ABSTRAK

Pengembangan robot pada saat ini sangatlah pesat yang dikarenakan untuk memnuhi kebutuhan industri dan akademik. Hal tersebut menyebabkan pengembangan komponen untuk robot juga mengikuti perkembangan. Banyak industri komponen robot berlomba-lomba untuk menciptakan sebuah komponen berupa IC (*Integrated Circuit*), sensor, dan sistem visi yang dapat digunakan untuk robot. Selain dari pengembangan komponen terdapat juga yang mengembangkan pada sistem perangkat lunak untuk memanajemen proses pada robot berbasis *framework*, salah satunya yaitu *Robot Operating System (ROS)*. Pengembangan *robot operating system* (ROS) menghasilkan sebuah produk *base* yang dikenal dengan *turtlebot*. *Turtlebot* salah satu robot yang sangat kompleks dengan berbagai jenis sensor dan base buatan Willow Garage. Untuk pengembangan robot menggunakan *robot operating system(ROS)* memerlukan *base* buatan Willow Garage yang menyebabkan kurang efisiennya pengembangan. Sehingga memerlukan sebuah *platform* sederhana untuk mengembangkan sebuah robot menggunakan *robot operating system (ROS)*.

Pada penelitian ini robot yang digunakan untuk membuat *platform* agar dapat digunakan untuk mengembangkan *robot operating system* (*ROS*) dengan menggunakan *single board processor* berupa Raspberry Pi. Selain itu *base turtlebot* yang seharusnya menggunakan OpenCR menjadi Arduino Mega 2560 sebagai kontroler dan menambahkan Arduino Uno sebagai sub-kontroler. Untuk sensor untuk kontroler robot menggunakan sensor ultrasonik dan sensor *gyroscope* yang digunakan untuk minimum system agar robot dapat bergerak secara *autonomous* dengan cara mendeteksi benda didepan robot. Pergerakan robot agar dapat sesuai dengan sudut juga dilengkapi dengan sensor *gyroscope* tersebut. Pergerakan robot juga menggunakan sistem kontrol yang sudah menggunakan PID (*proportional*, *derivatif*, *integral*) untuk menggerakkan motor agar robot dapat bergerak secara stabil.

Hasil dari penelitian ini robot dengan menggunakan *robot operating system (ROS)* dapat beroperasi secara *autonomous* dan bergerak sesuai sudut yang diinginkan dengan bantuan sensor ultrasonik dan sensor *gyroscope*. Komunikasi serial antara *robot operating system (ROS)* dapat berjalan dengan baik, meskipun sering terdapat *lost sync device* terhadap kontroler. Sistem kontrol pada sub-kontroler penelitian ini didapatkan dua jenis nilai Kp untuk roda yaitu nilai Kp = 2.0 untuk motor kanan, dan nilai Kp = 1.88 untuk motor kiri. Pada penelitian ini masih terdapat kelemahan pada pengiriman data dari kontroler ke sub-kontroler yang menyebabkan pergerakan motor tidak dapat bergerak sesuai waktu yang ditentukan.

Kata Kunci : Autonomous, Turtlebot, Robot Operating System (ROS), PID, Gyroscope, Ultrasonik.