DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
PERNYATAAN KEASLIAN KARYA ILMIAH	iii
KATA PENGANTAR	iv
HALAMAN PERSEMBAHAN	V
ABSTRAK	vii
ABSTRACT	viii
DAFTAR ISI	ix
DAFTAR GAMBAR	xii
DAFTAR TABEL	XX

BAB I PENDAHULUAN

1.1. Latar Belakang	1
1.2. Rumusan Masalah	2
1.3. Maksud dan Tujuan	3
1.4. Batasan Masalah	3
1.5. Lokasi dan Waktu Penelitian	4

BAB II TINJAUAN PUSTAKA

2.1. Geologi	5
2.1.1. Letak Geografis Pegunungan Meratus	5
2.1.2. Tatanan Tektonik Selat Makasar	6
2.1.3. Sejarah Geologi Selat Makasar	7
2.2. Geologi Lokal	10
2.2.1. Kerangka Struktur Kalimantan Tenggara	10
2.2.2. Tektonostratigrafi Regional Pegunungan Meratus	14
2.2.3. Petrologi Pegunungan Meratus	19
2.3. Penelitian Terdahulu	21

BAB III DASAR TEORI

3.1. Interior Bumi	23
3.2. Melange	24
3.3. Gempabumi & Parameter Gempabumi	25
3.4. Teori Gelombang Seismik	29
3.5. Seismologi	35
3.6. Relokasi Hypocentre Metode Inversi Geiger	36
3.7. Regresi Kuadrat Terkecil	40
3.8. Ray Tracing Shooting	42
3.9. Tomografi Seismik Travel Time	47
3.10. Derivative Weight Summation (DWS)	51

BAB IV METODOLOGI PENELITIAN

4.1. International Seismological Centre	53
4.2. Desain Survey Daerah Penelitian	55
4.3. Diagram Alir Parameterisasi Model	56
4.4. Diagram Alir Ray Tracing Shooting	58
4.5. Diagram Alir Inversi Tomografi Seismik Travel Time	60
4.6. Diagram Alir Derivative Weigthed Summation (DWS)	
4.7. Software	

BAB V. HASIL DAN PEMBAHASAN

 5.2. Hasil Regresi Model Kecepatan 1D Gelombang P AK 135	5.1. Analisa Hypocenter Hasil Inversi Metode Geiger	64
 5.3. Analisa Hasil <i>Ray Tracing Shooting</i>	5.2. Hasil Regresi Model Kecepatan 1D Gelombang P AK 135	70
 5.4. <i>Ray Hit Count Map</i>	5.3. Analisa Hasil Ray Tracing Shooting	71
 5.5. Analisa Sayatan Vertikal 2D Tomografi <i>Travel Time</i> Gelombang P dan Sayatan Vertikal <i>Ray Hit Count Map76</i> 5.6. Model 3D Seismik Tomografi <i>Travel Time</i> Gelombang P	5.4. Ray Hit Count Map	74
Sayatan Vertikal Ray Hit Count Map765.6. Model 3D Seismik Tomografi Travel Time Gelombang P79	5.5. Analisa Sayatan Vertikal 2D Tomografi Travel Time Gelombang P dan	
5.6. Model 3D Seismik Tomografi Travel Time Gelombang P	Sayatan Vertikal Ray Hit Count Map	76
	5.6. Model 3D Seismik Tomografi Travel Time Gelombang P	79

BAB VI. KESIMPULAN DAN SARAN

6.1. Kesimpulan	
6.2. Saran	

DAFTAR PU	STAKA	89
LAMPIRAN	I Pengundunduhan Data	100
LAMPIRAN	II Pengolahan Relokasi AUTOMAT_JACOBI.m	121
LAMPIRAN	III Penggunaan <i>Curve Fitting Toolbox</i>	127
LAMPIRAN	IV Penggunaan AUTOMAT_RAY_TRACING_SHOOTIN	NG.m
		131
LAMPIRAN	V Penggunaan Inversi Tomografi	136
LAMPIRAN	VI Penggunaan Ray_Hit_Count_Calculation.m	141
LAMPIRAN	VII Turunan Rumus <i>Least Square Inversion</i>	145
LAMPIRAN	VIII Turunan Rumus Matriks Jacobian Pada Inversi G	leiger
		146
LAMPIRAN	IX Tabel Model Kecepatan 1D AK 135 Sebelum dan Setel	ah di
	Regresi	147
LAMPIRAN	X Klasifikasi Kecepatan Batuan	157
LAMPIRAN	XI <i>Header</i> Data Untuk Automat_Jacobi	158
LAMPIRAN	XII <i>Header</i> Data Untuk Automat_Ray_Tracing_Shooting	160
LAMPIRAN	XIII <i>Header</i> Data Untuk Automat_Tomography	162
LAMPIRAN	XIV Header Data Untuk Density_Weight_Summation_S	Single
		162
LAMPIRAN	XV Diagram Batang Klasifikasi <i>Error Root Mean Square</i> H	lasil
	Relokasi Hypocenter Inversi Geiger	_164

DAFTAR GAMBAR

Gambar 1.1. Lokasi Penelitian (Google Earth, 2018)4
Gambar 2.1. Elemen Tektonik Utama Dari Barito Basin (Bon et al., 1996)5
Gambar 2.2. Peta Elevasi Pegunungan Meratus Overlay Peta Tektonik (Bon et al.,
<u>1996).</u> <u>6</u>
Gambar 2.3. Posisi Indonesia Terhadap Sejumlah Lempeng Tektonik Utama Di
Asia serta Banyaknya Cekungan Samudera dan Sistem Sesar Geser
Pada Batas Asia Tenggara dan Australia Menunjukkan Manifestasi
Kerumitan Lempeng Tektonik Terutama Pada Daerah Yang
Ditunjukkan (Hall, 1998)7
Gambar 2.4. Ilustrasi Kondisi Geologi Daerah Selat Makasar Pada Awal
Cretaceous (Guntoro, 1999)8
Gambar 2.5. Ilustrasi Kondisi Geologi Daerah Selat Makasar Pada Akhir
Cretaceous (Guntoro, 1999)8
Gambar 2.6. Ilustrasi Kondisi Geologi Daerah Selat Makasar Saat Paleocene
(Guntoro, 1999)9
Gambar 2.7. Ilustrasi Kondisi Geologi Daerah Selat Makasar Saat Eocene
(Guntoro, 1999)10
Gambar 2.8. Ilustrasi Kondisi Geologi Daerah Selat Makasar Saat Oligocene
(Guntoro, 1999)10
Gambar 2.9. a) Peta Kerangka Struktur Kalimantan Tenggara (Pireno, 2009), b)
Lokasi Meratus, Cekungan yang Berdekatan dan Formasi Pengisinya
(Witts, 2014) (Oval Merah Menunjukkan Punggungan Pulau Laut), c)
Peta Distribusi Batuan Basement Kompleks Meratus dari berbagai
Sumber (Witts et al., 2012)14
Gambar 2.10. Crosssections Paparan Sunda Melewati Pegunungan Meratus
(Pertamina Beicip (1985), dimodifikasi Satyana 2003, pada Satyana
& Armandita (2008))16
Gambar 2.11. a) Konfigurasi Fisiografi Paparan Sunda Saat Periode Cretaceous,
b) Sayatan Geologi Berarah NW-SE Menggambarkan Evolusi

Tektonik Akhir Cretaceous. Paternoster Mikrokontinen Telah

Memisahkan Sabuk HP Jurasik Meratus Dan Sabuk HP *Cretaceous* Bantimala (Soesilo Dkk, 2015 Dimodifikasi Dari Hall, 2009)......18

- Gambar 2.12. Sketsa Peta Geologi dan Cross-section Pegunungan Meratus Paling Selatan, Kalimantan (dimodifikasi dari Priyomarsono, 1985; pada Yuwono, 1988)______19
- Gambar 2.13. Tahapan Sejarah Tektonik Pegunungan Meratus, Kalimantan: a)
 Subduksi Pada Akhir Aptian Sampai Cenomanian, b) Obduksi
 Peridotitik, c) Subduksi pada Akhir Turonian Sampai Senonian
 (dimodifikasi dari Priyomarsono 1985; pada Yuwono, 1988)......21
- Gambar 2.14. Model Gravitasi 2.5 D Daerah Meratus Memotong Kandangan Sampai Batulicin (Subagio et. al., 2000 pada Satyana & Armandita, 2008)._____22

Gambar 3.1. Interior Bumi (Hamblin dan Christiansen, 2004) 23

- Gambar 3.2. Sistem Sedimen Pada Daerah Konvergen (Hamblin & Christiansen, 2004)_____25
- Gambar 3.3. Hubungan Antara Fokus Gempabumi (*Hypocentre*), *Epicentre*, dan Seismic *Wavefront* (Hamblin & Christiansen, 2004)_____26
- Gambar 3.5. Peta Kegempaan Bumi Selama 5 Tahun (Hamblin dan Christiansen, 2004)_____28
- Gambar 3.6. a) Perpindahan Harmonik Pada Bidang Gelombang P Menjalar Secara *Horizontal* Seiring Tubuh Dimana Gelombang P Mengalami Perubahan Volume Dan Bentuk, b) Perubahan Terjadi Pada Gelombang S Merambat Sepanjang Tubuh, Dimana Perambatan

Terjadi Murni Akibat Geseran Tanpa Perubahan Volume, c) Gelombang Love Bertipe P-SH Partikel Bergerak Mengikuti Pola Elips Pada Bidang Horizontal Dengan Penjalaran Kearah Lateral, d) Gelombang Rayleigh Tipe P-SV Bergerak Pada Bidang Vertikal Mengikuti Pola Elips Sementara Penjalaran Ke Arah Lateral (Bolt, 1976, pada. Lay & Wallace, 1995)_____31 Gambar 3.7. Ilustrasi Perambatan Gelombang Seismik Sampai Mencapai Stasiun Seismik Sebagai Objek Studi Seismologi (Stein & Wysession, 2003) ______36 Gambar 3.8. Sumber Gempa dan Stasiun Seismik (Sulaeman, 2010) 38 Gambar 3.9. Hubungan (Ts-Tp) Dengan Tp Untuk Memperoleh T0 (Sulaeman, 2010)______39 Gambar 3.10. Ilustrasi Regresi Linier (Munir, 2015) 42 Gambar 3.11. Ilustrasi Regresi Non-Linier: a) Model Persamaan Eksponensial, b) Persamaan Power, c) Model Persamaan Tingkat Model Pertumbuhan Saturasi (Canale, 2010) 42 Gambar 3.12. Ilustrasi Pembiasan Cahaya (Serway & Vuille, 2012) 44 Gambar 3.13. Model Ray Path Untuk Kecepatan Bertambah Kontinyu Pada Seiring Penambahan Kedalaman Akan Membelok Kembali Ke Permukaan, Titik Balik Sinar Didefinisikan Sebagai Titik Terendah Oleh Ray Path, Dimana Arah Horizontal Dan Sudut Masuknya Bersudut 90 (Shearer, 2010). 45 Gambar 3.14. Kecepatan Gelombang P, Kecepatan Gelombang S, Dan Densitas Sebagai Fungsi Kedalaman. Nilai Ter-plot Berasal Dari Model Referensi Bumi Awal (PREM) Oleh Dziewonski Dan Anderson (1981); Terkecuali Untuk Sejumlah Perbedaan Pada Mantel Atas, Semua Model Bumi Modern Mendekati Model Ini (Shearer, 2010). _____46 Gambar 3.15. a) Ilustrasi Model 3D Grid Blok Digunakan Pada Inversi Tomografi Untuk Struktur Di Bawah Permukaan Eropa b) Sayatan Pada Salah Satu Grid a) Menunjukkan Kontur Ray Path "Mengenai" Tiap Sel. Area Gelap Sel Menunjukkan Blok Dibawah Stasiun Atau Dekat Dengan Sumber Berupa *Slab* Samudera Menyubduksi Mediteranean, **c)** Data Inversi Menunjukkan Kecepatan Pada Perekeman Data Di Eropa Terdapat Struktur Berkecepatan Tinggi Menunjam Di Bagian Kiri (Spakman dan Nolet, 1988; Pada Lay & Wallace, 1995)._____50

- Gambar 3.16. a) Ilustrasi Perambatan Gelombang Dari Titik Fokus Gempabumi,
 b) Model Awal Terbagi Dalam Sejumlah *Grid Ray Path* Sampai Ke Bawah Permukaan Dimana Terdapat Perbedaan Kecepatan Digambarkan Dengan V1, V2, Dst Berbeda-Beda (Lay & Wallace, 1995)_____51
- Gambar 3.17. Tes Resolusi Dari Data Sintetik a) *Ray hit count map*, b) *Derrivative Weight Summation (DWS)* (Kissling et. al., 2001)_____52
- Gambar 4.1. Halaman Utama Website International Seismological Centre (ISC ,2018)_____53
- Gambar 4.2. Peta Desain Survey Penelitian_____55
- Gambar 4.3. Diagram Alir Parameterisasi Model_____57
- Gambar 4.4. Diagram Alir *Ray Tracing Shooting*_____59
- Gambar 4.5. Diagram Alir Inversi Tomografi Seismik Travel Time____61
- Gambar 4.6. Diagram Alir Derivative Weighted Summation (DWS)____62
- Gambar 5.1. Peta Persebaran *Hypocenter* (Titik Berwarna Gradasi) Dan Stasiun Pengamatan Gempa (Segitiga Berwarna Hitam Terbalik Dengan Nama Stasiun)_____64
- Gambar 5.2. Peta Persebaran *Hypocenter* Sebelum Relokasi Model EHB *Overlay* Terhadap *Base Map* Pulau Kalimantan & Sulawesi _____65
- Gambar 5.4. Peta Persebaran *Hypocenter* Setelah Relokasi dan Sebelum Relokasi Model Terhadap *Base Map* Pulau Kalimantan & Sulawesi._____66
- Gambar 5.5. Overlay Persebaraan Hypocenter dan Stasiun Pengamatan Gempabumi Terhadap Base Map Selat Makassar (Darman, 2014)....67

Gambar 5.6. Overlay Persebaraan Hypocenter dan Stasiun Pengamatan
Gempabumi Terhadap Base Map Struktur Pulau Sulaweasi (Calvert,
2007)69
Gambar 5.7. Pola Persebaran Hypocenter Membentuk Tunjaman Warna Biru
Diperkirakan Akibat Subduksi Lempeng Samudera Filipina dan
Warna Hijau Diperkirakan Akibat Subduksi Batui-Balantak69
Gambar 5.8. Model Kecepatan Hasil Regresi Model Kecepatan 1D Gelombang P
AK 13570
Gambar 5.9. Fungsi, Koefisien, Dan Nilai Kecocokan Dari Fungsi Kecepatan
Gelombang P Hasil Regresi Model Eksponensial71
Gambar 5.10. Ilustrasi Perambatan Gelombang P Berupa Ray Path Hasil
Pemodelan Sejumlah Hypocenter Menuju Dua Stasiun BBKI (Putih)
& KBKI (Biru). 72
Gambar 5.11. Ilustrasi Model Ray Path Metode Ray Tracing Shooting Gelombang
P Menuju Dua Stasiun BBKI (Putih) & KBKI (Biru) Pada Daerah
Target Penelitian. 73
Gambar 5.12. <i>Ray Hit Count Map Grid</i> Blok 0-1 km 75
Gambar 5.13. Ray Hit Count Map Grid Blok 9-10 km76
Gambar 5.14. Penampang Vertikal Tomografi <i>Travel Time</i> ΔVp Metode <i>Ray</i>
Tracing Shooting Memotong Utara-Selatan Posisi: a)150 km, b)160
km, & c) 175 km. 78
Gambar 5.15. Penampang Ray Hit Count Map Memotong Utara-Selatan Posisi:
a)150 km, b)160 km, & c) 175 km. 79
Gambar 5.16. Model Tomografi <i>Travel Time</i> ΔVp 3D Daerah Penelitia 80
Gambar 5.17. Model Tomografi <i>Travel Time</i> ΔVp 3D <i>Grid</i> Blok: a) 0-1 km, b) 1-
2 km, c) 2-3 km, d) 3-4 km, e) 4-5 km, f) 5-6 km, dan g) 6-7 km.
81-83
Gambar 5.18. Model <i>Ray hit count Map Grid</i> Blok: a) 3-4 km, b) 5-6 km, dan c)
6-7 km 85-86
Gambar 5.19. Model Kompleks <i>Melange</i> Pegunungan Meratus Tampak: a)
Selatan-Utara dan b) Utara-Selatan 86
Gambar I.1. Website Webscrapper100
**

Gambar I.2. Website ISC	
Gambar I.3. Website ISC EHB	101
Gambar I.4. Input Pengunduhan Data ISC EHB	101
Gambar I.5. Katalog Event	102
Gambar I.6. Tahapan Scrapping Event Gempa 1	102
Gambar I.7. Tahapan Scrapping Event Gempa 2	103
Gambar I.8. Tahapan Scrapping Event Gempa 3	103
Gambar I.9. Tahapan Scrapping Event Gempa 4	103
Gambar I.10. Tahapan Scrapping Event Gempa 5	104
Gambar I.11. Tahapan Scrapping Event Gempa 6	104
Gambar I.12. Tahapan Scrapping Event Gempa 7	104
Gambar I.13. Tahapan Scrapping Event Gempa 8	105
Gambar I.14. Tahapan Scrapping Event Gempa 9	105
Gambar I.15. Tahapan Scrapping Event Gempa 10	105
Gambar I.16. Tahapan Scrapping Event Gempa 11	106
Gambar I.17. Tahapan Scrapping Event Gempa 12	106
Gambar I.18. Tahapan Scrapping Event Gempa 13	106
Gambar I.19. Tahapan Scrapping Event Gempa 14	107
Gambar I.20. Tahapan Scrapping Event Gempa 15	107
Gambar I.21. Tahapan Scrapping Event Gempa 16	108
Gambar I.22. Tahapan Scrapping Event Gempa 17	108
Gambar I.23. Tahapan Scrapping Event Gempa 18	109
Gambar I.24. Tahapan Scrapping Event Gempa 19	109
Gambar I.25. Tahapan Scrapping Event Gempa 20	110
Gambar I.26. Tahapan Scrapping Stasiun Gempa 1	110
Gambar I.27. Tahapan Scrapping Stasiun Gempa 2	111
Gambar I.28. Tahapan Scrapping Stasiun Gempa 3	111
Gambar I.29. Tahapan Scrapping Stasiun Gempa 4	112
Gambar I.30. Tahapan <i>Scrapping</i> Stasiun Gempa 5	112
Gambar I.31. Tahapan Scrapping Stasiun Gempa 6	113
Gambar I.32. Tahapan Scrapping Stasiun Gempa 7	113
Gambar I.33. Tahapan Scrapping Stasiun Gempa 8	114

Gambar I.34. Tahapan Scrapping Stasiun Gempa 9	114
Gambar I.35. Tahapan Scrapping Stasiun Gempa 10	115
Gambar I.36. Tahapan Scrapping Stasiun Gempa 11	115
Gambar I.37. Tahapan Scrapping Stasiun Gempa 12	116
Gambar I.38. Tahapan Scrapping Stasiun Gempa 13	116
Gambar I.39. Tahapan Scrapping Stasiun Gempa 14	117
Gambar I.40. Tahapan Scrapping Stasiun Gempa 15	117
Gambar I.41. Tahapan Scrapping Stasiun Gempa 16	118
Gambar I.42. Tahapan Scrapping Stasiun Gempa 17	118
Gambar I.43. Tahapan Scrapping Stasiun Gempa 18	119
Gambar I.44. Tahapan Scrapping Stasiun Gempa 19	119
Gambar I.45. Tahapan Scrapping Stasiun Gempa 20	119
Gambar II.1 Input Data Untuk Relokasi Inversi Geiger: a) Form	at Event
Hypocenter, b) Format Stasiun Gempa Pembaca, dan c) Format
Koordinat Stasiun.	122
Gambar II.2. Tahapan Pengolahan Relokasi Inversi Geiger 1	122
Gambar II.3. Tahapan Pengolahan Relokasi Inversi Geiger 2	123
Gambar II.4. Tahapan Pengolahan Relokasi Inversi Geiger 3	123
Gambar II.5. Tahapan Pengolahan Relokasi Inversi Geiger 4	124
Gambar II.6. Tahapan Pengolahan Relokasi Inversi Geiger 5	125
Gambar II.7. Tahapan Pengolahan Relokasi Inversi Geiger 6	125
Gambar III.1. Data Model Kecepatan 1D AK 135	
Gambar III.2. Tahapan Penggunaan Curve Fitting Toolbox 1	127
Gambar III.3. Tahapan Penggunaan Curve fitting toolbox 2	128
Gambar III.4. Tahapan Penggunaan Curve fitting toolbox 3	128
Gambar III.5. Tahapan Penggunaan Curve fitting toolbox 4	129
Gambar III.6. Tahapan Penggunaan Curve fitting toolbox 5	129
Gambar III.7. Tahapan Penggunaan Curve fitting toolbox 6	130
Gambar III.8. Tahapan Penggunaan Curve fitting toolbox 7	130
Gambar IV.1. Tahapan Penggunaan Automat ray tracing shooting 1	131
Gambar IV.2. Tahapan Penggunaan Automat ray tracing shooting 2	131
Gambar IV.3. Tahapan Penggunaan Automat ray tracing shooting 3	132

Gambar IV.4. Tahapan Penggunaan Automat ray tracing shooting 4 132 Gambar IV.5. Tahapan Penggunaan Automat ray tracing shooting 5 132 Gambar IV.6. Tahapan Penggunaan Automat ray tracing shooting 6 133 Gambar IV.7. Tahapan Penggunaan Automat ray tracing shooting 7_____133 Gambar IV.8. Tahapan Penggunaan Automat ray tracing shooting 8 134 Gambar IV.9. Tahapan Penggunaan Automat ray tracing shooting 9 134 Gambar IV.10. Tahapan Penggunaan Automat ray tracing shooting 10 135 **Gambar IV.11.** Tahapan Penggunaan *Automat ray tracing shooting* 11 135 **Gambar V.1.** Tahapan Penggunaan Script Automat Tomography 1 136 Gambar V.2. Tahapan Penggunaan Script Automat Tomography 2_____136 Gambar V.3. Tahapan Penggunaan Script automat tomography 3 137 Gambar V.4. Tahapan Penggunaan Script automat tomography 4_____137 Gambar V.5. Tahapan Penggunaan Script automat tomography 5_____138 Gambar V.6. Tahapan Penggunaan Script automat tomography 6 138 Gambar V.7. Tahapan Penggunaan Script automat tomography 7 139 Gambar V.8. Tahapan Penggunaan Script automat tomography 8 139 Gambar XI.1. Stasiun Pengukur Event, dan Origin time Hypocentre_____158 Gambar XI.2. Event, Koordinat, dan Waktu Observasi Hypocentre 158 Gambar XI.3. Koordinat Stasiun Observasi 159 Gambar XII.1. Sheet 1 Posisi Hiposenter Hasil Relokasi 160 Gambar XII.2. Sheet 2 Stasiun 160 Gambar XII.3. Sheet 3 Ray Path_____161 Gambar XII.4. Model Kecepatan 1D. 161 Gambar XIII.1. Format Data Panjang Ray Path Tiap Grid Untuk Tomografi 162 Gambar XIII.2. Format Waktu *Ray Path* Total Untuk Tomografi 162 Gambar XIV.1. Format Data Panjang Ray Path Tiap Grid Untuk Tomografi 163 Gambar XIV.2. Format Waktu *Rav Path* Total Untuk Tomografi 163 Gambar XIV.3. Ukuran *Grid* X dan Y_____163 Gambar XV.1. Diagram Batang Klasifikasi Error Root Mean Square Hasil Relokasi Hypocenter Inversi Geiger_____164

DAFTAR TABEL

Tabel IX.1. Tabel Kecepatan 1D AK 135 Sebelum Regresi	<u>1</u> 47
Tabel IX.2 Tabel Kecepatan 1D AK 135 Setelah Regresi	<u>1</u> 47
Tabel X.1 Tabel Kecepatan Batuan dan Resistivitas (Telford, 1984)	157