DAFTAR ISI

Halaman

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
HALAMAN PERNYATAAN	iii
KATA PENGANTAR	iv
ABSTRAK	v
ABSTRACT	vi
DAFTAR ISI	vii
DAFTAR GAMBAR	X
DAFTAR TABEL	xiii
DAFTAR SINGKATAN DAN LAMBANG	xiv

BAB I. PENDAHULUAN

1.1. Latar Belakang Penelitian	1
1.2. Rumusan Masalah	2
1.3. Tujuan Penelitian	2
1.4. Batasan Masalah	3

BAB II. TINJAUAN PUSTAKA

2.1. Geologi Regional Cekungan Kutai	4
2.2. Stratigrafi Cekungan Kutai	6
2.3. Petroleum System Sub Cekungan Kutai	10
2.4. Petroleum System	12
2.5. Penelitian Terdahulu	15

BAB III. DASAR TEORI

3.1. Prinsip Dasar Metode Magnetotellurik	18
3.2. Impedansi dan Resistivitas	_24
3.3. Transformasi Fourier	27
3.4. Analisa <i>Time series</i>	28

3.5. Koherensi Sinyal	29
3.6. Proses <i>Robust</i>	30
3.7. Resistivitas Batuan	31
3.8. Pemodelan Data Geofisika	32
3.8.1. Pemodelan 1D	32
3.8.2. Pemodelan 2D dengan Algoritma Non-Linier Conjugate	
Gradient (NLCG Inversion)	33
3.8.3. Pemodelan 3D	34

BAB IV. METODOLOGI PENELITIAN

4.1. Pengolahan Data	
4.1.1. Proses <i>Robust</i>	38
4.1.2. Seleksi Crosspower (XPR)	38
4.1.3. Analisa Koherensi	39
4.1.4 Analisa Time Series	39
4.1.5 Pemodelan 1D	39
4.1.6. Pemodelan 2D	40
4.1.7. Pemodelan 3D	40
4.2. Interpretasi Data	40

BAB V. HASIL DAN PEMBAHASAN

5.1. Seleksi Crosspower	41
5.2. Koherensi Data	42
5.3. Analisis Penampang Variasi Nilai Tahanan Jenis Pada Pemodelan 1D) 43
5.4. Analisis Penampang Variasi Nilai Tahanan Jenis Pada Pemodelan 2D) <u>49</u>
5.5. Analisis Penampang Variasi Nilai Tahanan Jenis Pada Pemodelan 3D)51
5.6. Petroleum System di Lapangan "Biru"	54

BAB VI. KESIMPULAN DAN SARAN

6.1. Kesimp	bulan	
6.2. Saran		

DAFTAR PUSTAKA

LAMPIRAN

Lampiran A Seleksi CrosspowerLampiran B Koherensi DataLampiran C Inversi 1DLampiran D Model Penampang Inversi 2D

DAFTAR GAMBAR

		Halaman
Gambar 2.1.	Peta persebaran cekungan di Kalimantan Timur dan batas-batas yang mengelilinginya. (Modifikasi dari Moss dkk., 1997)	5
Gambar 2.2.	Kolom Stratigrafi daerah Kutai Timur, Cekungan Kutai (Supriatna & Rustandi, 1995; op.cit. Resmawan, 2007)	8
Gambar 2.3.	Peta geologi lembar Samarinda (Supriatna dkk., 1995). Lapangan "Biru" berada pada Kecamatan Sebuluh, Kabupaten Kutai, Kalimantan Timur yang dibatasi oleh kotak berwarna merah	9
Gambar 2.4.	Sistem petroleum yang terdiri dari source rock, reservoir, trap, dan migrasi (Magoon and Dow, 1994)	13
Gambar 2.5.	Model geofisika dari penelitian yang dilakukan pada <i>Lower Saxony Basin</i> , Jerman (<i>Ritter and</i> <i>Serge</i> , 2015). (a) Model resistivitas dengan batas berdasarkan perbedaan stratigrafi menurut Bruns et al. (2013). Patahan utama yang bersesuaian dengan profil MT digambarkan oleh Baldshun et al. (2001). (b) Model resistivitas disertai batas reflektansi vitrinit oleh Bruns et al. (2013). Batuan konduktif dilabeli dengan C1, C2, C3, dan C4 dan batuan resistif dilabeli dengan R1 dan R2.	17
Gambar 3.1.	Fenomena terjadinya gelombang elektromagnetik (Unsworth, 2014). (a) Petir menjadi sumber gelombang elektromagnetik dengan frekuensi tinggi. (b) illustrasi perambatan gelombang EM diatas dan dibawah permukaan bumi. Hal 13	18
Gambar 3.2.	Konsep penjalaran gelombang elektromagnetik. Gelombang elektromagnetik yang dipancarkan oleh sumber TX menjalar ke bawah permukaan bumi menginduksi benda konduktif akan menghasilkan medan magnetik primer dan medan magnetik sekunder yang akan ditangkap oleh <i>receiver</i> RX (Unsworth, 2014) hal 14	19
Gambar 3.3.	Illustrasi hubungan frekuensi dengan <i>skin depth</i> . (a) Frekuensi kecil mencapai kedalaman hingga 50 km; (b) frekuensi sedang mencapai <i>skin depth</i> hingga 10	23

	km; (c) frekuensi kecil mencapai <i>skin depth</i> hingga 1 km (Unsworth, 2014) . hal 18	
Gambar 3.4.	Konsep pengukuran mode TE dan TM. (a) konsep model simple mengenai polarisasi pada MT, (b) Mode TE dan mode TM pada MT (Teklesenbet, 2012).	26
Gambar 3.5.	Gambaran sederhana analisa fourier yang mengubah domain waktu menjadi domain frekuensi (Karrenberg, 2007). Hal 22	28
Gambar 4.1.	<i>Plotting</i> lintasan pengukuran MT diatas peta geologi pada Lapangan "Biru", Cekungan Kutai, Provinsi Kalimantan Timur (Modifikasi dari Supriatna S, dkk., 1995).	36
Gambar 4.2.	Diagram Alir Penelitian	37
Gambar 5.1	Grafik hasil analisa <i>crosspower</i> titik KT07. (a) grafik resistivitas semu vs frekuensi, (b) grafik fasa vs frekuensi	41
Gambar 5.2	Grafik koherensi titik KT07. Titik-titik kuning mennjukkan data koherensi tiap frekuensi mode TE dan warna hijau menunjukkan data koherensi tiap frekuensi pada mode TM.	43
Gambar 5.3.	Tampilan hasil inversi 1D titik KT05; (a) <i>curve</i> <i>matching</i> resistivitas semu vs perioda; (b) <i>curve</i> <i>matching</i> fasa vs perioda; (c) data hasil inversi; (d) Profil kedalaman 1D titik KT05	44
Gambar 5.4.	Tampilan hasil inversi 1D titik KT07; (a) <i>curve</i> <i>matching</i> resistivitas semu vs perioda; (b) <i>curve</i> <i>matching</i> fasa vs perioda; (c) data hasil inversi; (d) Profil kedalaman 1D titik KT07	46
Gambar 5.5.	Tampilan hasil inversi 1D titik KT09; (a) <i>curve</i> <i>matching</i> resistivitas semu vs perioda; (b) <i>curve</i> <i>matching</i> fasa vs perioda; (c) data hasil inversi; (d) Profil kedalaman 1D titik KT09	47
Gambar 5.6.	Konstruksi penampang menggunakan model 1D Lintasan A yang memiliki arah Baratlaut – Tenggara.	47
Gambar 5.7.	Konstruksi penampang menggunakan model 1D Lintasan B yang berarah Baratdaya – Timurlaut	48

- **Gambar 5.8.** Model penampang inversi 2D lintasan 1. Garis putus-putus merupakan batas zona resistivitas. (a) Zona resistivitas sangat rendah – rendah; (b) Zona resistivitas sedang; (c) Zona resitivitas tinggi.
- Gambar 5.9. Model penampang inversi 2D lintasan 4. Garis putus-putus merupakan batas zona resistivitas. (a) Zona resistivitas sangat rendah – rendah; (b) Zona resistivitas sedang; (c) Zona resitivitas tinggi.
- Gambar 5.10. Model 3D Lapangan "Biru". Warna biru pada lapisan paling atas menunjukkan Formasi Pulaubalang dengan nilai resistivitas sangat rendah rendah; warna hijau pada bagian tengah lapisan menunjukkan lapisan Formasi Bebuluh dengan nilai resistivitas sedang; dan warna merah pada bagian paling bawah merupakan Formasi Pamaluan dengan nilai resistivitas tinggi sangat tinggi. (a) Model 3D *overlay* dengan peta geologi, (b) Model 3D *overlay* dengan peta topografi.
- Gambar 5.11. Penampang 2 sayatan dari pemodelan 3D yang saling berpotongan. Penampang 1 berarah barattimur; penampang 2 berarah utara-selatan. (a) Model 3D *overlay* dengan peta geologi, (b) Model 3D *overlay* dengan peta topografi.

49

50

DAFTAR TABEL

Halaman

Tabel 3.1	Nilai resistivitas material bumi (batuan dan mineral) (Telford et al., 1990)	31
Tabel 5.1.	Tabel data koherensi setiap titik pada setiap proses robust	42
Tabel 5.2.	Tabel resistivitas lapisan batuan pada lapangan "Biru", Cekungan Kutai, Kalimantan Timur	44

DAFTAR SINGKATAN DAN LAMBANG

Pemakaian Pertama Kali

MT	Magnetotellurik	1
TOC	Total Organic Carbon	10
EM	Elektromagnetik	16
TE	Transverse Electric	23
ТМ	Transverse Magnetic	23
IDW	Inverse Distance Weighting	34

Lambang

Singkatan Nama

Ĵ	Rapat arus listrik (A/m ²)	18
σ	Konduktivitas medium (S/m)	18
\vec{E}	Medan Listrik (V/m)	19
\vec{B}	Induksi Magnetik (W/m)	19
\vec{H}	Medan Magnetik (A/m)	19
q	Densitas muatan listrik (C/m ³)	19
\vec{D}	Arus Perpindahan (C/m ²)	19
Е	Permitivitas listrik (F/m)	20
μ	Permeabilitas magnet (H/m)	20
ρ	Resistivitas (Ω.m)	20
δ	Skin depth (m)	21
f	Frekuensi gelombang elektromagnetik (Hz)	21
Ż	Impedansi	22
γ	fungsi ordinari koherensi	29
S_{hy}	sinyal medan listrik dan magnetik	29
S _{hh}	sinyal medan listrik	29
S_{yy}	sinyal medan magnetik	29
arphi	Fasa gelombang (°)	23
$R_{(\emptyset)}$	Matrik rotasi	25

α	Sudut rotasi (°)	25
S	Densitas spektrum	27
w _i	Bobot	30
$ au_i$	Residu	30
d	Vektor data observasi	33
m	Vektor model/model parameter	33
F(m)	Fungsi forward modelling	33
A_{s}^{-1}	Invers operasi forward	33
Φ_d	Data misfit	33
Φ_m	Fungsi Objektif model	33
τ	Parameter regularisasi	33
L	Operator Linier	33
R_{dd}	Matriks kesalahan kovarian	33
Ν	Jumlah data	34
λ_i	bobot dari $Z(x_i)$ untuk i = 1,2, n	35
$Z(x_i)$	nilai pengamatan ke- <i>i</i>	35
d_{i0}	jarak antar titik pengamatan ke- <i>i</i> dengan	35
	titik yang diduga	
р	<i>power</i> (bilangan bulat)	35