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Abstract 
 

This paper analyzes the prediction of gold distribution in veins using kriging on various block sizes. The empirical semivariogram pa-

rameters used are classical and robust, and the models used are weighted least squares and ordinary least squares based on exponential 

and spherical semivariogram theory. Fitting accuracy is based on the four smallest root mean square errors (RMSE), which are all ob-

tained from the exponential base. An interesting phenomenon occurs in the theoretical exponential semivariogram-based predictions: the 

average value of block variance is directly proportional to the size of the widely used block. This relationship is also demonstrated by the 

inverse values of the validation index generated. While linked to the semivariogram parameters, the effectiveness relationship is that the 

length of the range of the fitting result is inversely related to the acquisition of the meanprediction. 
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1. Introduction 

Gold is a mineral that forms through a mineralization process, that 

is, the inclusion of gold minerals in the rock (or earth) with the 

potential to form ore deposits. Through thermal energy boosting, 

minerals then move in and fill the spaces of open fractures in the 

rock, and when the rock settles, an ore body is formed [1]. Differ-

ent media occur in the gold deposition process, one of which is the 

vein. The potential consequences arising from the formation pro-

cesses include likeness properties (principally the value of the 

grade) between locations within the region, which in turn can 

allow the use of geostatistical concepts [2].  

One of the crucial stages in mining exploration is to determine the 

average (and error rate) and value distribution in the area [3]. This 

study is performed to investigate one of the regions in the 

Pongkormount, namely, the gold mining region of UBPE Pongkor 

owned by PT. Aneka Tambang (Tbk). This region is administra-

tively located in the district of Bayah, Lebak, Banten province, 

Indonesia and has an elevation range from 1.110 to 1.250 m above 

sea level. Geographically, the region’s coordinates are 

106°24’00”E – 106°26’00”E and 06°44’00”S – 06°46’00”S. The 

data used are 128 drilling samples representing an area around 

1500345 m2, and the predictions use a block model kriging tech-

nique. The kriging selection is based on the nature of the gold 

mineralization, which is mainly gold distributed in veins [2]. 

There are six sizes of blocks, namely 1515, 2525, 3535, 

5050, 7575 and 100100. The variations in this measure are 

intended to determine the relationship between the block area 

additions and the error rate of prediction. 

2. Semivariogram 

The semivariogram is a formula used as a basis in kriging calcula-

tion, based on fitted and obtained parameters particularly includ-

ing the nugget, sill and range,. The semivariogram is defined as 

the variance of the {Z ( )–Z( )} increment, written as follow [4], 

[5]: 
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How-

ever, to compute the semivariogram, an empirical formula must be 

used, which is given as follows [6]: 
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Where ( ) ( ) , : ; , 1, ,
i j i j

N i j n= − = = h s s s s h , and ( )N h is the number 

of point pairs within h. 

The development of the classical semivariogram is known as a 

robust formula. The concept of robustness originated from the idea 

that semivariograms are affected by atypical observations. To 

improve this situation, made some modifications were made to 

obtain the following formula [7]: 
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Table 1: List of Semivariogram Models [8] 
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Fitting refers to obtaining the parameters that are used as the basis 

of the kriging calculation (i.e., nugget, sill and range), using two 

theoretical semivariogram model approaches, both spherical and 

exponential as in Table 1. The nugget parameter, geologically, is 

especially likely to allow analysis of the existence of an ore-body 

[9]. The two model approaches involve ordinary least squares 

(OLS) and weighted least squares (WLS) [10]. 

3. Kriging 

Kriging is an interpolation technique for spatially sampled data. 

This technique uses the stationary concept which chooses optimal 

weights by minimizing the estimation of variance error [11]. The 

assumptions and simplifications in this method include that the 

observation data can be seen as a realization of a random variable, 

which is formally presented as  in Cressie [4] and 

Sarma [12].In general, if z(si) (i=1, …, n) aren observations of 

data residing in many locations of si (siRd, d in 2 dimension), and 

s0 (s0Rd) is a position of the predicted point, the prediction value, 

, can be written as follows [13]: 
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Which is a weighted average of the grade sample. The weights, wi, 

are such that , and the estimation is assumed to be 

unbiased.The prediction value  is a realization of a random 

function Z(s) that in practice is never really known and is deter-

mined by the distribution value qualified by the cut-off grade [14]. 

This function minimizes the mean squared error of prediction, 

given by 
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In addition, the variance of the intrinsically stationary process can 

be written as follows: 
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4. Analysis 

Semivariogram construction began by setting the initial lag dis-

tance h = 17.5, which applies periodically, where the maximum 

distance lag used is 500 m. The maximum distance is one-third of 

the regional landscape. This lag stipulation applies to both princi-

ples in the preparation of either a classical empirical semivario-

gram, , or a robust one, . Beginning from the first lag, by 

Equation(1) and Equation(2)the classical and robust semivario-

grams produce different values. The robust semivariogram value 

was almost half the classical value.  

The empirical semivariogram fitting is based on eight combina-

tions, four types for the classical and the other four for the robust. 

The classical semivariogram fitting begins with an initial C code, 

while the robust semivariogram uses the R code, followed by the 

OLS or WLS models. The semivariogram theories are encoded as 

in Table 1, with the letter S for spherical and E for exponential. 

Concretely, CWLSS is the fitting based on the classical semivari-

ogram approach with WLS model and the spherical semivario-

gram theoretical models. RWLSE is a fitting based on the robust 

semivariogram approach with the WLS model and the spherical 

theoretical model. COLSE is a fitting based on the classical empir-

ical OLS model and the exponential theory. The various options 

result in a total of eight fitting combinations, as shown in Figure 1. 

 

 
Fig. 1: Fitted Spherical and Exponential Models. 

 

The empirical semivariogram parameters fitted against the semi-

variogram theory, i.e., nugget, sill and range, are presented in 

Table 2. It appears that the nugget effect only occurs in the 

CWLSS and COLSS combinations, with values of 0.4 and 1.6, 

respectively. The sill value is almost uniform in the range of 

11.076 to 11.754. In general, however, it can be said that both 

exponential bases produce larger sill values than the spherical. The 

range value, as described in Figure 2, varies from a minimum of 

103.28 m (CWLSS) to a maximum of 233.23 (ROLSE). The range 

produced by exponential fitting (CWLSE, COLSE, RWLSE and 

ROLSE) is in general longer than for the spherical fitting models. 

 
Table 2: Semivariogram Parameters and Fitting with Root Mean Square 

Error (RMSE) 

Category Nugget Sill Range RMSE 

CWLSS 0.40 11.340 103.277 1.268 

COLSS 1.60 11.415 136.803 1.224 
CWLSE 0.00 11.743 173.169 1.124 

COLSE 0.00 11.754 192.706 1.103 

RWLSS 0.00 11.115 129.526 1.313 
ROLSS 0.00 11.076 149.548 1.594 

RWLSE 0.00 11.611 209.176 1.198 

ROLSE 0.00 11.605 233.228 1.179 

 

Table 2 shows that the four acquisition fittings with the lowest 

error (RMSE) are the ones with an exponential basis. Of these four, 

two are from the semivariogram classical basis, i.e., COLSE is 

1.103 and CWLSE is 1.198. The other two are based on the robust 

semivariogram, i.e., ROLSE is 1.224 and RWLSE is 1.594. The 
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semivariogram parameter is used as a primary basis for block 

kriging prediction.  

Table 3 gives a complete summary of the block kriging prediction 

for various sizes, based on an exponential fitting semivariogram. 

Itdescribes the point and block kriging prediction on various sizes 

for a spherical base. In both of these tables, the first column shows 

the size of the block, while the second column is the prediction 

value (Pred. Value), which consists of the mean, variance and 

validation index. The validation index (Valid. Index) is a value 

derived from the ratio between the differences in mean prediction 

and the variance of the mean prediction values. This index de-

scribes the interval between the mean prediction and the variance 

results, where a higher value indicates greater reliability. 

All of the predictions derive from exponential fitting yield positive 

values.A representative example of the entire block kriging pre-

diction is the distribution produced by the block kriging prediction 

size 1515 based on ROLSE fitting, which has the highest valida-

tion index. In general, this block kriging produces 58.40% of an 

area containing a distribution of values greater or equal to 3.00 (g/t 

Au), 5.88% of an area containing values of at least 10.00, and 0.96% 

of an area containing a distribution of values of at least12.00 (a 

rich zone). The rich zone in Figure 2 (shown as a yellow contour 

image), here represented by 24 prediction blocks located around 

the abscissa coordinates 7486-7891 and the ordinate coordinates 

464-659. 

 
Table 3: List of Best Predicted Values of Mean, Variance and Validation 

Index Based on Exponential Fitting 

Point(*) /block  Pred. Value 
 Fitting base  

CWLSE COLSE RWLSE ROLSE 

416*) Mean 4.552 4.493 4.472 4.448 

 Variance 4.407 4.087 3.800 3.497 

 Valid. Index 0.025 0.090 0.150 0.214 

816*) Mean 4.585 4.559 4.541 4.519 

 Variance 4.085 3.776 3.502 3.211 

 Valid. Index 0.109 0.172 0.229 0.289 

5375*) Mean 4.625 4.600 4.546 4.525 

 Variance 3.887 3.583 3.458 3.169 

 Valid. Index 0.160 0.211 0.239 0.300 

1515 Mean 4.611 4.586 4.568 4.548 

 Variance 3.763 3.446 3.359 3.075 

 Valid. Index 0.190 0.249 0.265 0.324 

2525 Mean 4.618 4.592 4.574 4.554 

 Variance 3.774 3.482 3.396 3.110 

 Valid. Index 0.183 0.242 0.257 0.317 

3535 Mean 4.590 4.564 4.546 4.525 

 Variance 3.838 3.544 3.458 3.169 

 Valid. Index 0.164 0.233 0.239 0.300 

5050 Mean 4.580 4.553 4.534 4.513 

 Variance 3.955 3.653 3.565 3.268 

 Valid. Index 0.136 0.198 0.214 0.276 

7575 Mean 4.673 4.645 4.627 4.605 

 Variance 4.030 3.730 3.645 3.347 

 Valid. Index 0.138 0.197 0.212 0.273 

100100 Mean 4.570 4.543 4.524 4.502 

 Variance 4.233 3.919 3.820 3.520 

 Valid. Index 0.074 0.137 0.156 0.218 

 

 
Fig. 2: The Distribution Values of 1515block Kriging Based on ROLSE 

Fitting. 

5. Conclusion 

Based on this analysis done in section 4, several conclusions can 

be drawn. We found that the mean prediction produced by block 

kriging based on exponential fitting (i.e., KWLSE, KOLSE, 

RWLSE and ROLSE) produces a value greater than the mean 

variance. We also found that the block size is inversely related to 

the validation index value (Valid. Index). When using a larger 

block size for prediction, the value of the validation index will be 

smaller, i.e., there is a negative correlation. In fact, the block size 

is proportional to the mean variance prediction. If the block size is 

smaller, the variance produced will also be smaller.If the judgment 

is based on the greatest value generated by the prediction of the 

exponential equivalent, the mean prediction then occurs for a 

kriging block size of 7575. Apart from that, the range length is in 

inverse proportion to the mean prediction generated.In considering 

this provision, the most realistic prediction is produced using a 

1515 block of ROLSE. This prediction-base produces a mean of 

4.548 (g/t Au) and a mean variance of 3.075 (g2/t2 Au). 

Acknowledgements 

The authors are indebted to the management of PT. Aneka Tam-

bang (Tbk) UBPE Pongkor, Indonesia, which provided the facili-

ties and data for this study. This research would not have been 

possible without the sponsorship of UPN "Veteran" Yogyakarta. 

References 

[1] Embrey PG, Symes RF. 1987. Minerals of Cornwall and Devon. 
British Museum of Natural History, London. 

[2] Roy D, Butt SD, Frempong PK. 2004. Geostatistical resource esti-

mation for the Poura narrow-vein gold deposit. CIM Bulletin 1077: 
47–51. 

[3] Welmer FW, Dalheimer M, Wagner M. 2008.Economic Evalua-

tions in Exploration, Springer-Verlag, Berlin. 
[4] Cressie N. 2015. Statistics for Spatial Data, Revised Edition, Wiley, 

New York. 

[5] Olea RA. 2006. A six-step practical approach to semivariogram 
modeling. Stochastic Environmental Research and Risk Assess-

ment, 20(5): 307–318. https://doi.org/10.1007/s00477-005-0026-1.  

[6] Matheron G. 1963. Principles of geostatistics. Journal of Economic 
Geology, 58(8): 1246–1266. 

https://doi.org/10.2113/gsecongeo.58.8.1246. 

[7] Cressie N,Hawkins DM. 1980. Robust estimation of the variogram. 
Journal of Mathematical Geology 12(2): 115–125. 

https://doi.org/10.1007/BF01035243. 

[8] Masseran N, RazaliAM, Ibrahim K, Zin WZW, Zaharim A. 2012. 
On spatial analysis of wind energy potential in Malaysia. WSEAS 

Journal of Transactions on Mathematics, 11(6): 451–461. 

[9] Modis K, Papaodysseus K. 2006. Theoretical estimation of the crit-
ical sampling size for homogeneous ore bodies with small nugget 

effect. JOurnal of Mathematical Geology38 (8): 489–501. 

https://doi.org/10.1007/s11004-005-9020-x. 
[10] CressieN. 1985. Fitting variogram models by weighted least 

squares.JOurnalof Mathematical Geology17 (5): 563–586. 

https://doi.org/10.1007/BF01032109. 
[11] Denison DGT, Adams NM, Holmes CC, HandDJ. 2002. Bayesian 

partition modelling. Journal of Computational Statistics and Data 

Analysis38 (4): 475–485. https://doi.org/10.1016/S0167-

9473(01)00073-1. 

[12] Sarma DD. 2009. Geostatistics with Applications in Earth Sciences, 

Second Edition, Springer, New Delhi. https://doi.org/10.1007/978-
1-4020-9380-7. 

[13] Schabenberger O, Gotway CA. 2005. Statistical Methods for Spa-

tial Data Analysis, Chapman and Hall, Boca Raton.  
[14] Minnitt RCA.2004. Cut-off grade determination for the maximum 

value of a small Wits-type gold mining operation. Journal of the 

South African Institute of Mining and Metallurgy98: 277–283. 

https://doi.org/10.1007/s00477-005-0026-1
https://doi.org/10.2113/gsecongeo.58.8.1246
https://doi.org/10.1007/BF01035243
https://doi.org/10.1007/s11004-005-9020-x
https://doi.org/10.1007/BF01032109
https://doi.org/10.1016/S0167-9473(01)00073-1
https://doi.org/10.1016/S0167-9473(01)00073-1
https://doi.org/10.1007/978-1-4020-9380-7
https://doi.org/10.1007/978-1-4020-9380-7

