Analisis Pengendalian Persediaan Bahan Baku dengan Pendekatan EOQ Probabilistic Dikombinasikan dengan Algoritma Genetika guna Meminimasi Biaya Inventory

Wuri Pratiwi, Gunawan Madyono Putro
Jurusan Teknik Industri Fakultas Teknologi Industri,
Universitas Pembangunan Nasional 'Veteran' Yogyakarta
JJ Babarsari No 2. Yogyakarta Email: bagus2007@ymail

ABSTRAK
Penelitian ini dilakukan dengan tujuan untuk mencari solusi optimal inventory dengan menggunakan EOQ Probabilistic dikombinasikan dengan algoritma genetika serta metode Q Probabilistic untuk pembanding. Dengan studi kasus penelitian ini adalah PT. Mondriand Klaten yang merupakan perusahaan garmen. PT. Mondriand memiliki beberapa unit merk, dimana semua produk yang disediakan diproduksi bersamaan, mungkinkan to stock.
EOQ Probabilistic dikombinasikan dengan algoritma genetika yang digunakan untuk memperoleh solusi optimal dari model sistem inventory dibandingkan metode Q Probabilistic mempunyai hasil yang tidak berbeda jauh. Namun demikian penggunaan algoritma genetik lebih menyederhanakan perhitungan EOQ probabilistic.

Kata Kunci: Algoritma Genetika, EOQ Probabilistic, Inventory, Q Probabilistic.

1. PENDAHULUAN
Persediaan bahan baku merupakan faktor utama di dalam perusahaan untuk menunjang kelancaran proses produksi, baik dalam perusahaan besar maupun perusahaan kecil. Kesalahan menentukan besarnya investasi (modal yang tertanam) untuk mengontrol persediaan bahan baku akan menekan keuntungan perusahaan. Adanya persediaan bahan baku yang terlalu besar dibandingkan kebutuhan perusahaan akan membuat beban bunga, biaya pemeliharaan dan penyimpanan dalam gudang, serta kemungkinan terjadinya penyusutan dan kualitas yang tidak bisa dipertahankan, sehingga semuanya ini akan mengurangi keuntungan perusahaan. Demikian pula sebaliknya, persediaan bahan baku yang terlalu kecil dalam perusahaan akan mengakibatkan kemacetan dalam produksi, sehingga perusahaan akan mengalami kerugian juga.

Dalam pengadaan bahan baku, manajemen PT. Mondriand masih kurang memperhatikan besar kecilnya persediaan bahan baku yang mereka miliki. Kadang-kadang bahan baku yang mereka miliki cukup besar namun kadang-kadang pula mereka kekurangan bahan baku pada saat pesanan melonjak. Hal tersebut dapat dilihat dari keadaan pada waktu menjelang lebaran dan setelah lebaran. Karena persediaan bahan baku di dalam perusahaan tersebut sangat penting maka diperlukan perencanaan yang baik dalam pengendalian bahan baku yang optimal. Perencanaan dalam jumlah optimal berarti kebutuhan bahan baku perusahaan dapat terpenuhi, akan tetapi perusahaan mempunyai total biaya persediaan yang minimal. Kriteria-kriteriannya adalah menentukan jumlah pemesanan (order quantity) serta waktu pemesanan (reorder point) yang optimal untuk
meminimunkan biaya persediaan (Total Inventory Cost = TIC). Salah satu metode untuk mendapatkan solusi yang optimal seperti kasus persediaan di PT Mondrian adalah EOQ probabilistik dikombinasikan dengan algoritma genetika. Metode ini lebih mudah diimplementasikan dan mempunyai kemampuan dalam menemukan solusi secara cepat dan pasti untuk masalah-masalah berdimensi tinggi. Metode ini hanya cocok dilakukan pada data-data yang bersifat probabilistik, dimana data-data tersebut belum tersaji dengan pasti. Sedangkan kelemahan yang lain adalah diperlukan usaha yang cukup melelahkan untuk dapat menemukan nilai-nilai parameter algoritma genetika yang optimal.

2. LANDASAN TEORI
2.1 Konsep Dasar Peramalan
Peramalan adalah proses untuk memperkirakan berapa kebutuhan dimasa yang akan datang yang meliputi kebutuhan dalam ukuran, kuantitas, kualitas, waktu dan alokasi yang dibutuhkan dalam rangka memenuhi permintaan barang ataupun jasa (Naution, 1999).

2.2. Titik Pemesanan Ulang (Reorder Point)
Reorder Point adalah saat dimana harus diadakan pemesanan lagi sedemikian rupa hingga kedatangan / penerimaan material yang dipesan itu adalah tepat pada waktu dimana persediaan di atas safety stock sama dengan nol. (Riyanto, 1994).

Rumus:
\[R = (d \times L) + (St \times Za) \]

Dimana:
\[d = \text{Rata-rata permintaan dibagi jumlah hari kerja selama satu tahun.} \]
\[L = \text{Lead time} \]
\[St = \text{Safety stock} \]

2.3. Q Probabilistik
Model dikatakan probabilistik bila salah satu dari demand / lead time atau keduanya tidak dapat diketahui secara pasti. Suatu pertimbangan yang sangat penting di dalam setiap model probabilistik adalah adanya kemungkinan kehabisan persediaan atau stock out. Masalah tersebut timbul karena nilainya tingkat pemesanan persediaan yang tidak diharapkan ataupun waktu penerimaan barang yang lebih lama dari lead time yang diharapkan. Tetapi untuk menghindarkan diri dari masalah kehabisan persediaan tersebut adalah dengan membentuk cadangan persediaan atau safety stock.

\[St = Za \times Sd \]

Sehingga
\[St = Za \times Sd \]

2.2. Dimana:
\[St = \text{Safety Stock} \]
\[Za = \text{Nilai Z pada distribusi normal standar untuk tingkat} \]
\[a = \text{Kemungkinan terjadinya kekurangan inventory} \]
\[Sd = \text{Standar deviasi pemesanan} \]
\[L = \text{Lead time} \]
\[S_l = \text{Standar deviasi pemesanan selama lead time} \]

Karakteristik kebijakan inventory model Q ditandai oleh 2 hal yaitu:
1. Besarnya ukuran lot pemesanan \(Q_k \) selalu tetap untuk setiap kali pemesan dilakukan.
2. Saat pemesanan dilakukan apabila jumlah inventory yang dimiliki telah mencapai suatu tingkat tertentu \(r \) yang disebut titik pemesanan ulang atau reorder point.

In stock probability selama lead time adalah sebagai berikut:

\[Pr = 1 - \frac{Qch}{Dck} \]

2.3. Dimana:
\[Q = \text{Ukuran pemesanan} \]
\[k = \text{Biaya kekurangan per unit} \]
\[D = \text{Kebutuhan rata-rata per unit} \]
\[h = \text{Biaya simpan per unit} \]

\[O_{probabilistik} = \frac{2x\sqrt{(A + kN)}}{h} \]

2.4. Keterangan:
\[D = \text{Kebutuhan rata-rata per unit} \]
\[N = \text{Ekspetasi permintaan yang tak terpenuhi (jumlah kekurangan inventory)} \]
\[A = \text{Biaya tiap kali pesan} \]
3. METODOLOGI
3.1. Metode Pengolahan Data
1. Perhitungan total cost pada persediaan bahan baku aktual perusahaan.
2. Perhitungan total cost dengan metode Q Probabilistik, meliputi perhitungan:
 a. Standar deviasi pemakaian selama lead time (SL)
 b. Menentukan safety stock (SS) dengan nilai a / service levelnya 97%.
 c. Menentukan reorder point (ROP)/ batas pemesanan kembali pada tingkat tertentu
 d. Menentukan jumlah pesanan optimal (Q) dan menghitung total cost inventory.
3. Perhitungan total cost dengan metode EOQ Probabilistic dikombinasikan dengan Algoritma Genetik.

3.2. Metode Analisa Data
Analisa data yang dilakukan meliputi sebagai berikut:
1. Analisa metode yang paling baik yang digunakan untuk melakukan pemecahan masalah.
2. Perbandingan penyelesaian permasalahan dengan metode EOQ Probabilistic dikombinasikan dengan Algoritma Genetik dengan kondisi yang ada selama ini serta dengan Q probabilistik.

4. PENGOLAHAN DATA DAN ANALISIS HASIL
4.1. Pengolahan Data
4.1.1. Peramalan
Peramalan dilakukan untuk horizon perencanaan 12 bulan, pengolahan data dengan menggunakan software Q.S3 dengan metode peramalan yang ada dipilih metode terbaik berdasarkan MAD, MSD, dan R-square.
Berikut adalah Data persediaan tahun 2010 dan hasil peramalan untuk tahun 2011.

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Data tahun 2010</th>
<th>Hasil Peramalan tahun 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januari</td>
<td>1875</td>
<td>2281.791</td>
</tr>
<tr>
<td>Februari</td>
<td>1455</td>
<td>2434.658</td>
</tr>
<tr>
<td>Maret</td>
<td>1337.5</td>
<td>2287.524</td>
</tr>
<tr>
<td>April</td>
<td>1687.5</td>
<td>2340.391</td>
</tr>
<tr>
<td>Mei</td>
<td>1725</td>
<td>2493.257</td>
</tr>
</tbody>
</table>

Tabel 4.1. Hasil peramalan permintaan Bahan Baku tahun 2011
4.1.2. Perhitungan Total Biaya Persediaan

1. Perhitungan kondisi aktual perusahaan.
 Jumlah pesanan bahan baku (Q) untuk bulan Januari 2011 sampai Desember 2011 adalah 30.470,68 meter. Dengan frekuensi pesan tiap bulan 1 kali.

\[
Total \ Cost = total \ biaya \ simpan + total \ biaya \ pesan
\]

\[
TC = (\frac{1}{2} \times Q \times h) + (F \times A)
\]

\[
= (\frac{1}{2} \times 30.470.68 \times 2400) + (12 \times 883.333.33)
\]

\[
= Rp. 47.164.816,00
\]

Jadi total biaya dalam kondisi aktual adalah sebesar Rp. 47.164.816,00

2. Perhitungan dengan Metode Q Probabilistic
 Langkah-langkah dalam perhitungan dengan metode Q probabilistic adalah sebagai berikut:
 a. Perhitungan standar deviasi pemakaian selama lead time (SL)

\[
Sd = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}
\]

\[
= \sqrt{\frac{391172,2707}{12 - 1}}
\]

\[
= 188,8
\]

\[
Lead \ time \ (LT) \ pemesanan \ adalah \ 2 \ hari:
\]

\[
S_L = Sd \sqrt{LT}
\]

\[
= 188,8 \times 2
\]

\[
= 266,69
\]

Jadi standar deviasi pemakaian selama lead time adalah 266,69

b. Menentukan Safety Stock (SS)
 Dimana untuk nilai \(\alpha \) / service levelnya adalah 97% sehingga didapatkan nilai \(z \) sebesar 1,88.

\[
SS = Z \times S_L
\]

\[
= 1,88 \times 266,69
\]

\[
= 501,38
\]

Jadi besarnya safety stock adalah 501,38 meter.

c. Menentukan reorder point (ROP)

Diketahui : \(D = 30.470,68 \) meter

Dengan asumsi jumlah hari kerja selama satu tahun adalah 250 hari.

Sehingga \(d = \frac{D}{250} = \frac{30.470,68}{250} = 121,88 \) meter

\(ROP = (dxL) + Ss = (121,88 \times 2) + 501,38 = 745,15 \) meter

Jadi pemesanan akan dilakukan kembali pada saat tingkat persediaan mencapai 745,15 meter.

d. Menentukan Q Probabilistic Untuk mencari Q probabilistis diketahui:

\(D = 2539,22 \) meter, \(Q = 1327,91 \) m, dan \(k_{max} = Rp. 1,187,5 \)

\[
N = Pr = 1 - \frac{Qth}{Dh}
\]

\[
= 1 - \frac{1327,91 \times 2400}{2539,22 \times 1,1875}
\]

\[
= 0,02078
\]

\[
Q_e = \sqrt{\frac{2xD(A + (kN))}{h}}
\]

\[
= 4.760,67 \) meter tiap kali pesanan

Frekuensi pesan = \(\frac{D}{Q_e} \)

\[
= \frac{7.470,68}{4.760,67} = 7 \) kali pesanan/ periode.

Jadi jumlah pesanan bahan baku yang optimal adalah:

\[
Q = 7 \times 4.760,67 = 33.324,69 \) meter
\]

\[
Total \ cost = total \ biaya \ simpan + total \ biaya \ pesan
\]

\[
TC = (\frac{1}{2} \times QdLT) + (F \times A)
\]

\[
= (\frac{1}{2} \times 33.324,69 \times 2400) + (7 \times 883.333,33)
\]

\[
= Rp. 45.822,961,31
\]

Jadi total biaya yang dikeluarkan untuk persediaan jika menggunakan metode Q probabilistis adalah sebesar Rp. 45.822,961,31.

 a. Pemakaian Bahan Baku (D)
 Pemakaian Bahan Baku = \(\Sigma \) (Pemakaian Kain x Probabilitas) = 2.338,21 meter/bulan.
 b. Dimana untuk biaya pesan (K) sebesar Rp. 833.333,33 dan biaya simpan sebesar Rp. 2.260.000,00
 c. Biaya kekurangan bahan baku

$$p = (\text{Biaya pesan x probabilitas}) + \text{Biaya penalty}$$

$$= (\text{Rp } 883.333.33 \times 25\%) + \text{Rp } 200.000.000$$

$$= \text{Rp } 420.833.25$$

d. Probability Density Function (pdf)
merupakan kisaran probabilitas kekuaran permintaan selama lead time.

$$f(x) = \frac{1}{266.69}$$

$$0 \leq x \leq 266.69$$

e. Rata-rata permintaan dari pdf $(E(x))$

$$E(x) = \int_{266.69} x \cdot f(x) dx$$

$$= \int_{266.69} x \cdot \frac{1}{266.69} dx$$

$$= 133.345$$

f. Perhitungan \hat{y} dan \tilde{y}

$$\hat{y} = \frac{(pD)}{H}$$

$$\tilde{y} = \frac{(420.833.25 \times 30.870.68)}{2.260.000}$$

$$= 5.748,4 \text{ m}$$

$$\hat{y} = \frac{2D(K + pE(x))}{H}$$

$$= 1.247.32 \text{ m}$$

Karena $\tilde{y} < \hat{y}$ maka terdapat solusi yang mungkin untuk y dan R.

g. Perhitungan S digunakan untuk mengetahui besar dari taksiran kekuaran persediaan untuk periode tertentu.

$$S = \int_{266.69} (x - R) f(x) dx$$

$$S = \int_{266.69} x - \frac{1}{266.69} dx$$

$$S = \frac{R^2}{266.69} - R + 133.345$$

h. Fungsi Fitness Total Biaya Inventory

Total biaya inventory dipengaruhi oleh total biaya pemesanan dan biaya penyimpanan serta taksiran kekuaran persediaan.

$$TC(y,R) = \frac{DK}{y} + K \left(\frac{y}{2} + R - E(x) \right) + E_D S$$

i. Solusi Optimal dengan Algoritma Genetika
dengan Fungsi Fitness

Setelah dilakukan perhitungan diatas, maka selanjutnya dilakukan perhitungan dengan menggunakan algoritma genetika dengan bantuan software Matlab. Setelah melakukan 4 kali running untuk mendapatkan nilai optimal dari populasi dengan masalah yang diteliti dalam algoritma genetika maka didapatkan kombinasi parameter kontrol sebagai berikut:

1) Jumlah Kromosom Populasi : 400
2) Probabilitas Crossover : 0.45
3) Probabilitas Mutasi : 0.01
4) Jumlah Generasi : 20

Hasil running dengan nilai yang optimal dapat dilihat pada gambar 4.3 berikut:

![Gambar 4.1. Hasil Running Algoritma Genetika](image)

Sehingga diperoleh nilai minimal untuk biaya pemesanan dengan rincian sebagai berikut:

1. Order Quantity Optimal : 3216,8 meter.
2. reorder Point Optimal : 372,8 meter.
3. Biaya Persediaan perperiod : Rp. 4.236.500,00

Untuk frekuensi pemesanan dalam satu tahun adalah:

$$f = \frac{D}{Q} = \frac{30407,68}{3216,8} = 9,47 \text{ kali } \approx 10 \text{ kali}$$

Jadi, total biaya yang dikeluarkan selama satu tahun adalah:

$$\text{TIC} = 10 \times \text{Rp.} \ 4.236.500,00 = \text{Rp.} \ 42.365.000,00$$
4.2. Analisa Hasil

Hasil perbandingan antara metode EOQ Probabilistic dikombinasikan dengan Algoritma Genetik dengan kondisi yang ada selama ini serta dengan Q Probabilistic ditunjukkan pada tabel berikut ini:
Industrial Engineering Conference (IEC) 2013
Yogyakarta, 9 November 2013

Tabel 4.2
Persediaan Bahan Baku Kain Cotton Combat

<table>
<thead>
<tr>
<th>Keterangan</th>
<th>Kondisi Aktual</th>
<th>Metode Probabilisitik</th>
<th>Metode EOQ Probabilistik + Algoritma Genetika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Quantity Optimal</td>
<td>4.760,67</td>
<td>3.216,8</td>
<td></td>
</tr>
<tr>
<td>Reorder Point Optimal</td>
<td>745,13</td>
<td>372,8</td>
<td></td>
</tr>
<tr>
<td>Total Biaya Persediaan</td>
<td>Rp. 47.164,81</td>
<td>Rp. 45.822.961,31</td>
<td>Rp. 42.365.000,00</td>
</tr>
</tbody>
</table>

5. KESIMPULAN

Dari penelitian yang telah dilakukan tentang aspek yang berhubungan dengan biaya inventory diperoleh beberapa kesimpulan sebagai berikut:

1. Selisih dari total biaya inventory antara metode EOQ probabilistik kombinasi algoritma genetika dengan metode Q probabilistik yaitu sebesar Rp. 3.457.961,31. Sedangkan selisih dengan kondisi aktual perusahaan yaitu sebesar Rp. 4.799.816,00. Untuk hasil order quantity antara metode Q probabilistik dengan metode EOQ probabilistik kombinasi algoritma genetika terdapat perbedaan yang signifikan, dimana pada metode Q probabilistik lebih besar daripada metode EOQ probabilistik kombinasi algoritma genetika yaitu sebesar 1543,87 meter.

2. Solusi optimal yang dihasilkan dari optimasi pengendalian persediaan produk menggunakan metode EOQ Probabilisitik dikombinasikan dengan algoritma genetika yaitu untuk total cost inventory/ biaya persediaan untuk kain Cotton Combat adalah Rp. 42.365.000,00 dengan order quantity optimal adalah sebesar 3.216,8 meter/pesanan dan reorder point optimal adalah sebesar 372,8 meter.

6. DAFTAR PUSTAKA
