DAFTAR ISI

HALAN	1AN PENGESAHAN	Error! Bookmark not defined.
HALAN	IAN PERSEMBAHAN	ii
UCAPA	N TERIMA KASIH	iii
ABSTR	AK	iv
ABSTRA	ACT	v
DAFTA	R ISI	vi
DAFTA	R TABEL	viii
DAFTA	R GAMBAR	X
DAFTA	R LAMPIRAN	xvi
BAB 1	PENDAHULUAN	14
1.1.	Latar Belakang Penelitian	14
1.2.	Rumusan Masalah	15
1.3.	Maksud dan Tujuan Penelitian	16
1.4.	Lokasi dan Kesampaian Penelitian	16
1.5.	Waktu Penelitian	17
1.6.	Hasil Penelitian	18
1.7.	Manfaat	18
BAB 2	METODOLOGI PENELITIAN	18
2.1.	Metodologi dan Tahapan Penelitian	18
2.1.1	. Tahap Kerja Studio	18
2.1.2	2. Tahap Penelitian Lapangan	18
2.1.3	B. Tahap Analisis Data dan Pengolahan Data	19
2.1.4	I. Tahapan Penyajian Data	20
2.2.	Peralatan Penelitian	21
BAB 3	KAJIAN PUSTAKA	23
3.1.	Endapan dan Sistem Hidrothermal	23
3.2.	Alterasi Hidrothermal	23
3.3.	Skarn	26

3.3.1	l. Definisi	26
3.3.2	2. Variabel Pembentukan Skarn	27
3.3.3	3. Tahapan Pembentukan Skarn	29
3.3.4	4. Zonasi Alterasi Skarn	32
3.3.5	5. Tipe Zonasi Mineralisasi Bijih	33
3.3.6	6. Klasifikasi Skarn	34
3.3.7	7. Lingkungan Pembentukan Skarn	39
BAB 4	GEOLOGI REGIONAL	43
4.1.	Fisiografi Regional	43
4.2.	Stratigrafi Regional	47
4.3.	Tektonik Regional	55
4.4.	Struktur Geologi Regional	61
4.5.	Magmatisme Regional	62
BAB 5	PENYAJIAN DATA DAN ANALISIS	63
5.1.	Geologi Daerah Telitian	63
5.1.1	. Stratigrafi Daerah Telitian	63
5.1.2	2. Struktur Geologi Daerah Telitian	76
5.2.	Alterasi dan Mineralisasi Daerah Telitian	78
5.2.1	. Zona Alterasi Daerah Telitian	78
5.2.2	2. Zonasi Skarn Daerah Telitian	101
5.2.3	3. Zonasi Prograde – Retrograde Skarn Daerah Telitian	107
5.2.4	4. Zonasi Mineralisasi Daerah Telitian	108
BAB 6	STUDI KHUSUS SKARN	110
6.1.	Pendahuluan	110
6.2.	Data Analisa	111
6.3.	Hasil Analisa	112
6.4.	Kesimpulan	121
BAB 7	DISKUSI DAN PEMBAHASAN	122
BAB 8	KESIMPULAN	125
DAFTA	R PUSTAKA	127
LAMPI	RAN	131

DAFTAR TABEL

Tabel 1.1.	Rincian waktu penelitian di Papua	17
Tabel 1.2.	Rincian waktu penelitian di Yogyakarta	17
Tabel 2.1.	Kedudukan data bor hole	19
Tabel 3.1.	Tabel intensitas ubahan mineral sekunder (Morrison, 1997)	24
Tabel 3.2.	Pola ubahan alterasi (Pirajno, 1992)	24
Tabel 5.1.	Kolom stratigrafi daerah telitian menurut peneliti (tanpa skala)	63
Tabel 5.2.	Tabel rata-rata kehadiran mineral sekunder pada tipe alterasi	
	propilitik luar.	78
Tabel 5.3.	Grafik dan tabel rata-rata kehadiran mineral alterasi tipe	
	propilitik dalam.	81
Tabel 5.4.	Grafik dan tabel rata-rata kehadiran mineral alterasi tipe	
	endoskarn	84
Tabel 5.5.	Grafik dan tabel rata-rata kehadiran mineral alterasi tipe	
	skarnoid.	86
Tabel 5.6.	Grafik dan tabel rata-rata kehadiran mineral alterasi pada tipe	
	potasik.	89
Tabel 5.7.	Grafik dan tabel rata-rata kehadiran mineral alterasi tipe	
	exoskarn 1.	92
Tabel 5.8.	Grafik dan rata-rata kehadiran mineral alterasi tipe exoskarn 2.	96
Tabel 5.9.	Grafik dan tabel rata-rata kehadiran mineral alterasi tipe	
	exoskarn 3.	99
Tabel 6.1.	Interpretasi hubungan korelasi antar variabel menurut Walpole	
	(1995).	110
Tabel 6.2.	Interpretasi hasil korelasi antar variabel terkait berdasarkan	
	Sarwono (2006)	111
Tabel 6.3.	Tabel perhitungan rumus variabel mineral kalk silikat (X) dan	
	kalkopirit (Y)	111
Tabel 6.4.	Grafik dan perhitungan koefisien korelasi mineral diopsid	r
	terhadap kalkopirit	112

Grafik dan perhitungan koefisien korelasi min	eral andradit
terhadap kalkopirit	114
Grafik dan perhitungan koefisien korelasi mir	neral anhidrit
terhadap kalkopirit	116
Grafik dan perhitungan koefisien korelasi miner	al aktinolit -
tremolit terhadap kalkopirit	118
Grafik dan perhitungan koefisien korelasi mineral s	erpentin - talk
terhadap kalkopirit	120
	Grafik dan perhitungan koefisien korelasi min terhadap kalkopirit Grafik dan perhitungan koefisien korelasi min terhadap kalkopirit Grafik dan perhitungan koefisien korelasi miner tremolit terhadap kalkopirit Grafik dan perhitungan koefisien korelasi mineral s terhadap kalkopirit

DAFTAR GAMBAR

Gambar 2.1.	Metode Penelitian	22
Gambar 3.1.	Tipe-tipe pembentukan skarn. A). Metamorfisme isokimia. B).	
	Hasil reaksi skarn dari metamorfisme litologi yang berlapis-	
	lapis. C). Hasil skarnoid yang berasal dari litologi yang tidak	
	murni karbonat. D). Skarn hasil metasomatisme yang dikontrol	
	oleh fluida	27
Gambar 3.2.	Tahapan evolusi dari endapan skarn yang berasosiasi dengan	
	intrusi. A). Intrusi menyebabkan metamorfisme pada batuan	
	sedimen. B). Terbentuk kalk-silikat mineral. C). Pembentukan	
	skarn dangkal. D). Alterasi retrograde yang melibatkan air	
	meteorik	28
Gambar 3.3.	Diagram komposisi penyusun mineral-mineral skarn	
	berdasarkan tipe mineral ekonomis yang terkandung	29
Gambar 3.4.	Tahapan skarn <i>prograde</i>	30
Gambar 3.5.	Tahapan metasomatisme skarn	31
Gambar 3.6.	Tahap <i>retrograde</i> skarn	31
Gambar 3.7.	Zonasi pembentukan mineral-mineral fe-skarn	32
Gambar 3.8.	Lingkungan oceanic subduction	40
Gambar 3.9.	Lingkungan continental subduction	41
Gambar 3.10.	Lingkungan subduction with granitic pluton intrusion	41
Gambar 3.11.	Lingkungan rifting berasosiasi dengan magmatisme	42
Gambar 4.1.	Peta geografis Pulau Papua (Van Ufford, 1996)	43
Gambar 4.2.	4 daerah lithotectonics Pulau Papua (Cloos, 2004)	45
Gambar 4.3.	Stratigrafi regional Pulau Papua (Van Ufford, 1996)	54
Gambar 4.4.	Proses subduksi intraoceanic oleh Lempeng Australia terhadap	
	Outer Melanesia Terrane (AUS - Lempeng Australia, PAC -	
	Lempeng Pasifik, NGT – New Guinea Trench) (Cloos, 2005).	55

х

Gambar 4.5.	Proses pembentukan komplek akresi oleh Lempeng Australia	
	terhadap Outer Melanesian Arc Terrane dan membentuk	
	Formasi Makats (Cloos, 2005).	56
Gambar 4.6.	Proses pembentukan Pegunungan Tengah oleh Lempeng	
	Australia terhadap Outer Melanesia Terrane dan menghasilkan	
	sumber detritus silisiklastik (Cloos, 2005).	57
Gambar 4.7.	Proses pembentukan lipatan oleh Lempeng Australia terhadap	
	Outer Melanesia Terrane dan melebarkan jalur sabuk	
	pegunungan tengah (Cloos, 2005).	57
Gambar 4.8.	Proses pembentukan Collisional Delamination oleh Lempeng	
	Australia terhadap Outer Melanesia Terrane (Cloos, 2005).	58
Gambar 4.9.	Proses adiabatic decompression akibat penipisan lempeng	
	bouyancy positif dan negatif dari Lempeng Australia (AUS -	
	Lempeng Australia, PAC – Lempeng Pasifik) (Cloos, 2005).	59
Gambar 4.10.	Proses pembentukan sesar mendatar akibat pengaruh Lempeng	
	Carolina (AUS - Lempeng Australia, CAR - Lempeng Mikro	
	Carolina) (Cloos, 2005.)	60
Gambar 4.11.	Proses pembentukan sesar mendatar akibat pengaruh Lempeng	
	Carolina (AUS – Lempeng Australita, PAC – Lempeng Pasifik)	
	(Cloos, 2005).	60
Gambar 4.12.	Peta geologi tambang PT. Freeport Indonesia, dengan kotak	
	merah merupakan lokasi penelitian penulis.	61
Gambar 5.1.	A). Data bor satuan batupasir kuarsa. B). Hand specimen satuan	
	batupasir kuarsa	64
Gambar 5.2.	Sayatan tipis satuan batupasir kuarsa pada Hole ID BG210W-	
	02 kedalaman 3.65 meter	65
Gambar 5.3.	A). Cross cutting relationship dengan satuan intrusi porfiri	
	diorit (garis merah). B). Kontak berangsur dengan satuan	
	batulempung terubah (garis kuning)	66
Gambar 5.4.	A). Data bor satuan batulempung terubah. B). Hand specimen	
	satuan batulempung terubah	66

xi

Gambar 5.5.	Sayatan tipis satuan batulempung terubah pada Hole ID	
	BG210W-01 pada kedalaman 174.65 meter	67
Gambar 5.6.	E). Garis merah menunjukkan adanya intrusi diorit (endoskarn)	
	pada satuan batulempung terubah. F). Kontak gradasional	
	dengan satuan hornfels (garis kuning).	68
Gambar 5.7.	A). Data bor satuan hornfels. B). <i>Hand specimen</i> satuan hornfels	
	68	
Gambar 5.8.	Sayatan tipis satuan hornfels pada Hole ID BG210W-02 pada	
	kedalaman 251,1 meter.	69
Gambar 5.9.	E). Kontak gradasional dengan satuan batulempung terubah dan	
	satuan dolomit terubah (garis merah menunjukkan satuan	
	hornfels).	70
Gambar 5.10.	A). Data bor satuan dolomit terubah. B). Hand specimen satuan	
	dolomit terubah	70
Gambar 5.11.	Sayatan tipis marmer satuan dolomit terubah pada Hole ID	
	BG210W-03 kedalaman 389 meter	71
Gambar 5.12.	Kontak gradasional dengan satuan hornfels (garis merah).	72
Gambar 5.13.	A). Data bor satuan breksi polimik. B). Hand specimen satuan	
	breksi polimik (garis merah menunjukkan fragmen dan matris,	
	garis orange menunjukkan pengikat berupa fluida hidrothermal.	
	C & D). Tekstur breksiasi yang terlihat jelas	73
Gambar 5.14.	Kontak gradasional dengan satuan dolomit terubah dan terdapat	
	magnetit yang massif.	73
Gambar 5.15.	A). Data bor satuan intrusi porfiri diorit. B). Hand specimen	
	satuan intrusi porfiri diorit.	74
Gambar 5.16.	Sayatan tipis satuan intrusi porfiri diorit pada Hole ID	
	BG210W-01 kedalaman 126 meter	75
Gambar 5.17.	Cross cutting relationship pada satuan batupasir kuarsa	75
Gambar 5.18.	A & B) data bor BG210W-01 yang memperlihatkan adanya	
	tekstur breksiasi dengan fragmen dan matriks yang terlihat jelas	
	berupa batuan-batuan yang teralterasi kuat dengan pengikat	
	berupa mineral diopsid ± serpentin - talk. C & D). Data bor	

xii

BG210W-02 yang memperlihatkan tekstur breksiasi dan terdapat mineral magnetit dalam jumlah yang besar. 76 Gambar 5.19. E & F). Data bor BG210W-03 yang memperlihatkan adanya tekstur breksiasi dan fase decalcification dengan fragmen berupa marmer. G & H). Tekstur breksiasi yang sudah tidak terlihat pada akhir dari data bor BG210W-06. 77 Gambar 5.20. Grafik kehadiran mineral sekunder tipe alterasi propilitik luar 78 Gambar 5.21. A). Data bor yang memperlihatkan pirit yang memiliki tekstur sandy pyrite. B). Mineral berwarna hijau (epidot) yang hadir 79 pada satuan batupasir kuarsa Gambar 5.22. C-D-E). Batuan batuan yang teralterasi pada satuan batupasir kuarsa. C.2). Kehadiran mineral anhidrit (garis orange), mineral pirit (garis merah), mineral garnet (garis kuning). E.2). Urat berisi amfibol – anhidrit – garnet. 79 Gambar 5.23. Sayatan tipis tipe alterasi propilitik luar pada Hole ID BG210W-03 kedalaman 46 meter. 80 80 Gambar 5.24. Temperatur pembentukan tipe alterasi propilitik luar. Gambar 5.25. Grafik kehadiran mineral sekunder tipe alterasi propiltik dalam 81 Gambar 5.26. A & B) Data bor yang menunujukkan tipe alterasi propilitik dalam. C). Hand specimen satuan intrusi diorit yang mengalami ubahan sedang. C.1). Keterdapatan mineral epidot dan klorit. 82 Gambar 5.27. Sayatan tipis satuan intrusi porfiri diorit yang mengalami alterasi propilitik dalam pada Hole ID BG210W-05 kedalaman 215 82 meter. Gambar 5.28. Temperatur pembentukan tipe alterasi propilitik dalam. 83 Gambar 5.29. Grafik kehadiran mineral sekunder tipe alterasi endoskarn 84 Gambar 5.30. A & B). Data bor yang memperlihatkan intrusi porfiri diorit yang berada di dalam satuan batulempung terubah dan memperlihatkan adanya mineral garnet. C). Hand specimen tipe alterasi endoskarn. C.1). Terdapat mineral garnet dan diopsid. 85 Gambar 5.31. Temperatur pembentukan tipe alterasi endoskarn 85 Gambar 5.32. Grafik kehadiran mineral sekunder tipe alterasi skarnoid 86

Gambar 5.33.	Sayatan tipis tipe alterasi skarnoid pada Hole ID BG210W-05	
	kedalaman 380 meter.	87
Gambar 5.34.	A & B). Data bor yang memperlihatkan adanya mineral diopsid	
	dan epidot yang berselang-seling. C). Hand specimen tipe	
	alterasi skarnoid. D). Kehadiran mineral garnet (garis merah),	
	aktinolit (garis orange), mineral epidot (garis kuning).	87
Gambar 5.35.	E & F) <i>Hand specimen</i> tipe alterasi skarnoid yang memiliki urat	
	berupa diopsid (garis merah), garnet (garis oren) dan epidot	88
Gambar 5.36.	Temperatur pembentukan tipe alterasi skarnoid.	88
Gambar 5.37.	Grafik kehadiran mineral sekunder tipe alterasi potasik	89
Gambar 5.39.	Sayatan tipis tipe alterasi potasik pada Hole ID BG210W-01	
	kedalaman 237.85 meter.	90
Gambar 5.38.	A & B). Data bor yang menunjukkan tipe alterasi potasik	
	ditandai dengan kemunculan mineral k.feldspar dan biotit. C).	
	Hand specimen tipe alterasi potasik. D). Urat yang tersusun oleh	
	mineral epidot – diopsid – garnet.	90
Gambar 5.40.	Temperatur pembentukan tipe alterasi potasik.	91
Gambar 5.41.	Grafik kehadiran mineral sekunder tipe alterasi exoskarn 1	92
Gambar 5.42.	A & B). Data bor yang menunjukkan tipe alterasi exoskarn 1.	
	C). Hand specimen tipe alterasi skarn dengan kehadiran mineral	
	garnet (garis merah) anhidrit (garis kuning) dan diopsid (garis	
	orange). D). Mineral garnet berukuran kerikil (1 cm).	93
Gambar 5.43.	Sayatan tipis tipe alterasi exoskarn 1 pada Hole ID BG210W-03	
	pada kedalaman 350 meter.	94
Gambar 5.44.	Sayatan mineragrafi yang menunjukkan keterdapatan inklusi	
	mineral kalkopirit pada mineral garnet yang tergantikan menjadi	
	pirit dan magnetit.	94
Gambar 5.45.	Temperatur pembentukan mineral tipe alterasi exoskarn 1.	95
Gambar 5.46.	Grafik kehadiran mineral sekunder tipe alterasi exoskarn 2	96
Gambar 5.47.	A & B). Data bor yang menunjukkan tipe alterasi exoskarn 2 der	ngan
	magnetit yang intens. C). Hand specimen tipe alterasi eksoskarn	
	dengan kehadiran mineral aktinolit (garis merah), magnetit	

xiv

	(garis oren), tremolit (garis kuning). D). Mineral aktinolit yang	
	berada pada urat.	97
Gambar 5.48.	Sayatan tipis tipe alterasi exoskarn 2 pada Hole ID BG210W-	
	01 kedalaman 350 meter.	97
Gambar 5.49.	Temperatur pembentukan tipe alterasi exoskarn 2.	98
Gambar 5.50.	Grafik kehadiran mineral sekunder tipe alterasi exoskarn 3.	99
Gambar 5.51.	A & B). Data bor yang menunjukkan tipe alterasi exoskarn 3.	
	C). Hand specimen tipe alterasi exoskarn 3 dengan kehadiran	
	fragmen dan matriks marmer (garis merah) dan pengikat berupa	
	mineral diopsid ± serpentin - talk (garis orange). D). Breksi	
	yang mengalami decalcification (garis orange)	100
Gambar 5.52.	Temperatur pembentukan tipe alterasi exoskarn 3.	100
Gambar 5.53.	Peta zonasi diopsid level 2700 – 2800 m.	102
Gambar 5.54.	Peta zonasi andradit level 2700 – 2800 m.	103
Gambar 5.55.	Peta zonasi anhidrit level 2700 – 2800 m.	104
Gambar 5.56.	Peta zonasi aktinolit – tremolit level 2700 – 2800 m.	105
Gambar 5.57.	Peta zonasi serpentin - talk level 2700 – 2800 m.	106
Gambar 5.58.	Peta zonasi fase skarn level 2700 – 2800 m.	107
Gambar 5.59.	Peta zonasi kalkopirit level 2700 – 2800 m.	108
Gambar 5.60.	Peta zonasi pirit level 2700 – 2800 m.	109
Gambar 6.1.	Overlay zona mineral kalkopirit (> 1%) dengan zonasi diopsid	113
Gambar 6.2.	Overlay zona mineral kalkopirit (> 1%) dengan zonasi andradit	115
Gambar 6.3.	<i>Overlay</i> zona mineral kalkopirit (> 1%) dengan zonasi anhidrit	117
Gambar 6.4.	Overlay zona mineral kalkopirit (> 1%) dengan zonasi aktinolit-	
	tremolit	119
Gambar 6.5.	Overlay zona mineral kalkopirit (> 1%) dengan zonasi	
	serpentin-talk	121
Gambar 7.1.	Peta zonasi skarn level 2700 – 2800 m.	124

DAFTAR LAMPIRAN

- Lampiran 1. Peta lintasan diamond drill hole sebaran batuan bawah permukaan penampang BG210W
- Lampiran 2. Peta sebaran batuan bawah permukaan penampang BG210W
- Lampiran 3. Peta lintasan diamond drill hole alterasi bawah permukaan penampang BG210W
- Lampiran 4. Peta alterasi bawah permukaan penampang BG210W
- Lampiran 5. Peta zonasi mineral anhidrat skarn bawah permukaan penampang BG210W
- Lampiran 6. Peta zonasi mineral hidrat skarn bawah permukaan penampang BG210W
- Lampiran 7. Peta zonasi skarn bawah permukaan penampang BG210W
- Lampiran 8. Peta zonasi mineralisasi sulfida bawah permukaan penampang BG210W
- Lampiran 9. Analisa petrografi
 - A. Sayatan 2 A S 3.65
 - B. Sayatan 1 A T 126
 - C. Sayatan 5 A L 380
 - D. Sayatan 1 A Sh 237,85
 - E. Sayatan 1 A Tw 350
 - F. Sayatan 3 A Tw 389
 - G. Sayatan 6 A Tw 330
 - H. Sayatan 3 M A S 46
 - I. Sayatan 1 A L 174.65
 - J. Sayatan 5 A T 215
 - K. Sayatan 6 A Tw 254
 - L. Sayatan 3 A Tw 371
 - M. Sayatan 5 A S 4,65
 - N. Sayatan 2 A Sh 251,1
 - O. Sayatan 4 A Tw 350

Lampiran 10. Analisa mineragrafi

- A. Sayatan 2 A S 47.2
- B. Sayatan 2 D S 152
- C. Sayatan 3 V S 46
- D. Sayatan 4 A Tw 372
- E. Sayatan 6 A Tw 254
- F. Sayatan 1 M DL 232

Lampiran 11. Deskripsi logging

- A. BG210W-01
- B. BG210W-02
- C. BG210W-03
- D. BG210W-04
- E. BG210W-05
- F. BG210W-06

Lampiran 12. *Detail core logging*