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Abstract. The estimation in this paper uses three kinds of block models of nearest neighbor polygon, 

inverse distance squared and ordinary kriging. The techniques are weighting scheme which is based on 

the principle that block content is a linear combination of the grade data or the sample around the block 

being estimated. The case study in Pongkor area, here is gold-silver resource modeling that allegedly 

shaped of quartz vein as a hydrothermal process of epithermal type. Resources modeling includes of 

data entry, statistical and variography analysis of topography and geological model, the block model 

construction, estimation parameter, presentation model and tabulation of mineral resources. Skewed 

distribution, here isolated by robust semivariogram. The mineral resources classification generated in 

this model based on an analysis of the kriging standard deviation and number of samples which are used 

in the estimation of each block. Research results are used to evaluate the performance of OK and IDS 

estimator. Based on the visual and statistical analysis, concluded that the model of OK gives the 

estimation closer to the data used for modeling. 

INTRODUCTION 

Many grade estimation techniques are used to determine the potency of mineral resources or reserves. 

Conventional estimation techniques such as triangular, statistics or cross-section method has been widely 

abandoned because it is done by hand, so it is not practical and the grade estimation results are often 

unsatisfactory. Estimation techniques with block modeling was developed using computer tools [1]. Estimation 

methods using the block model, among others are the NNP (nearest neighbor polygon), IDW (inverse distance 

weighting) and kriging. OK with IDS estimation technique here used as a comparison. Block modeling is 

expected to provide an overview of mineralization geometry, grade distribution and the amount of resources. 

The study location lies in the area of Pongkor and Cikotok mount, West Java Province of Indonesia 

(FIGURE 1). Intrusive andesite lithology is exposed in the northern as a part of the study area, and broke to the 

volcano lithology. Andesite rocks are estimated as a carrier in the form of vein mineralization. The ore veins 

have average width of 2.5 meters, direction of veins strike around of N120E and average slope around 750 to the 

west [2]. FIGURE 2 shows the geological map of Cikidang area West Java Province Indonesia. 

METHOD AND MATERIALS 

Prediction value in this study is using block kriging [1]. This technique works with parameter fitting of 

results empirical semivariogram to the theoretical semivariogram as main-base. Initial construction began with 

the selection of robust semivariogram [3]. 
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FIGURE 1. Location map of research area 

 

Empirical semivariogram is a manifestation of discrete function which needs to be paired continuously [4]. 

Semivariogram fitting, here using spherical function formulated as [5], 
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While weighted least squares (WLS) model formulated as, 
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FIGURE 2. Geological map of Cikidang area West Java Province Indonesia 
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The principle of grade estimation on ore deposit is to interpolate or extrapolate the sample of it is mineral 

deposit. Each sample has an influence (or weight) determined statistically. Grade estimation is done at an un-

sampled grades location using samples around the site. Generally, the weighting of grade estimation known as 

the principle of weighted average. In the mining industry, the weighted average principle widely used to 

calculate the average (or mean) of the variables that exist in mineral deposits [6].  
Kriging technique allows a probabilistic interpretation of the mineral deposits or reserve data. In addition, 

kriging allows for the statistical interpretation of the bias and variance estimation. Simply, kriging produces a 

set of weights that minimize the variance of the estimation in accordance with the sample configuration around 

the block and the nature of the mineralization [1 and 5]. Mineralization properties stated in the variogram 

function quantifies the correlation between the sample chambers. This method is quite accurate because it can 

take into account of the anisotropy behavior. Two main results obtained from these techniques are estimation 

and variance or standard deviation of kriging as a measure of reliability [7]. 

The spatial sample in kriging technique is the data represent the population of other around data (including 

the un-sampled data). Say, s0is a un-sampled point which will be predicted, then the block prediction,  to the 

value of Z(s0) can be formulated as[5, 8], 
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I is the weight of i-th to the s0. Un-biasness happen if , while the optimal condition occurs if the 

difference of the real sample variance to the estimated sample is a minimum, or . 

Mathematically, written as 
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Variance of block prediction is written as 
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The basic principle of an inverse distance squared (IDS) method is determining of the sample weight (wi), as 

a function of distance to the block being sample estimated. An inverse distance method is a linear combination 

or weighted average value of the grade composite around the block which is defined as follows (valid for n> 0) 

[1, 2]: 
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where: =estimation grade for IDS, wi=sample weight,  z(si)=grade sample 
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DISCUSSION 

Assay data for modeling were obtained from 57 holes of core drilling, ten data obtained from the stope 

sampling, and three data from the surface. Descriptive statistical analysis performed regardless of the position of 

each data. The result of this statistic is used as the initial information to interpret the characteristics of the entire 

sample in general. Based on the statistical analysis conducted on 751 gold assay data and as many as 637 silver 

assay data, the average values obtained gold assay was 8.81 g/t, with a variance of 193 (g/t)2. The mean of silver 

assay is 56.4 (g/t), and variance of 6910 (g/t)2. In this case the constructing of a composite data based to 

homogenize the data interval, so the estimation of each block will be assessed by the sample which is same 

volume of geometric support. Compositing data interval of 2.5 m selected because of the smallest standard 

deviation value compared to other composites. Type of rock used in the estimation divided into two parts, 

namely non-ore veins and ore veins. The data used to estimate, simply the assay or composite data that is in the 

ore veins. 

Gold and silver assay variography done by the searching direction along the average of strike and direction 

of slope of the ore veins. Fitting theoretical variogram based on a spherical model, as Eq. 2. The calculation 

based on Eq. 1producesthe parameters as seen in TABLE 1 and TABLE 2. 

 

TABLE 1. Gold and silver assay variogram parameters 

 

Along strike veins of variogram parameter 

Parameter Gold Silver 

Class interval 5 m 10 m 

Nugget 100 (g/t)2 1,800 (g/t)2 

Sill 200 (g/t)2 6,910 (g/t)2 

Range 30 m 33 m 

Down dip veins variogram parameter 

Class interval 5 m 10 m 

Nugget 55 (g/t)2 2,000 (g/t)2 

Sill 200 (g/t)2 6,910 (g/t)2 

Range 30 m 28 m 

 

TABLE 2.Sample search parameter 

 

Parameter Gold Silver 

 Angle from x (phi)  77.700 77.700 

 Angle from y (psi)  –75.000 –75.000 

 Anisotropy factor horizontal  (afh) 5.00 3.50 

 Anisotropy factor vertical  (afv) 1.25 0.89 

Maximum of radius searching 

 along strike of ore veins 

 

50.00 m 

 

35.00 m 

 down dip of ore veins 40.00 m 40.00 m 

 perpendicular of ore veins 10.00 m 10.00 m 

 

Three-dimensional model of gold-silver ore deposits can be made on the basis of topographic data, 

geological information, and the levels of investigation results of exploration samples. Topographic modeling is 

done by digitizing topographic maps. The geological model of mineralized veins is based on the interpretation 

of 20 cross-sectional shapes of the veins around the west-east orientation. Shape modeling interpretation of vein 

is conducted by digitization geologist. Geological boundaries are necessary so that the samples are located in the 

veins not extrapolated to the outside of vein blocks. Grade estimation of OK and IDS performed by database of 

gold-silver composite. Grade estimation was performed using a minimum composite of 1 and a maximum of 10. 

The grade estimation of block is only performed on the block which is in the ore veins. 



   

 
Progress on Applied Mathematics in Science and Engineering  

AIP Conf. Proc. 1705, 020001-1-120001-8; doi: 10.1063/1.4940249 
@2016 AIP Publishing LLC 978-0-7354-1352-8/$30.00  

020001-5 

 

RESULTS AND DISCUSSION 

The estimation of resources in block model begins by entering a grade estimation results into the block 

model. Tonnage block estimation is using variables of the model which is a block density function, block 

volume, block percentage in the vein and the percentage of topography. Tabulation of gold-silver resources in 

this model is done at various grades boundary. The gold-silver resource number of block modeling results using 

OK, IDS, and the NNP (Eq. 3 and Eq. 5) can be seen in TABLE 3 and 4 below. The depiction of a vertical 

cross-section of each model was used to determine the block model selection. Grade distribution in cross section 

block is then compared with same cross-section of the composite data (TABLE 5 and 6). 

 

TABLE 3.Number of gold-silver resource based on NNP 

 

COG (g/t) Tonnage Gold (g/t) Silver (g/t) 

0 1,030,275 10.38 31.78 

4 663,200 15.35 43.44 

6 561,810 17.14 49.23 

10 445,184 19.48 54.98 

 

TABLE 4.Comparison of the OK and IDS modeling results 

 

Model Cog 
Minimum number of composite=2 Minimum number of composite=3 

Tonnage Au (g/t) Ag (g/t) Tonnage Au (g/t) Ag (g/t) 

 

OK 

 

0 g/t 699,197 10.18 40.96 506,827 11.26 48.02 

4 g/t 475,037 14.33 54.58 369,177 14.86 60.72 

6 g/t 385,273 16.42 64.89 304,287 16.84 72.47 

10 g/t 295,111 18.98 74.96 221,861 20.10 88.52 

IDS 

0 g/t 699,197 10.31 42.78 496,907 11.57 56.25 

4 g/t 459,987 14.94 59.01 357,327 15.51 72.76 

6 g/t 379,147 16.96 68.97 298,167 17.47 85.39 

10 g/t 309,281 18.99 77.36 235,281 20.01 97.86 

 

The classification of gold-silver resource based on the level of confidence against the block grade estimation. 

Parameters are used to provide information about the level of confidence is kriging variance distribution. The 

results of gold-silver estimation resource (TABLE 3 and 4) showed that the decrease in the cut-off grade can 

improve tonnage resources. Declining of cut-off grade caused more of blocks classified as a resource and the 

mean grade of the whole block will fall. TABLE 4 shows, the more number of composite samples which is used 

in the estimation lead to the fewer number of blocks used in the resource/reserve estimation.  

TABLE 5 and 6 show that, the results of the estimation on OK and IDS does not show high variations of the 

composite data, but overall, the OK model is more likely to have a resemblance to the composite grade. Kriging 

variance (as in Eq. 4) is a function of the sample configuration around the estimated block. In this study, a 

combination of kriging standard deviation and number of block estimation samples is a criterion that is used to 

classify the gold-silver resource (TABLE 7 see Appendix). In TABLE 8 (see Appendix) it can be seen that the 

OK model appears more conservative than the IDS models. OK model over limit to extrapolate the high grades. 

TABLE 9 (see Appendix) shows that the level of OK block model has a statistical value which is closer to the 

statistical value of the composite. 
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TABLE 5. Statistical comparisons between the gold grade of OK and IDS model at various elevations 

 

Elevation Statistic OK (g/t) IDS (g/t) Composite (g/t) 

1125 - 1100 

Mean 5.25 5.50 5.05 

Standard deviation 3.23 3.93 7.87 

Minimum 0.54 0.51 0.24 

Maximum 12.18 14.83 44.68 

1150 -1125 

Mean 5.35 4.13 6.18 

Standard deviation 3.83 4.06 8.56 

Minimum 0.52 0.51 0.15 

Maximum 27.35 40.34 44.68 

1175-1150 

Mean 9.17 8.09 10.40 

Standard deviation 5.45 5.67 15.58 

Minimum 0.18 0.15 0.146 

Maximum 19.75 25.2 77.69 

1200-1175 

Mean 12.27 12.81 14.80 

Standard deviation 13.45 14.44 15.94 

Minimum 0.25 0.18 0.15 

Maximum 52.37 51.84 77.69 

1225-1200 

Mean 16.45 16.95 15.64 

Standard deviation 12.81 13.43 16.23 

Minimum 0.22 0.21 0.15 

Maximum 64.91 66.14 89.55 

1250-1225 

Mean 16.05 16.96 15.47 

Standard deviation 11.11 11.44 15.64 

Minimum 1.35 1.19 0.18 

Maximum 57.60 64.87 89.55 

1275-1250 

Mean 14.21 11.85 15.16 

Standard deviation 7.94 6.03 14.83 

Minimum 5.34 5.39 0.18 

Maximum 36.47 43.04 89.55 

TABLE 6.  Statistical comparisons between the silver grade of OK and IDS model at various elevations 

 

Elevation Statistic OK model (g/t) IDS model (g/t) Composite (g/t) 

1125 - 1100 

Mean 13.77 12.63 19.65 

Standard deviation 3.60 3.23 23.73 

Minimum 6.77 6.8 3.5 

Maximum 38.27 29.97 107.99 

1150 -1125 

Mean 15.37 14.38 18.98 

Standard deviation 7.40 7.50 21.85 

Minimum 6.77 6.80 3.21 

Maximum 36.84 36.84 107.99 

1175-1150 

Mean 20.70 20.54 59.53 

Standard deviation 11.77 12.79 11.99 

Minimum 3.55 2.14 3.21 

Maximum 43.51 42.88 663.55 

1200-1175 

Mean 72.66 80.60 90.62 

Standard deviation 80.41 94.18 173.44 

Minimum 3.73 3.75 3.2 

Maximum 353.66 355.11 663.55 

1225-1200 

Mean 94.54 102.27 93.53 

Standard deviation 65.94 76.94 93.65 

Minimum 3.96 3.96 3.21 

Maximum 339.59 327.63 663.55 

1250-1225 

Mean 96.83 96.13 90.41 

Standard deviation 55.59 57.44 90.39 

Minimum 16.22 16.22 3.96 

Maximum 247.46 258.50 663.55 
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TABLE 7. Classification of gold-silver resource in OK model 

 

Cog 

(g/t Au) 

Measured and indicated Inferred  

Ore 

tonnage 

Grade of 

Au g/t 

Grade of Ag 

g/t 

Ore 

tonnage 

Grade of Au 

g/t 

Grade of Ag 

g/t 

0 699,197 10.18 42.78 331,078 10.81 8.55 

4 475,037 14.33 36.61 188,163 17.91 10.19 

6 385,237 16.42 67.24 176,576 18.93 9.94 

10 295,111 18.98 77.09 150,073 20.46 11.49 

 

TABLE  8. Ore tonnage comparison of gold content on OK and IDS*) and difference (%) to OK model 

 

Cog (g/t) OK Model IDS Model difference to OK 

0 506,827 496,907 0 

4 369,177 357,327 -2.49 

6 304,287 298,167 -2.49 

10 221,861 235,281 6.05 

Cog (g/t) Grade (g/t)  Grade (g/t)  difference to OK 

0 11.26 11.57 1.20 

4 14.86 15.51 3.80 

6 16.84 17.47 3.74 

10 20.10 20.01 -0.04 

Cog (g/t) Au metal content**) Au metal content**)  difference to OK  

0 5.707 5.778 1.24 

4 5.486 5.555 1.26 

6 5.124 5.209 1.66 

10 4.459 4.708 5.58 
*) Minimum number of composite for estimating: 3 

 

TABLE 9.Common statistical result on OK and IDS models 

 

Gold  

Minimum numberof 

composite=2 

Minimum numberof 

composite=3 Composite 

OK model IDS model OK model IDS model 

Number of data 4241 4241 3035 3035 389 

Mean (g/t) 10.67 10.14 11.45 11.32 12.60 

Standard deviation (g/t) 10.00 10.41 10.64 11.11 14.87 

Minimum (g/t) 0.15 0.15 0.18 0.15 0.02 

Maximum (g/t) 64.91 66.14 64.14 66.14 89.55 

Silver 

Minimum number of 

composite=2 

Minimum number of 

composite=3 Composite 

OK model IDS model OK model IDS model 

Number of data 2622 2622 1525 1525 363 

Mean (g/t) 56.57 55.64 63.30 62.46 74.03 

Standard deviation (g/t) 58.79 64.83 60.96 67.06 86.38 

Minimum (g/t) 3.57 0.69 3.55 2.14 1.26 

Maximum (g/t) 337.73 341.41 353.66 355.11 663.54 

CONCLUSION 

Based on the above discussion it can be concluded that OK model is more feasible applied to the modeling 

of gold-silver resource. Based on kriging standard deviation distribution can be obtained classification of 

mineral resources. The classification of resources of gold and silver in this study may categorize the amount of 

resources in the classification of inferred, indicated and measured for gold and silver ore. 
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