DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
HALAMAN PERNYATAAN	iii
KATA PENGANTAR	iv
ABSTRAK	V
ABSTRACT	vi
DAFTAR ISI	vii
DAFTAR GAMBAR	
DAFTAR TABEL	xvii
DAFTAR SINGKATAN DAN LAMBANG	xviii

BAB I. PENDAHULUAN

1.1 Latar Belakang	1
1.2 Perumusan Masalah	2
1.3 Tujuan Penelitian	3
1.4 Batasan Masalah	3
1.5 Lokasi dan Waktu Penelitian	4

BAB II. TINJAUAN PUSTAKA

2.1 Geologi Lokal Cekungan Ujungkulon	5
2.1.1 Fisiografi	5
2.1.2 Tektonik dan Struktur Geologi	7
2.1.3 Stratigrafi Regional	8
2.2 Penelitian Terdahulu	8
2.2.1 Evolusi Struktur dan Stratigrafi pada Offshore Malingping Block, Jav	wa
Barat, Indonesia	11
2.2.2 Identifikasi Seismik dan Karakteristik adanya Gas Hdirta di Cent	ral
Sunda Margiin, Indensia	12

2.2.3 Identifikasi Batas Cekungan Jawa Barat Utara Di Wilayah Cire	bon
Berdasarkan Anomali Gayaberat Dengan Teknik Gradien dan An	alisa
Spektrum	16
2.2.4 Fitur Tektonik Forearc Indonesia dari Sumatera Selatan – Jawa E	Barat
	19
	• •
2.2.5 Penentuan Parameter Petrofisika	20
2.2.6 Sebuah Proses Untuk Mengevaluasi Prospek Eksplorasi	22
BAB III. DASAR TEORI	
3.1 Konsep Dasar Metode Gravitasi	25
3.1.1. Gaya Gravitasi	25
3.1.2. Percepatan Gravitasi	25
3.2 Anomali Bouger	26
3.3 Analisa Spektral	26
3.4 Proses Pemisahana Anomali Regional - Residual	28
3.4.1 Butterworth Filter	29
3.5 Total Horizontal Derivative (THD)	30
3.6 Tilt Derivative (TDR)	31
3.7 Konsep Pemodelan 2,5D	32
3.8 Penentuan Densitas Batuan	33
3.9 Metode Seismik Refleksi	35
3.9.1 Hukum Dasar Seismik	35
3.9.2 Tahapan Metode Seismik	36
3.9.3 Komponen Seismik Refleksi	37
3.10 Seismik Stratigrafi	40
3.11 Seismik Atribut	42
3.12 Pembentukan Gas Hidrat	43
3.13 Indikator Gas Hidrat	44
3.13.1 Indikator Geologi	45
3.13.2 Indikator Geofisika	54
3.14 Perhitungan Cadangan Metode Volumetrik	56

BAB IV. METODE PENELITIAN

4.1	Tahapan Penelitian	59
	4.1.1. Tahapan Pendahuluan	59
	4.1.2. Tahapan Pengumpulan Data	59
	4.1.2.1. Ketersediaan Data	59
	4.1.2.2. Data Metode Gravitasi	60
	4.1.2.3. Data Seismik Refleksi	60
	4.1.3. Perangkat Pengolahan	62
	4.1.3.1. Hardwere	62
	4.1.3.2. Softwere	62
	4.1.4. Tahapan Pengolahan Data	63
	4.1.4.1. Metode Gravitasi	64
	4.1.4.2. Metode Seismik Refleksi	67
	4.1.5. Tahapan Interpretasi	69
	4.1.5.1. Metode Gravitasi	69
	4.1.5.2. Metode Seismik Refleksi	69

BAB V. HASIL DAN PEMBAHASAN

5.1 Peta Free Air Anomaly	. 71
5.2 Peta Anomali Bouguer Lengkap	. 72
5.3 Pemisahan Anomali Regional - Residual	. 73
5.3.1. Peta Anomali Regional	. 74
5.3.2. Peta Anomali Residual	. 75
5.4 Peta Total Horizontal Derivative	. 77
5.5 Peta <i>Tilt Derivative</i>	. 79
5.6 Analisis Spektrum	. 81
5.6.1 Analisa Spektrum Sayatan A-A'	. 82
5.6.2 Analisa Spektrum Sayatan B-B'	. 83
5.6.3 Analisa Spektrum Sayatan C-C'	. 84
5.7 Pemodelan 2,5D (Forward Modeling) Bawah Permukaan	. 85
5.7.1 Pemodelan Bawah Permukaan Sayatan A-A'	. 87
5.7.2 Pemodelan Bawah Permukaan Sayatan B-B'	. 89
5.7.3 Pemodelan Bawah Permukaan Sayatan C-C'	. 90

5.8. Analisa Struktur Tektonik Forearc Basin	
5.9. Analisa Seismik Stratigrafi	
5.9.1. Forearc basin	
5.9.2. Prisma Akresi	101
5.10. Analisa Potensi Gas Hidrat	102
5.10.1. Identifikasi Bottom Simulating Reflector (BSR)	102
5.11. Atribut Seismik	106
5.1.1. Atribut Seismik Trace Gradient	108
5.11.2. Atribut Seismik Instantaneous Phase	109
5.11.3. Atribut Seismik RMS Amplitudo	110
5.11.4. Atribut Seismik Cosine of Phase	111
5.12. Peta <i>Time Structure</i>	111
5.13. Perhitungan Potensi Sumber Daya Gas Hidrat	112
5.13.1. Peta <i>Time Structure</i> dan Zona Gas Hidrat	112
5.13.2. Penilaian Geologic Risk Factor Daerah Penelitian	114
5.13.2. Perhitungan Volumetrik Potensi Gas Hidrat	115

BAB VI. KESIMPULAN DAN SARAN

6.1 Kesimpulan	118
6.2 Saran	119
DAFTAR PUSTAKA	120
LAMPIRAN	

DAFTAR GAMBAR

Gambar 1.1. Distribusi organik karbon di dunia dengan estimasi gas hidrat sebagai yang terbesar dan dua kali lebih besar dari energi konvensional (Kvenvolden,1998)
Gambar 1.2. Peta lokasi daerah penelitian (Kopp, 2002)
Gambar 2.1. Peta Lokasi Cekungan dan Isopach Ujungkulon (BPMIGAS & LAPI ITB)
Gambar 2.2. Peta Anomali Gravitasi (Modifikasi dari Pusat Survei Geologi, 2000)
Gambar 2.3. Pola Struktur dan Tektonik Jawa Barat (Pulunggono dan Martodjojo, 1994)
Gambar 2.4. Mandala Sedimentasi Jawa Barat (Martodjojo, 1984)9
Gambar 2.5. Penampang Stratigrafi Utara-Selatan Jawa Barat (Martodjojo, 2003)10
Gambar 2.6. Diagram Tektono-Kronostratigrafi Cekungan Ujungkulon (Yulianto et al., 2007)
Gambar 2.7. Diagram fence skematik seismik yang menggambarkan interpretasi stratigrafi dan struktural di daerah penelitian (Yulianto et al., 2007)
Gambar 2.8. Line seismik (So137-19) dengan tampilan BSR pada kontinental (fore-arc) basin. BSR muncul antara kedalaman 3.4 dan 4.0 S dan memotong lintas strata dalam struktur yang terlipat (Alfian et al., 2006)
Gambar 2.9. Perbandingan analisa kecepatan antara CDP-20950 (tidak ada bSR) dan CDP-21150 (ada BSR) pada Line So137-10. Pola semblance velocity tiba-tiba meningkat ketika terdapat BSR yang menunjukkan keberadaan sedimen pembawa gas Hidrat dengan kecepatan tinggi (Alfian et al., 2006)
Gambar 2.10. Hail inversi pada line seismik So137-19 yang diperoleh dari hasil inversi sparse-spike. Sedimen mengandung potensi gas hidrat yang diidentifikasi sebagai lapisan dengan nilai impedansi tinggi (warna merah ke ungu) di atas BSR. (Alfian et al., 2006)
Gambar 2.11. Contoh profil kecepatan interval pada beberapa CDP yang berlokasi di lintasan seismik So137-10 dengan kandungan gas hidrat (Alfian et al., 2016)

Gambar 2.12. Acoustic velocity field dari analisa kecepatan interval lintasan So137-10 (a) dan So137-19 (b) (Alfian et al., 2016)15
Gambar 2.13. Peta Anomali Bouguer Gayaberat17
Gambar 2.14. (A) Anomali Regional dan (B) Anomali Residual dengan ukuran jendela 11x11
Gambar 2.15. Peta Anomali Gradient Horizontal (Wardhana et al., 2014) 18
Gambar 2.16. Peta Anomali Gradient Vertikal (Wardhana et al., 2014)
Gambar 2.17. Peta Anomali SVD (Wardhana et al., 2014)
Gambar 2.18. Tahapan geodinamika tektonik Sumatera Selatan (Schluter et al., 2014)
Gambar 2.19. Parameter petrofisika gas hidrat pada <i>Southeastern U.S. Continental Margin</i> (Lee et al., 1994)
Gambar 2.20. Parameter petrofisika gas hidrat pada Kumano <i>Basin</i> , Nankai <i>Trough Forearc</i> , Japan (Taladay et al., 2017)
Gambar 2.21. Parameter petrofisika gas hidrat pada <i>North Slope of Alaska</i> (Howe et al., 2009)
Gambar 2.22. Parameter petrofisika gas hidrat pada Nyegga Norwegian Sea (Senger et al., 2010)
Gambar 2.23. Parameter petrofisika gas hidrat pada Canada (Tabatabaie, SH & Darvish, 2012)
Gambar 2.24. Daftar penilaian risiko yang mencantumkan beberapa aspek dari penilaian risiko geologi untuk membantu memastikan aspek – aspek yang telah dipertimbangkan dalam perhitungan cadangan (Otis & Schneidermann, 1997)
Gambar 2.25. Lembar kerja penilaian risiko yang menyediakan metode untuk mentransfer penilaian secara kualitatif tentang risiko geologi ke probabilitas kuantitatif untuk keberhasil geologis (Otis & Schneidermann, 1997)
Gambar 2.26. Kategorisasi risiko " <i>rule of thumbs</i> " untuk penilaian risiko geologi berdasarkan <i>feedback</i> dari pengeboran yang dilakukan tahun sebelumnya(Otis & Schneidermann, 1997)
Gambar 3.1. Gaya tarik menarik antara dua benda
Gambar 3.2. Kurva Ln A terhadap k (Fitriana, 2011)

Gambar 3.3. Grafik Butterworth Filter Terhadap k (Whitehead, 1995) 30
Gambar 3.4. Nilai gradien horizontal pada model tabular (Blakely,1996)
Gambar 3.5. THD dna TDR dalam bidang 3 dimensi (Arisoy,2013)
Gambar 3.6. Efek benda bentuk poligon anomali gravitasi menurut Talwani et al (1990)
Gambar 3.7. Gelombang P dan S seismik (Anonim, <u>http://academic.brooklyn.cuny.edu</u>)
Gambar 3.8. Jenis fase : (a) fase minimum, (b) fasa campuran, (c) fasa maksimum, dan (d) fasa nol (Sukmono, 1999)
Gambar 3.9. Polaritas normal dan terbalik seismik menurut SEG (Sukmono, 1999)
Gambar 3.10. Macam-macam batas sekuen seismik (Mitchum et al., 1997) 41
Gambar 3.11. Pembagian klasifikasi atribut seismik (Brown, 2000)
Gambar 3.12. Kemungkinan pembentukan konsentrasi gas hidrat dalam sedimen laut dalam (Brooks et al., 1986)
Gambar 3.13. Sketsa perubahan impedansi akustik (BSR) dan penyebabnya, skala temperatur menunjukkan salah satu indikasi perbedaan sebab dan proses (Berndt et al., 2004)
Gambar 3.14. Bagan alir mengidentifikasi gas hidrat (Tim Konsorsium Pertamina, 2014)
Gambar 3.15. Tipe punggungan ; A) BSR pada struktur antiklin, B) BSR pada struktur antiklin tertimbun, C) BSR pada struktur <i>footwall</i> naik, D) BSR pada struktur punggungan naik (Lin et al., 2009)
Gambar 3.16. BSR Tipe Cekungan dan model suplai gas bebas yang mendukung pembentukan gas hidrat; A) Tipe Batas Cekungan, B) Tipe Dalam Cekungan (Lin et al., 2009)
Gambar 3.17. BSR Tipe Tebing Bawah Laut; A) Tipe Dasar Tebing, B) Tipe Batas Tebing (Lin et al, 2009)
Gambar 3.18. BSR Tipe Continental Slope; A) Tipe Slope-Ridge, B) Tipe Slope- Trough, C) Tipe Slope Front, D) Tipe Erosional-Ridge, D) Tipe Distal-Slope (Lin et al., 2009 dengan modifikasi dalam Thakur dan Rajput, 2011)
Gambar 3.19. Contoh BSR Tunggal dan Ganda dari Grand Canyon, Gulf Mexico.Akumulasi sedimen di area ini menyebabkan

pengangkatan seismik seperti struktur yang ditunjukkan dengan garis putus-putus (Thakur dan Rajput, 2011)......51

- Gambar 3.22. Contoh data riil gas hidrat yang berkorelasi dengan struktur diapir lumpur dari bagian selatan palung Okinawa. Profil ini memperlihatkan diapir lumpur. (Ning et al., 2009).......53

Gambar 4.2. Base Map Daerah Penelitian	61
Gambar 4.3. Penampang Seismik Lintasan SU08-02	62
Gambar 4.4. Diagram Alir Pengolahan Data	64
Gambar 4.5. Diagram Alir Penelitian Metode Gravitasi	66
Gambar 4.6. Diagram Alir Penelitian Metode Seismik Refleksi	68
Gambar 5.1. Peta Free Air Anomaly daerah penelitian	71
Gambar 5.2. Peta Anomali Bouguer Lengkap daerah penelitian	73

Gambar 5.3. Peta Anomali Regional <i>Low-Pass Filter Cutoff Wavenumber</i> 1/5000
Gambar 5.4. Peta Anomali Residaul High-Pass Filter Cutoff Wavenumber 1/5000
Gambar 5.5. Peta <i>Total Horizontal Derivative</i> daerah penelitian
Gambar 5.6. Peta <i>Tilt Derivative</i> daerah penelitian
Gambar 5.7. Peta sayatan analisa spektrum pada peta ABL
Gambar 5.8. Grafik analisis spektrum sayatan A-A'
Gambar 5.9. Grafik analisis spektrum sayatan B-B'
Gambar 5.10. Grafik analisis spektrum sayatan C-C'
Gambar 5.11. Peta sayatan pemodelan 2,5D bawah permukan
Gambar 5.12. Model 2,5D bawah permukaan sayatan A-A'
Gambar 5.13. Model 2,5D bawah permukaan sayatan B-B'
Gambar 5.14. Model 2,5D bawah permukaan sayatan C-C'
Gambar 5.15. Fitur tektonik <i>offshore</i> pada <i>sedimentary cover</i> dan <i>onshore</i> <i>geology</i> Sumatera Selatan – Jawa Barat (Schluter et al, 2002) yang dioverlay dengan lintasan seismik daerah Penelitian
Gambar 5.16. Komplek prisma akresi di sepanjang tepian barat Sundaland (Mukti, 2015 modifikasi dari Kopp et al., 2009; Satish C. Singh et al., 2011; Singh et al., 2013)
Gambar 5.17. Penampang seismik lintasan SU08_SU08-34_PRCMIG (a) belum dilakukan interpretasi dan (b) sudah dilakukan interpretasi95
Gambar 5.18. Analisa seismik stratigrafi di <i>forearc basin</i> pada penampang seismik lintasan SU08_SU08-34_PRCMIG (a) belum dilakukan interpretasi dan (b) sudah dilakukan interpretasi
Gambar 5.19. Identifikasi fasies seismik pada daerah penelitian 100
Gambar 5.20. Analisa seismik stratigrafi di prisma akresi pada penampang seismik lintasan SU08_SU08-34_PRCMIG (a) belum dilakukan interpretasi dan (b) sudah dilakukan interpretasi
Gambar 5.21. Identifikasi gas hidrat dan tipe BSR pada penampang seismik lintasan SU08_SU08-34_PRCMIG

- Gambar 5.23. Identifikasi gas hidrat dan BSR *Basin-Margin Type* pada penampang seismik lintasan SU08_SU08-34_PRCMIG 105

- Gambar 5.31. Penilaian Geologic Risk Factor Daerah Penelitian 115

DAFTAR TABEL

Tabel 3.1 Nilai densitas beberapa batuan (Telford et al., 1990)	34
Tabel 3.2. Tipe data seismik dan aplikasi untuk identifikasi gas hidrat dan Rajput, 2011)	(Thakur 46
Tabel 4.1. Tabel Ketersedian data	59
Tabel 4.2. Tabel Spesifikasi Data Seismik	61
Tabel 5.1 Perhitungan volume awal gas hidrat pada semua horizon	117

DAFTAR SINGKATAN DAN LAMBANG

Singkatan Nama

BSR	Bottom Simulating Reflector
GHSZ	Gas Hydrate Stabillity Zone
TWT	Two Way Time
THD	Total Horizontal Derivative
TDR	Tilt Derivative
AI	Nilai Impedansi Akustik
RC	Reflecction Coefficient
Lambang	
G	Konstanta Gravitasi Universal (6,67 x 10 ⁻¹¹ m ³ kg-1 s- ⁻²).
gobs	Percepatan Gravitasi Teramati
U	Potensial Gravitasi
φ_u	Fungsi Filter Continuation
$\frac{\partial_g}{\partial_z}$	Vertical Derivative
Vp	Kecepatan Gelombang P
W(t)	Wavelet Seismik
R(t)	Reflektivitas Bumi
n(t)	Noise
ρ	Densitas Batuan
IOIP	Initial Oil Inplace
GIIP	Initial Gas Inplace
Øeff	Porositas Efektif
Sw	Saturasi Air
Boi	Faktor Formasi Minyak
Bgi	Faaktor Formasi Gas
V _b	Volume bulk batuan
Ai	Batas Area Isopach i