PAPER • OPEN ACCESS

Diversity model of Pliocene-Pleistocene nannofossil of Kendeng Zone

To cite this article: S U Choiriah et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 212 012038

View the article online for updates and enhancements.

IOP ebooks[™]

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

IOP Conf. Series: Earth and Environmental Science 212 (2018) 012038

Diversity model of Pliocene-Pleistocene nannofossil of Kendeng Zone

S U Choiriah^{1*}, C Prasetyadi¹, R Kapid², and D F Yudiantoro¹

¹Department of Geology Engineering, UPN Veteran Yogyakarta ²Department of Geology Engineering, FITB-ITB, Bandung

*corresponding author: umiyatunch@upnyk.ac.id, umiyatunch@yahoo.com

Abstract. Quantitative analyses of Pliocene-Pleistocene calcareous nannofossils from the Kendeng Zone, East Java have been performed on 181 samples collected from 4 river sections (Ngawi, Bojonegoro, Nganjuk and Jombang). The research method consists of field study and quantitative statistical analysis. Field study is to measure sections of the 4 selected sections. The samples taken include fine-grained rock (marl, shale) and carbonaceous. The sample preparation has been carried out using smears slide method. Quantitative analysis uses nannotex determination and diversity index. The river sections that have been selected consist of a continuous sediment sequence from Pliocene Kalibeng to Pleistocene Sonde Formation. The results of quantitative analysis indicate the following model of diversity nannofossil Kendeng Zone: (1) Bengawan Solo River section, Ngawi, has an average 46 specieses; Diversity Index (H')=0.053, Homogeneity (E)=0.009, aged NN12-NN20 (Early Pliocene-Middle Pleistocene); (2) Kedungsumber River section, Soko Area, Distric of Temayang, Bojonegoro, has an average 26 specieses and Diversity Index (H')=0.035; and Evennes/Homogeneity index (E)=0.006; and age NN12-NN20 (Early Pliocene-Early Pleistocene); (3) Kaliasin River section, Pinggir area, Distric of Lengkong, Nganjuk, has an average 40 specieses and Diversity Index (H') = 0.050; and Evennes/Homogeneity index (E)=0.009 and NN12-NN20 (Early Pliocene-Early Pleistocene); (4) Kalibeng River section, Kedungringin Area, Distric of Plandaan, Jombang hasan average 33 specieses, Diversity Index (H')=0.043 and Evennes/Homogeneity index (E)=0.007, aged NN12-NN19 (Early Pliocene-Early Pleistocene). This nannofossil diversity model indicate that there is a paleoclimate change in Pliocene-Pleistocene of Kendeng zone; and methods applied by the present study has not been used by previous researchers.

Keywords: diversity, nannofossil, Pliocene-Pleistocene, Kendeng zone.

1. Introduction

Nannofossil (calcareous nannoplankton) is included in Haptophyta and found in the photic zone of the oceans [1, 4]. Their presence and distribution are affected by many factors, particularly, temperature and available amount of nutrients [6]). Whilst the usage of nannofossils as a tool for Cenozoic biostratigraphic analysis is well established and widely recognized, their application in paleoecological studies is still limited issue [2, 22] and Guerreiro et al., 2013 in [1].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

ICEMINE	IOP Publishing
IOP Conf. Series: Earth and Environmental Science 212 (2018) 012038	doi:10.1088/1755-1315/212/1/012038

The diversity of nannofossil is strongly influenced by paleoecological changes such as salinity, temperature, paleobathymetric, PH, etc. Nannofossil has been proved very important and is used as indicator of paleoecology, biostratigraphy, stratigraphic sequence and hydrocarbon exploration. During Pliocene-Pleistocene, the earth had global climate change occurring as Glacial Ice Age, so that the decrease of sea water reaching 100-125 m. Climate change is causing changes in the diversity of marine fauna species indicated by the decline in the number of marine fauna species including nannoplankton. Nannoplankton diversity declined dramatically during the late Pliocene and early Pleistocene [5], Aubry, 2007 in [16]. Cenozoic nannofosil data suggest that cold climates tend to encourage a decrease in nannofossils diversity. This study aims to determine the model of nannofossil diversity at the Pliocene-Pleistocene (Glacial Ice) in Kendeng zone. The resulted model can be used to identify paleoclimate change, transgression-regression phases, stratigraphic sequence and basin development in the Kendeng zone. Measurement of species diversity is important in some sciences and has evolved mainly within paleoecology[12].

2. Method

2.1. Study Area

The research area consists of four selected locations in the Kendeng Zone, East Java Basin. The locations are (1) Bengawan Solo River section, District of Ngawi; (2) Kedungsumber River section, Soko Area, Distric of Temayang, Bojonegoro; (3) Kaliasin River section, Pinggir area, Distric of Lengkong, Nganjuk; and (4) Kalibeng River section, Kedungringin Area, Distric of Plandaan, Jombang. All sections concist of Kalibeng and Klitik/Sonde Formations (Figure 1).

Figure 1. (A).Study Area in East Java Province; (B). Selected locations for measuring section in Ngawi, Bojonegoro, Nganjuk and Jombang. [19, 23]

2.2. Analysis Tools

The research method consist of field mapping and microscope-based quantitative statistical analysis. Measuring section of 4 selected sections and representative sampling have been conducted during the field mapping, as well as taking rock samples consisting of fine-grained rock (marl, shale) and carbonaceous. Sample preparation for the fossils uses smear slide method. Nannofossils were determined under two light microscope technique (parallel light and crossed nicols) at magnification of 1000x. Species was identified using standar taxonomy as described by Gartner, 1981, Perch-Nielsen, and the Nannotax3 website [10,24]

The selected sections is expected to have a continuous sediment sequence from Early Pliocene to Early Pleistocene, from older to younger, namely: Kalibeng Formation to Sonde Formation (consisting of Klitik and Atasangin Members). The parameters measured were the average number of species of nannofossils in each section, the number of species in each sample (random but representative) and levels of nannofossils species in diversity in the 4 sections (Ngawi, Bojonegoro, Nganjuk and Jombang area). Quantitative analysis uses nannotex determination while diversity index

analysis was based on Shannon Index and and Simpton Index [11,18,25]

2.3. Formula of Diversity

Diversity Index:

- A diversity index is a mathematical measure of species diversity in a given community.
- Diversity Index is determined based on the species richness (the number of species) and species abundance (the number of individuals per species).
- The diversity index that will be used by the present study is the Diversity Index by Shannon-Weiner (1949), and Simpson Index.

Calculation of Nannofossil Diversity Index[4, 9, 10]:

To calculate the diversity of nannofossil used Shannon Index Diversity and Simpton Index.

Shannon Index is an index of statistical information, which means it assumes all species (nannofossils) are represented in samples and samples randomly (rock samples).

In this index, Pi is the proportion (ni/N) of an individual of a particular species found (ni) divided by (N) the total number of individuals found, ln is the natural log, Σ is the sum of the calculations, and S is the number of species. The index formula (1, 2) is as follows :

Shannon Index(
$$H'$$
) = $\sum_{i=1}^{s} Pi \ln Pi$ (1)

IOP Publishina

$$Pi = \frac{ni}{N} H' = -\sum_{n} \frac{ni}{N} \ln \frac{ni}{N}$$
(2)

Simpson Index is the dominance index because it gives more weight to the common or dominant species. In this case, some rare species with only a few representatives will not affect diversity. In this index same of Shannon index (3) :

Simpton Index (D) =
$$\frac{1}{\sum_{i=1}^{s} Pi^2}$$
 (3)

Evennes Index / Homogeneity Indek (E) [25], the formula (4, 5) is a follows :

$$E = \frac{H'}{Hmax} = -\Sigma \left(\frac{Pi \ln Pi}{Hmax}\right)_{Pi \ Im \ Pi}$$
(4)

$$H_{max} = S \log S \longrightarrow (E) = -\Sigma \left(\frac{Pi \, Ln \, Pi}{S \log S}\right)$$
(5)

The Range of Diversity :

on - Weiner) [11, 18, 25] : : Small diversity and low community stability
: Medium diversity and moderate community stability
: High diversity and high community stability

The Range of Homogeneity [11, 25]:

E < 0.4	: Small population
0.4 < <i>E</i> < 0.6	: Moderate population
<i>E</i> > 0.6	: High population

3. Result

3.1. Geological Setting

North east Java region based on tektonofisiography of Java Island divided into four units tektonofisiografi, successively from south to north are: Kendeng Zone, Randublatung Zone, Rembang Zone and Shelf of Java Sea (Figure 2).

Figure 2. Physiography map of Northeast Java (Van Bemmelen, 1949) in [3].

Regional Stratigraphy of Kendeng Zone, North East Java Basin indicates the age of the rock outcrops found in this zone ranges from Oligocene to Pleistocene [17]. The sequence of litostratigraphy units in the Kendeng Zone are characterized by the composite lithology and age as presented in Figure 3

The Kendeng zone is an anticlinorium situated between the North East Java hinge belt and the axis of the central trough of Java. It appears to be a distinct geological unit from the standpoints of structure, lithostratigraphy and tectonics [17]. From late Oligocene to Holocene, sediments were deposited within this area under dominant regressive conditions which prevailed at first in the West then progressively extended eastwards and finally resulted in the emersion of the entire Kendeng zone . Volcanoes were almost permanently active in the western and southern adjacent areas during this period. Stratigraphy Regional of Kendeng Zone, North East Java Basin [17]. Outcrops found in this zone from Oligocene to Pleistocene. The sequence litostratigraphy units in the Kendeng Zone, characterized by the composite lithology and age, is presented in Figure 3 [7, 17].

Figure 3. Regional Stratigraphy East Java (modified from Smyth et al., 2005) [17].

Local stratigraphy of research area consists of Kalibeng Formation and Klitik/Sonde Formation. Lithology of the Kalibeng Formation consists of the dominant marl, massive, containing abundant many foraminifera and nannofossil, some calcareous sandstone are found as intercalation layers (Figure 4A, 4B). The thickness of Kalibeng Formation ≥ 650 meters, relative age of this formation is Early Pliocene (NN12-NN18), based on last appearance of *Discoaster brouweri*. The Kalibeng Formation is deposited at the deep water environment, a lower bathyal (200-2000 meters) depth based on apperance of *Gyroidina soldanii*.

Figure 4. (A) Marl and calcarenite intercalation (Bojonegoro) and (B) masive marl of Kalibeng Formation (Nganjuk) (photo by Team PUPT).

Lithology of the Klitik/Sonde Formation consists of the dominant limestones, calcarenites, marl (Figure 5C, 5D) containing abundant foraminifera and few of nannofossil. The thickness of Klitik/ Sonde Formatian about 100 meters, age of this formation is Late Pliocene to Pleistocene (NN14-NN21), based on first appearance of *Pseudoemiliania lacunosa* and *Gephyrocapsa oceanica*. The Klitik Formation is deposited at the shallow water environment, bathymetric of the neritic (20-100meter) based on appearance of benthonic *Ammonia beccarii, Amphystegina lessonii,* and larger foraminifera.

Figure 5. (C,D) Limestone and calcarenite of Klitik Formation of Ngawi (photo by Andika)

Regional Structure of Java

The main structure of Java Island are three main structural patterns, namely the Meratus Pattern (NE-SW trend), Sunda trend (N-S Trend) and Java pattern (E-W trend) (Figure 6) [15]. In East Java, this pattern is indicated by faults and folds in the Kendeng Zone. The structure of Sumatra is mainly found in West Java, whereas in Eastern Central Java this structure is no longer visible. The Java pattern (East-West) in the East Java basin is older than the Early Miocene, and is called SAKALA trend (Figure 6) in [20].

Figure 6. Structural pattern of Java Island [16], (RMKS = Rembang-Madura-Kangean-Sakala) [21].

3.2. Discussion

The species diversity of nannofossils in the study area will be determined by comparing the results from the four selected sections. Data from the selected sections of Ngawi, Bojonegoro, Nganjuk and Jombang were collected for determining genus and species of Pliocene-Pleistocene nannofossils of Kendeng Zone (NN12-NN21). The abundance (number of individuals) and variety and number of species found in samples from Kalibeng and Sonde Formation is presented in the following Table-1.

 Table 1. Number of species from Kalibeng and Klitik /Sonde Formation from Ngawi-Bojonegoro-Nganjuk-Jombang Sections of Kendeng Zone

1.Bengawan Solo River section, Ngawi			gawi	2.Kedungsumber River section, Bojonegoro				3. Kaliasin River section, Nganjuk					4. Kalibeng River section, Jombang						
NN12-NN20 (Fasty Plaasna – Fasty Plaistagena))	NN12-NN20				NN12-NN20					NN12-NN21					
(1	Code	ne - Early	Pleistocer	A	(Early Phocene - Early Pleistocene)					(Ea	Code	$\frac{1}{10}$				Code			ne)
N	sampl	\sum_{sp}	∑sp	g	N O	Code of sample	\sum_{sp}	∑sp	Age	No	sampl	\sum_{sp}	∑sp	g	No	sampl	∑sp	∑sp	Ag e
1	e 11.69	4	0.004	e	1	VW 5	5	0.016		1	e \$30	4	0.011	е	1	e D 33	7	0.021	
2	U.68	2	0,002	V20	2	VW.6	3	0,010		2	S29	1	0,003		2	D.32	6	0,018	л П
3	U.67	1	0,001	Z	3	VW.8B	4	0,013		3	S28	1	0,003	119	3	D.31	2	0,006	le F N2
4	U.66	3	0,003	5IN	4	VW.9A	2	0,006		4	S27	7	0,019	с),	4	D.30	6	0,018	ond - N
5	U.65	0	0,000	Ē	5	VW.9B	6	0,019	6	5	S26	9	0,025	Fm	5	D.29	9	0,027	k/S [19]
5	U.64	0	0,000	Fm	5	VW.10	1	0,003	IN2	0	525 524	5	0,019	itik	5	D.28	1	0,021	DIC NN
8	U.63	6	0,006	itik	8	VW.12 VW.17	9	0,022	4	8	\$24 \$23	12	0.014	Kli	8	D.27 D.26	8	0.024	E (
9	U.61	6	0,006	K	9	VW.22	4	0,013	V 14	9	S23	10	0,028		9	D.25	15	0,045	
10	U.60	11	0,010		10	VW.25	9	0,029	ź	10	S21	12	0,033		10	D.24	13	0,039	
11	U.59	17	0,016		11	VW.26	6	0,019	uo	11	S20	14	0,039		11	D.23	15	0,045	
12	U.58	15	0,014		12	VW.27	5	0,016	nati	12	S19	15	0,041	8	12	D.22	13	0,039	
13	U.57	20	0,019		13	VW.33	8	0,026	orn	13	S18 S17	15	0,041	INI	13	D.21 D.20	17	0,050	
14	U.50	22	0,018		14	VW 36	0 7	0,020	еE	14	S16	15	0,030	- N	14	D.20	10	0,047	
16	U.54	20	0.019		16	VW.38	8	0.022	puo	16	S15	19	0.052	112	16	D.19	16	0.047	18)
17	U.53	22	0,020		17	VW.42	7	0,022	x	17	S14	20	0,055	N	17	D.17	19	0,056	NN
18	U.52	28	0,026		18	VW.44	9	0,029		18	S13	25	0,069	on	18	D.16	13	0,039	12-]
19	U.51	21	0,019		19	VW.45	7	0,022		19	S12	19	0,052	ati	19	D.15	15	0,045	NZ
20	U.50	29	0,027		20	VW.52	3	0,010		20	S11	17	0,047	orn	20	D.14	9	0,027	n ()
21	U.49	20	0,019		21	VW.55	1	0,003		21	S10	19	0,052	g F	21	D.13	12	0,036	atio
23	U.48 U 47	20	0,024		22	VW 60	0	0,010		22	- 59 - 58	14	0,033	Den	22	D.12 D.11	11	0,000	m
24	U.46	21	0,019		24	VW.61	0	0,000		24	S7	14	0,039	alil	24	D.10	5	0,015	Fo
25	U.45	19	0,018		25	VW.62	4	0,013		25	S6	17	0,047	K	25	D.9	7	0,021	eng
26	U.44	22	0,020		26	VW.63	4	0,013		26	S5	17	0,047		26	D.8	15	0,045	dilb
27	U.43	25	0,023		27	VW.64	5	0,016		27	S4	20	0,055		27	D.7	7	0,021	Kε
28	U.42	17	0,016		28	VW.65	11	0,035				363	0,074		28	D.6	6	0,018	
29	U.41 U.40	26	0,016	8	29 30	VW.00	5	0,016							29	D.5	15	0,039	
50	0.40	20	0,024	Ē	50	•••.70	<i>'</i>	0,022							50	D. 4	0	0,024	
31	U.39	28	0,026	Z	31	VW.71	11	0,035							31	D.3	10	0,030	
32	U.38	21	0,019	N13	32	VW.72	9	0,029							32	D.2	5	0,015	
33	0.37	21	0,019	Z	33	VW.73	6	0,019							33	D.1	15	0,045	
34	U.36	24	0,022	E	34	VW.76A	1	0,003	æ								337	0,098	
36	U.33	29	0,010	atio	36	VW 79	0	0,000	N14										
37	U.33	10	0.009	Ë	37	VW.80	0	0.000	Z										
38	U.32	28	0,026	Fo	38	VW.81	1	0,003	12										
39	U.31	13	0,012	eng	39	VW.82	0	0,000	N.										
40	U.30	22	0,020	lib	40	VW.83	4	0,013	n ()										
41	U.29	22	0,020	K	41	VW.84	3	0,010	atio.										
42	U.28 U 27	20	0,017		42	v w.85 VW 86	5	0,005	Lm										
44	U.26	28	0,026		44	VW.87	2	0,006	Foi										
45	U.25	17	0,016		45	VW.89	2	0,006	eng										
46	U.24	15	0,014		46	VW.90	3	0,010	libe										
47	U.23	22	0,020		47	VW.91	0	0,000	K										
48	U.22	26	0,024		48	VW.92	4	0,013											
49 50	U.21 U.20	23 18	0,021		49 50	v vv.95 VW 94	0	0,000											
51	U.19	20	0,019		51	VW.95	0	0,000											
52	U.18	19	0,018		52	VW.96	18	0,058											
53	U.17	17	0,016		53	VW.98	10	0,032											
54	U.16	18	0,017		54	VW.99	11	0,035											
55	U.15	17	0,016		55	VW.104	8	0,026											
50	U.14 U 13	28	0,026		50 57	VW.110 VW.118	11	0,035											
58	U.12	18	0,022		58	VW.125	7	0,022											
59	U.11	15	0,014		59	VW.129	9	0,029											
60	U.10	14	0,013		60	VW.134	4	0,013											
		10			61	VW.143	15	0,048											
		1080	0,056				312	0,0196		J									

Table 2. Distribution of nannofossils species, Diversity Index (H') and Homogeneity (E), From Ngawi-Bojonegoro-Nganjuk-Jombang Sections of Kendeng Zone

No	Encoded]	NGAWI	[BOJ	ONEGO	ORO	N	GANJU	K	JOMBANG		
INO.	Spesies	ni	H'	Е	ni	H'	Е	ni	H'	Е	ni	H'	Е
1	Amaurolithus delicatus	6	0,01	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00
2	Amaurolithus tricorniculatus	7	0,01	0,00	0	0,00	0,00	4	0,01	0,00	0	0,00	0,00
3	Calcidiscus leptoporus	66	0,08	0,01	4	0,01	0,00	7	0,02	0,00	6	0,02	0,00
4	Calcidiscus macintyrei	73	0,09	0,02	0	0,00	0,00	10	0,03	0,01	0	0,00	0,00
5	Ceratolithus acutus	3	0,01	0,00	0	0,00	0,00	5	0,02	0,00	2	0,01	0,00
6	Ceratolithus armatus	0	0,00	0,00	0	0,00	0,00	3	0,01	0,00	0	0,00	0,00
7	Ceratolithus rugosus	54	0,07	0,01	3	0,01	0,00	5	0,02	0,00	0	0,00	0,00
8	Ceratolithus telesmus	1	0,00	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00
9	Coccolithus pelagicus	49	0,06	0,01	25	0,06	0,01	32	0,08	0,01	173	0,22	0,04
10	Coccolithus pliopelagicus	6	0,01	0,00	0	0,00	0,00	11	0,03	0,01	273	0,28	0,05
11	Discoaster sp.	5	0,01	0,00	0	0,00	0,00	2	0,01	0,00	0	0,00	0,00
12	Discoaster surculus	52	0,07	0,01	12	0,03	0,01	79	0,14	0,03	39	0,08	0,01
13	Discoaster tamalis	0	0,00	0,00	19	0,00	0,00	0	0,00	0,00	2	0,01	0,00
14	Discoaster triradiatus	5	0,01	0,00	1	0,00	0,00	9	0,03	0,00	2	0,01	0,00
15	Discoaster tristellifer	67	0,08	0,01	28	0,06	0,01	31	0,07	0,01	148	0,20	0,03
16	Discoaster variabilis	63	0,08	0,01	0	0,00	0,00	24	0,06	0,01	16	0,04	0,01
17	Emiliania Huxleyi	2	0,00	0,00	4	0,01	0,00	11	0,03	0,01	4	0,01	0,00
18	Gephyrocapsa caribbeanica	4	0,01	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00
19	Gephyrocapsa oceanica	7	0,01	0,00	10	0,03	0,00	26	0,06	0,01	2	0,01	0,00
20	Helicosphaera carteri	10	0,02	0,00	0	0,00	0,00	0	0,00	0,00	2	0,01	0,00
21	Helicosphaera kamptneri	0	0,00	0,00	0	0,00	0,00	5	0,02	0,00	0	0,00	0,00
22	Helicosphaera sellii	30	0,04	0,01	0	0,00	0,00	11	0,03	0,01	22	0,05	0,01
23	Phontosphaera japonica	38	0,05	0,01	1	0,00	0,00	3	0,01	0,00	0	0,00	0,00
24	Phontosphaera sp.	2	0,00	0,00	0	0,00	0,00	8	0,03	0,00	11	0,03	0,01
25	Ponthosphaera multipora	11	0,02	0,00	0	0,00	0,00	29	0,07	0,01	68	0,12	0,02
26	Pseudoemiliania lacunosa	32	0,05	0,01	0	0,00	0,00	13	0,04	0,01	12	0,03	0,01
27	Pseudoemiliania ovata	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00	5	0,02	0,00
28	Reticulofenestra haqqi	34	0,05	0,01	6	0,02	0,00	18	0,05	0,01	2	0,01	0,00
29	Reticulofenestra minuta	2	0,00	0,00	1	0,00	0,00	9	0,03	0,00	3	0,01	0,00
30	Reticulofenestra minutula	26	0,04	0,01	13	0,04	0,01	24	0,06	0,01	61	0,11	0,02
31	Reticulofenestra pseudoumbilicus	3	0,01	0,00	9	0,03	0,00	13	0,04	0,01	3	0,01	0,00
32	Rhabdosphaera clavigera	171	0,16	0,03	27	0,06	0,01	40	0,09	0,02	5	0,02	0,00
33	Scapholithus fossilis	71	0,09	0,01	0	0,00	0,00	5	0,02	0,00	0	0,00	0,00
34	Scyphosphaera apsteini	45	0,06	0,01	0	0,00	0,00	3	0,01	0,00	0	0,00	0,00
35	Scyphosphaera aranta	19	0,03	0,01	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00
36	Scyphosphaera globulata	162	0,15	0,03	13	0,04	0,01	37	0,08	0,01	14	0,04	0,01
37	Scyphosphaera pulcherrima	0	0,00	0,00	0	0,00	0,00	31	0,07	0,01	6	0,02	0,00
38	Scyphosphaera ventriosa	0	0,00	0,00	8	0,02	0,00	38	0,09	0,01	23	0,05	0,01
39	Sphenolithus abies	329	0,24	0,04	332	0,31	0,05	251	0,28	0,05	22	0,05	0,01
40	Sphenolithus neoables	514	0,30	0,05	593	0,37	0,06	134	0,20	0,04	35	0,07	0,01
41	Syracosphaera sp.	179	0,16	0,03	57	0,11	0,02	52	0,11	0,02	29	0,06	0,01
42	Thoracosphaera albatrosiana	7	0,01	0,00	12	0,03	0,01	0	0,00	0,00	2	0,01	0,00
43	Thoracosphaera saxea	6	0,01	0,00	0	0,00	0,00	5	0,02	0,00	0	0,00	0,00
44	Umbilicosphaera jafari	12	0,02	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00
45	Discoaster sp.	13	0,02	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00
46	Discoaster surculus	9	0,02	0,00	1	0,00	0,00	0	0,00	0,00	0	0,00	0,00
4/	Discoaster tamalis	5	0,01	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00
48	Discoaster triradiatus	9	0,02	0,00	0	0,00	0,00	0	0,00	0,00	0	0,00	0,00
49	Discoaster tristellifer	463	0,28	0,05	293	0,30	0,05	368	0,33	0,06	483	0,35	0,06
50	Discoaster variabilis	416	0,27	0,05	321	0,31	0,05	290	0,30	0,05	444	0,34	0,06
51	Emiliania Huxleyi	51	0,05	0,01	0	0,00	0,00	9	0,03	0,00	11	0,03	0,01
52	Gepnyrocapsa caribbeanica	0	0,00	0,00	5	0,01	0,00	0	0,00	0,00	0	0,00	0,00
53	Gephyrocapsa oceanica	24	0,04	0,01	10	0,03	0,00	11	0,03	0,01	0	0,00	0,00
35	neucospnaera carteri	2140	0,00	0,00	1806	0,00	0,00	3	0,02	0,00) 1025	0,02	0,00
1	Total	3149	0,05	0,01	1000	0,04	0,01	10/1	0,05	0,01	1733	0,04	0,01

Quantitative analysis of nannofossils have been performed on 4 stratigraphic measurement sections. The results of analysis show that Kalibeng and Sonde Formations are deposited in Early Pliocene to Early Pleistocene (NN12-NN21) and there are 18 genus and 54 specieses identified (Table-3). The

diversity models of nannofossil Pliocene-Pleistocene resulted from the four selected sections are summarized as follows and shown in Figure 7.

- Bengawan Solo River section, District of Ngawi: Age NN12-NN20 (Early Pliocene-Middle Pleistocene), 46 specieses identified, average number of species (0,056), Diversity Index (H')=00.53and Evennes/Homogeneity Indek (E)=0.009.
- Kedungsumber River section, Soko Area, Distric of Temayang, Bojonegoro: Age NN12-NN20 (Early Pliocene Early Pleistocene), 26 specieses identified, average number of species (0.196), Diversity Index (H') = 0.035 and Evennes/Homogeneity Indek (E)= 0.006.
- Kaliasin River section, Pinggir area, Distric of Lengkong, Nganjuk: Age NN12-NN20 (Early Pliocene Early Pleistocene), 40 specieses identified and average number of species (0.074), Diversity Index (H') = 0.050 and Evennes/Homogeneity Indek (E)= 0.009.
- Kalibeng River section, Kedungringin Area, Distric of Plandaan, Jombang: AgeNN12-NN19 (Early Pliocene-Early Pleistocene), 33 specieses identified, average number of species (0.098), Diversity Index (H') = 0.043 and Evennes/Homogeneity Indek (E) = 0.007.

From the results shown above, the Diversity Index of nannofossils in the study area is H'=0.035-0.050. This values is considered as "Small diversity and low community stability" (where H'< 2.3026). this means small diversity and low community stability. The Range of Evennes/Homogeneity is E=0.006-0.009), and it can be considered as "small population" (with E < 0.4). this means small population. The smaller the index value of diversity (H') then the uniformity index (E) will also be smaller, indicating the dominance of a particular species against other species. Based on table 2, a model of diversity model of each section, has been constructed. The model is used to know the pattern of development of species diversity, to performed paleoecological analysis on Pliocene to Pleistocene (Figure 7).

Figure 7. Diversity model of nannofossils species Pliocene-Pleistocene from Ngawi-Bojonegoro-Nganjuk-Jombang Sections of Kendeng Zone.

Based on four diversity models of nannofossil shown in Figure 4, showen that there is a decreasing pattern of diversity index from Pliocene to Pleistocene and Jombang section have a different pattern. This means that there is a decrease of species diversity from Pliocene to Pleistocene. This diversity model is expected to determine paleoclimate change in Pliocene-Pleistocene of Kendeng zone. The low diversity index is strongly influenced by changes in paleoecology, climate change and ecosystem stability. The uniformity index (E) is low which means the ecosystem is in a less stable condition. This is probably due to climate change in Pliocene-Pleistocene globally, volcanic or tectonic.

4. Conclusions

Presence of nannofossil is affected by many factors and used as a tool for Cenozoic biostratigraphic analysis and application in paleoecological. Research area that consists of four selected locations (Ngawi, Bojonegoro, Nganjuk and Jombang sections) in the Kendeng Zone, is composed by Kalibeng and Klitik/Sonde Formations with Early Pliocene to Early Pleistocene (NN12-NN21).

Total number species of the Kalibeng Formation more abundance than Klitik/Sonde Formation, this is because Kalibeng Formation composed of lithology dominated by fine-grain clastic sediment (marl), deposited of the open marine (Bathyal), whilst Klitik/Sonde Formation is deposited in shallow marine (neritic) and lithology dominanted by limestone.

Diversity Index of nannofossils is H'=0.035-0.050, indicating "small diversity and low community stability". The Range of Evennes/Homogeneity is E=0.006-0.009, showing "small population". The smaller the index value of diversity (H') then the uniformity index (E) will also be smaller, indicating the dominant of a species against other species.

Based on the graphic of diversity model shown in Figure 7, there is a decreasing pattern of Diversity index from Pliocene to Pleistocene in the three selected locations while the Jombang section have a different pattern. With the similar results of the three locations, it means that there is a decrease of species diversity from Pliocene to Pleistocene. This diversity model can be used to determine paleoclimate change in Pliocene-Pleistocene of Kendeng zone. The low diversity index is strongly influenced by changes in paeoecology, climate change and ecosystem stability. The uniformity index (E) is low, this means the ecosystem is in a less stable condition. It is probably due to climate change in Pliocene-Pleistocene globally

Acknowledgments

The authors would like to thank the Team of PUPT (Penelitian Unggulan Perguruan Tinggi) grant of year 2016, thanks also go to my colleagues ProfC. Danisworo, B. Triwibowo, M. Maha, Ediyanto, A. Subandrio, my Laboratory assistants Wisnu, Vian, Wawan, Desi, Cahyo, Deby, Rere for cooperation and assistance during the research.

References

- [1] Alves T A, MKevin, Edward Cooper, Ade Moraes Rios-Netto 2016 Paleogene-Neogene calcareous nannofossil biostratigraphy and paleoecological inferences from northern Campos BasinBrazil (well Campos-01)*Journal of South American Earth Sciences*
- [2] Baumann KH, Andruleit H, BockelB, Geisen M, Kinkel H, 2005 *The significance of extant* coccolithophores as indicators of ocean water masses, surfacewater temperature, and paleoproductivity : a review Palaontologische Z. **79** 1 93-112, doi:10.1016/j.csr.2013.04.016
- [3] BemmelenR W van 1949 *The geology of Indonesia government* Printing OfficeNijhoff, The Hague, **1**A732
- [4] BownPR, Young JR 1998 a Introduction In: Bown PR (Ed) Calcareous Nannofossil Biostratigraphy. Chapman & Hall1-15
- [5] Bowen, G J Beerling, D J Koch, L Zachos, J C & Quattlebaum T 2004 A humid climate state during the Palaeocene/Eocene thermal maximum. *Nature*, **432** 495–499

- [6] Bridget SWade and Paul R Bown 2006 Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus, Palaeogeography, Palaeoclimatology, Palaeoecology 233 271- 286
- [7] De Genevraye, Patrick, and Luki Samuel 1972 Geology of the Kendeng Zone (Central and East Java) : *Proceedings of Indonesian Petroleum Assocciation*, 1st Annual Convention 17-30
- [8] Gartner 1981 Calcareous nannofossils biostratigraphy and revised zonation of The Pleistocene, Marine Micropaleontology 21-25
- [9] G Villa, JA Lees, PR Bown 2004 Calcareous nannofossil palaeoecology and palaeoecolographic reconstructions, 52 1-302
- [10] Jeremy RYoung and Paul R Bown 2014 Some emendments to calcareous nannoplankton taxonomy, *Journal of Nannoplankton Research* **33** 139-46
- [11] Magurran A E 1982 *Ecological Diversity and its Measurement*. Princeton University Press, Princeton,
- [12] NJKenneth Junge1994 Diversity of ideas about diversity measurement. *Journal of Pscychology*, doi:org/10.1111/j.1467-9450.1994.tb00929.x.
- [13] PerchNielsen K1985aCenozoic calcareous nannofossils in Bolli, HMSaunders JB Pearch-NielsenK (Eds), Plankton Stratigraphy Cambridge University Press Cambridge, EUA427-554.
- [14] Pringgoprawiro H and Sukido1992 Peta geologi lembar Bojonegoro Jawa Timur, Pusat Penelitian dan Pengembangan Geologi Bandung
- [15] Pulunggono A and S Martodjojo1994 Perubahan tektonik Paleogen-Neogen merupakan peristiwa tektonik terpenting di Jawa, *Procceeding of Geology and Geotectonic Java Island since Late Mesozoic to Quaternary* Faculty of Geology Gajahmada University 53-274.
- [16] Schueth J D and T J Bralower 2015 The relationship between environmental change and the extinction of the nannoplankton Discoaster in the Early PleistocenePaleoceanography 30 863–876 doi:10.1002/2015PA002803.
- [17] Smyth HR, R Hall, RHamilton, P Kinny 2005 East Java Cenozoics basins volcanoes and ancient basement, *Proceedings Indonesian Petroleoum Association30th* Annual Convention & Exhibition 251-266
- [18] SpellerbergFand, PJFedor2003Atribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the Shannon–WienerIndex, *GlobalEcology & Biogeography* 12 177–179
- [19] SupandjonoJB, KHasan, HPanggabean, DSatria, Sukardi1992 Peta Geologi Lembar Surabaya and Sapulu Jawa Pusat Penelitian dan Pengembangan Geologi Bandung
- [20] Sribudiyani, Nanang Muchsin, Rudy Ryacudu, Triwidiyo Kunto, Puji Astono, Indra Prasetya, Benyamin Sapiie,, Ivan Yulianto2003 The collision of the East Java microplate and its implication for hydrocarbon
- [21] Theodoridis 1984Calcareous nannofossil biozonation of the Miocene and revision of the helicoliths and discoasters. Utrecht *Micropaleontoly Bulletin* 321-271.
- [22] Toffanin F, Agnini C, Fornaciari E, Rio D, Giusberti L, Luciani V, Spofforth DJA, Palike H, 2011 Changes in calcareous assemblages during the Middle Eoceneclimatic optimum: clues from the Central-Western Tethys (Alano section, NEItaly), *Marine Micropaleontology* 81, 22-31.
- [23] YNoya, TSuwarni, Suharsono, LSarmili1992 Peta Geologi Lembar Mojokerto Jawa, Pusat Penelitian dan Pengembangan Geologi Bandung
- [24] Young et al2016 The Nannotax3 website
- [25]How to Calculate Biodiversity, https://www.coursehero.com/file/25706457/Student-Handout-1Apdf/,www.protectingusnow.org
- [26] Paul R Bown 2005Calcareous nannofossil biostratigraphy of ODP Hole 198-1208A sediments, Shatsky Rise. *PANGAEA*, doi.org/10.1594/PANGAEA.778212