

TABLE OF CONTENT

P	aper Code	Paper Title & Authors	Page					
1	KL-1	Standardization of Rock Testing Within The Context of The ISRM Suggested Methods, Associated Practical Issues and Future Prof. Resat Ulusay	KL-1-1					
2	KL-2	Prediction of Rock Cutting Performance Prof. Seokwon Jeon	KL-2-1					
3	KL-3	Ground Support Design for Sudden and Violent Failures in Hard Rock Tunnels Prof. Ernesto Villaescusa						
4	KL-4	Displacement Monitoring and Assessment of The Stability of Underground Structures Prof. Norikazu Shimizu						
5	KL-5	The Most Important and Influential Factors in Field Measurements in Geomechanics Prof. Shunsuke Sakurai	KL-5-1					
6	KL-6	Issues on Rock Dynamics and Future Directions Prof. Ömer Aydan	KL-6-1					
7	KL-7	Strength Criteria to The Dynamic Strength of Brittle Rock Prof. Jian Zhao	KL-7-1					
8	KL-8	Recent Developments on Rock Mass Stability Investigations Associated with Surface and Underground Excavations in Three Dimensions Prof. Pinnaduwa H. S. W. Kulatilake						
9	Role of Geomechanics in Mining Development in Tropical Region							
		Oral Presentation						
1	EN1-P60	A Rock Mechanical Model for Overbalanced, Managed Pressure, and Underbalanced Drilling Applications M. N. J. Al Awad	1					
2	EN2-P69 Physical Changes of Coal-bearing Rock in the Dumping Site with the Utilization of Fly Ash and Organic Material as Cover Layer to Prevent Acid Mine Drainage Generation S. Dwiki, H. Shimada, R. S. Gautama, T. Sasaoka, G. J. Kusuma							
3	Utilization of X-Ray CT Scanning technique in Rock Mechanics							
4	EN4-P176	Improved Characterization of Carbonates Capillary Pressure						
5	IN1-P20	<i>Effect of Dominating Geological Discontinuity on the Seismic</i> <i>Performance of Underground Rock Caverns: A Case Study of</i> <i>Baihetan 1# surge chamber</i> C. Zhen, S. Qian and L. Xianlun	41					
6	IN2-P233	Deformation and Strain Measurement of Geo-materials using Extended Digital Image Correlation Technique S. Bhattacharjee and D. Deb	51					

7	IN3-P84	Statistical Analysis of Ground Loss Ratio Duo to Large-diameter Shield Tunnel Construction in China C. Wu and Z. Zhu					
8	IN4-P123	Unlined/Shotcrete Lined Pressure Tunnel Passing Through Himalayan Rock Mass – Design Review of Upper Tamakoshi Headrace Tunnel, Nepal C. B. Basnet and K. K. Panthi					
9	RMC1-P1	High Strain Rate Characterization of Himalayan Limestone H. Meena, S. Mishra, T. Chakraborty, V. Matsagar, P. Chandel, V. Mangla and M. Singh					
10	RMC2-P21	Experimental Study of Propagation of 3D Flaws under Static and Dynamic Loading Conditions with the Application of 3D Printing T. Zhou and J.B. Zhu	89				
11	RMC3-P86	Strength Reinforcement of Sand Test Specimens Cemented with Calcium Phosphate Compounds and Different Powders R.A.N. Dilrukshi and S. Kawasaki	97				
12	RMC4-P174	The Effect of Clay Content on the Strength of Clay-Bearing Rocks S. Kahraman, A. S. Aloglu, B. Aydin and E. Saygin	105				
13	RMC5-P194	Geostatistical Study of the Direct Uniaxial Compressive Strength of the Kadilar Marble Quarry Y. Özçelik, F. Atalay and K. Aksoy	111				
14	RMC6-P202	Performance Assessment of Fly Ash-mixed Cement Borehole Plugs in Sandstone					
15	CMNM1-P114	M. Chiangmai and P. Tepnarong Numerical Simulation of Dynamic Semi-Circular Bend Flexure Tests of Rocks Using Split Hopkinson Pressure Bar F. Dai, Y. Xu, T. Zhao and N. W. Xu					
16	CMNM2-P115	Experimental and Numerical Study on Rock Fracture Toughness Testing Using Cracked Chevron Notched Semi-Circular Bend Specimen					
17	CMNM3-P120						
18	CMNM4-P49	PF. He, P. H.S.W. Kulatilake, DQ. Liu and MC. He Numerical Accuracy and Performance of a Particle Integration Scheme for Manifold Method L. Sun, G. F. Han, X. Q. Wang, J. M. Li, X. D. Liu, and X. Jin					
19	CMNM5-P185	A Coupled FEM-SPH Procedure for the Simulation of Blast Induced Rock Damage A. Khan and D. Deb	167				
20	CMNM6-P35	Evaluation of Ground Support by Rock Mass Index and Finite Element Method Numerical Modelling PT Cibaliung Sumberdaya Banten A. Adhareza, S. Saptono and B. D. Nagara	177				
21	RE1-P119	A Conceptual Study for Development of 3D Rock Fragmentation Analysis System with Stereo-photogrammetry Technologies R. Degawa, H. Jang, Y. Kawamura, I. Kitahara, E. Topal and Y. Endo	187				
22	RE2-P173	Predicting The Performance of an Axial Type Roadheader in Mine Roadway Excavation from The Needle Penetration Index S. Kahraman, A. S. Aloglu, B. Aydin and E. Saygin	195				

	RE3-P19	Characteristics of Rock Blast Damage and Damage Criterion of Limestone Rock Mass	
23		S. Wahyudi, H. Shimada, T. Sasaoka, G. M. Simangunsong and Y. Takahashi	203
		Variation in the Reactivity of Chemical Solutions on Rock Properties	
24	RE4-P14	with Changes in Temperature	211
		V. Yuan and P. C. Hagan	
		Study on Effect of High Precision Detonation on Fracture Mechanism	
25	RE5-P83	in Small Scale Blasting Tests	221
		Y. Takahashi, T. Saburi, T. Sasaoka, W. Sugeng, H. Shimada and Yuji Ogata	
		Development of a Small Scaled Linear Cutting Machine and Rock	
26	RE6-P142	Cutting Tests Using Conical Picks	229
		HY. Jeong and S. Jeon	
27	UMOS1-P8	Effects of Carnallite Contents on Stability and Extraction Ratio of	220
27	0101051-P8	Potash Mine A. Luangthip, S. Khamrat and K. Fuenkajorn	239
		Maximum Unsupported Span and Standup Time of Potash Mine Roof	
28	UMOS2-P23	as Affected by Carnallite Contents	247
		M. Chobsranoi and K. Fuenkajorn	
		Determination of Safe Withdrawal Rates of Compressed-air Energy	
29	UMOS4-P55	Storage Caverns in Maha Sarakham Salt	255
		T. Thongprapha, S. Khamrat and K. Fuenkajorn	
		Study of Displacement Distribution Around Circular Opening Affected	
30	UMOS3-P42	by Presence of Discontinuities Using Laboratory Biaxial Test	265
		N. F. Qaidahiyani and N. P. Widodo	
		Determination of Time-Dependent Strengths of Salt Pillars using	
31	UMOS5-P22	Strain Energy Density Criterion	275
		P. Junthong and K. Fuenkajorn	
32	UMOS6-P183	Inorganic Silicate Capsules for Anchoring in the Mines B. P. Khassen, S. N. Lis and R. A. Musin	283
		Shear Behavior of Heat-treated Fractures in Beishan Granite	
33	EN5-P78	Z. Zhao, D. Zhou and H. Pu	289
		Critical Reynolds Number for Nonlinear Flow Through Single	
34	EN6-P192	Fractures: The Roles of Aperture and Surface Roughness	297
		R. Liu and Y. Jiang	
35	EN7-P175	Strength and Permeability of Carbonate Reservoir Rocks	303
		P. A. Nawrocki and A. A. Jebbouri Investigation into Evolution of Shale Gas Permeability during the Gas	
36	EN8-P45	Reservoir Recovery Process	313
		P. Cao, J. Liu and YK. Leong	
		Suggestion of Hydraulic Stimulation Guideline Considering	
37	IN5-P160	Management of Induced Seismicity for Pohang EGS Project	323
		KI. Kim, KY. Kim and KB. Min	
20		Dynamic Response of Weathered Sandstone with Respect to Physical	221
38	IN6-P209	and Mechanical Characteristics	331
		M. M. Mohd-Nordin, M. K. A. Ismail, A. S. Md. Hasan and Z. Mohamed	
39	IN7-P41	Real-time Monitoring of Tunnel Face Extrusion for Ground Control	341
		K. Date, Y. Yokota, Y. Koizumi, T. Yamamoto and F. Uehan	
	-		

40	IN8-P134	Effects of Forepoling Pre-Support Design Parameters on Shallow Tunnel Crown Stability in Weathered Granite R. A. Abdullah, S. M. Yahya, M. A. M. Ismail and H. Mohamad						
41	RE7-P104	Study on Mechanism and Occurrence Conditions of Fly Rock at Bench Blasting T. Sasaoka, Y. Takahashi, K. Yamaguchi, S. Wahyudi, H. Shimada, T. Saburi and S. Kubota	355					
42	RE8-P87	Strain Rate Effect on the Crack Initiation Stress Level under Uniaxial Compression Y. Wicaksana and S. Jeon						
43	RE9-P15	<i>Effect of Cutter Tool Angle on Rock Cutting Performance</i> K. Rashidi and P. C. Hagan	375					
44	RE10-P71	A Case Study on Shield TBM Driving across the Riverbed of the Hangang (River) CS. Kim and JY. Kim	383					
45	Preliminary Rock Engineering Assessment of the Planned Salang							
46	RE12-P68	Numerical Waveform Estimation for Vibration and Noise Based on Accurate Delay Time Control Tunnel Blasting K. Iwano, T. Inuzuka, J. Nagae, K. Fukui and K. Hasiba	401					
47	CMNM7-P113	DEM Simulation of Cracked Chevron Notched Brazilian Disc Rock Specimen: Fracture Toughness Determination Incorporating Realistic Crack Profiles Y. Xu, F. Dai, N.W. Xu and T. Zhao						
48	CMNM8-P27	Evaluation of Constitutive Model by the Triaxial Compression Test and the Numerical Analysis Introduced Strain Hardening and Softening Y. Aono, T. Okuno, A. Nakaya and T. Nishi						
49		Modeling Stress-Induced Failure for Deep Tunnel Excavation of						
50	Numerical Simulation of Percussive Rock Drilling and Its							
51	CMNM11-P29	Theoretical Model Using Two Kinds of Function for Distribution of						
52		Age-Dependent Shotcrete Behavior in Convergence Confinement Method and 3D Numerical Analysis T. Bhandari and M. Kastner						
53	RMC7-P228	Applicability of Powder-Based 3D Printer in Rock Mechanics S. Fereshtenejad and J. J. Song	465					
54	RMC8-P17	Development of Construction Material for Covering of Seabed Resources Using Fly Ash H. Shimada, T. Sasaoka, S. Wahyudi, S. Fujita, Y. Yoshida and K. Takahashi	475					
55	RMC9-P26	Prediction of Rockburst Potential under High Geo-Stress: Experimental Study S. Vathna, L. Sanghyun and S. Ki-Il	483					

56	RMC10-P207	Comprehensive Laboratory Study of a Slightly Metamorphosed Limestone L. N. Y. Wong, V. Maruvanchery and N. N. Oo						
57	RMC11-P122	Considerations on Friction Angles of Planar Rock Surfaces with Different Surface Morphologies from Tilting and Direct Shear Tests Ö. Aydan						
58	RMC12-P54	<i>Effects of Confining Pressure on Strain Rate–Dependent Deformation</i> <i>and Failure of Kimachi Sandstone</i> K. Amo, Y. Fujii, J. Kodama and D. Fukuda						
59	OPSS1-P4	Geometry Effect of Open Pit and Underground Mine During E. Widijanto, R. K. Wattimena, S. Kramadibrata and M. A. Rai	515					
60	OPSS2-P31	Slope Failure Behaviour Analysis in Open Pit Coal Mining R. H. Musa and S. Saptono	523					
61	OPSS3-P24	Rockfall Mitigation and Slope Stabilization Measures in Open Pit Mines and New Development Measure of Attenuator Systems C. Balg and R. L. Fonseca	533					
62	OPSS4-P80	<i>Effects of the Change of Soil pH on Soil Erosion in Indonesian Open-</i> <i>Cut Coal Mine</i> S. Ogata, S. Matsumoto, H. Shimada and T. Sasaoka						
63	OPSS5-P196	Risk Management of Mining Optimization on the Remaining Coal Reserve based on the Failure Probability Analysis at the Bendili Pit, PT. Kaltim Prima Coal H. Pancamanto, W. Ningrum, C. H. Saputra, B. Sulistyo and S. Kramadibrata						
64	OPSS6-P210	An Experimental Study of the Planar Sliding of Rock Slopes During Dynamic Loading Under Dry and Immersed Conditions K. Adachi, N. Iwata, R. Kiyota, Y. Takahashi, O. Aydan, N, Tokashiki and T. Ishibashi						
65	RMC13-P36	Dynamic Tensile Failure of Rocks Subjected to Simulated In situ Stresses K. Xia, B. Wu, Y. Xu and Y. Guo						
66	RMC14-P89	Utilization of Geotechnical Logging for Rockmass Characterization						
67	RMC15-P188	Fracture Propagation in Layered Sandstones with Varying Saturation						
68	RMC16-P151	W. Timms, P. Cai, B. David, H. Masoumi, N. Melkoumian and J. Heo The Effect of Clay Content on the Strength of Clay-Bearing Rocks A. Sjadat, A. Purba, U. Barito, K. Sulaeman and R. Hasan	599					
69	RMC17-P129	Creep Tests on Limestone from Bazda Antique Underground Quarry in Turkey						
70	RMC18-P131	T. Ito, Ö. Aydan, R. Ulusay, C.Ağan and M. GenişField Experimentation of Rock Quality Designation Measurements at Sandstone Mine, Loa Janan Ulu Village, Loa Janan Sub District, Kutai Kartanegara, East Kalimantan F. Adinata, W. Nugroho, C. Sarungallo, C. Manurung and S. Mahardika						
71	UMOS7-P9	Constitutive Equation for Creep Closure of Shaft and Borehole in Potash Layers with Varying Carnallite Contents N. Wilalak and K. Fuenkajorn	623					

72	UMOS8-P182	Damage Analysis at Drawpoint in Panel 1E, Panel 1F, Panel 1G and Panel 1H DOZ Underground Mine Area PT Freeport Indonesia C. Andrianto, A. Sjadat, A. Kurniawan, A. Mulyadi and A. Ginting				
73	UMOS9-P12	A Comparative Performance Analysis of Wireless Sensor Network Topologies for Underground Spaces Monitoring M. A. Moridi, M. Sharifzadeh, Y. Kawamura and E. K. Chanda				
74	UMOS10-P101	Sill Pillar Application for Crown Pillar Recovery Optimization in Overhand Cut and Fill Underground Mine T. Karian, H. Shimada, T. Sasaoka, S. Wahyudi and B. Sulistianto				
75	UMOS11-P67	Application of CMRR Classification System to Determine Rock Mass Design Parameters in Underground Coal Mines A. Taheri and M. Guardado	661			
76	UMOS12-P73	Prediction of Disc Cutter Wear for a Hard Rock TBM Based on Improved Energy Method and Empirical Analysis F. Zhao, Y. Xue and Z. Diao	671			
77	EN9-P167	Influence of Injection Rate and Viscosity on Hydraulic fracturing Behaviour of Granite S. G. Jung, M. B. Diaz, L. Zhuang, K. Y. Kim, H. S. Shin, S. Yeom and J. H. Jung				
78	EN10-P169	Rock Mechanical Properties Modeling Of "GE" Exploration Wells to Prevent Wellbore Instability D. R. Febriansanu, E. Andhini, B. S. Pambudi, N. T. Santoso and A. H. Lukman				
79	EN11-P100	Reservoir Simulation of Part of Yurubcheno-Tokhomskoye Oil Field Based on Geological Geomechanical Model Y. A. Kashnikov, S. G. Ashikhmin, D. V. Shustov, S. Y. Yakimov and A. E. Kukhtinskii				
80	EN12-P149	Development of Source Locating Technique and its Validation S. Choi and S. Jeon	707			
81	EN13-P139	Model-Based Quantitative Rock Mass Classification with Geophysical Data T. Takahashi				
82	EN14-P43	Wellbore Stability Analysis during Underbalanced Drilling of				
83	IN9-P48	<i>Engineering Geological Investigations and Rock Mass</i> <i>Characterization for a Road Tunnel in the Himalayas</i> R. Bhasin, A. Aarset and T. Pabst	731			
84	IN10-P135	Coupling Analysis of Rock Mass and Water for Debris Flow on a Rock Slope by DDA (Discontinuous Deformation Analysis) and MPS (Moving Particle Simulation) Method M. Kuno, S. Miki, Y. Ohnishi and T. Sasaki				
85	IN11-P33	Experimental Study of Sodium Silicate Grouting Material: Characterization and Mechanical Performances R. S. Putranto, H. Shimada, T. Sasaoka, S. Wahyudi, S. Fujita and Y. Kanemasu	749			
86	IN12-P186	Hydraulic Fracture Testing for the Xe Pian - Xe Namnoy HPP R.J. Longden and G. Klee	757			

87	IN13-P82	Application of Chain Conveyor Cutter (CCC) method to Construction of Ocean Disposal Sites S. Matsumoto, H. Shimada, T. Sasaoka, S. Ikuta and T. Sakiyama						
88	IN14-P99	Slope Stability Analysis Considering the Variability of Hydraulic Conductivity under Rainfall Infiltration. Case Study: Sangun Mountainous, Fukuoka Prefecture, Japan H. Pachri, Y. Mitani and H. Ikemi	775					
		Poster Presentation						
1	PO1-P13	Uniaxial Compressive Strength Effects on Abrasive Waterjet Cutting Performance for Rock Excavation TM. Oh, ES. Park, GC. Cho and GW. Joo						
2	PO2-P32	Determining the Effect of Texture Coefficient on Performance of Diamond Wire Machines D. Tumac, S. Er, E. Avunduk, M. Basyigit, H. Copur and C. Balci						
3	PO3-P61	Rock Strength Characteristics of Warukin Formation (KIDECO) and Field Applications HY. Kim, K. Setiadi and GN. Park	797					
4	PO4-P74	A 3D Distinct Element-Based Model for Deformation and Failure of Rock T. Nishimura, K. Fumimura, M. Kohno and D. Mitsuhashi	807					
5	PO5-P88	<i>Evolution of Rock Permeability Evaluated by Coupled Thermal-</i> <i>Hydraulic-Mechanical-Chemical Model</i> H. Yasuhara, N. Kinoshita and K. Kishida						
б	PO6-P108	Correlating Fracture Properties of Saturated Sedimentary Rocks with Compressive Strength D. G. Roy, T. N. Singh and J. Kodikara						
7	PO7-P111	Physical and Mechanical Properties of Artificial Rock based on Clay Mineral Content and Type M. Kohno, Y. Takehara and T. Nishimura						
8	PO8-P112	<i>Experimentation of Estimation Rippability on Jointed Rock Mass</i> G. T. V. Herman, H. Hasan, F. D. Mustika and J. Suhadha						
9	PO9-P137	Stability Assessment of Fractured Natural Slope along a Shore Road using Key Block Analysis and Discontinuous Deformation Analysis (DDA)						
10	PO10-P162	T. Nakai, Y. Maruki, K. Fukutsuka, T. Nishiumi and Y. Ohnishi Applicability of NMM-DDA with Node-based Element for the Bearing Capacity of Cohesive-frictional Ground R. Hashimoto, T. Koyama and M. Kikumoto						
11	PO11-P235	Coupled Hydro-Mechanical Analysis for Viscous Grout Injection in a Rock Joint JW. Lee, AR. Kim, HM. Kim, M. Yazdani and ES. Park						
12	PO12-P234	Impact of Well Orientation on the Geomechanical Stability of Aquifer System during CO2 Injection AR. Kim, JW. Lee and HM. Kim						
13	PO13-P38	Dependence of Dynamic Properties of Longyou Sandstone on Heat- Treatment Temperature and Loading Rate W. Yao, Y. Xu and K. Xia	879					
14	PO14-P50	Stress Dependency of Permeability in High Temperature Fractured Granite N. Watanabe, M. Egawa and K. Sakaguchi	887					

29	PO29-P39	around a Circular Tunnel in Jointed Rock Masses H. Tu and C. Qiao	1023				
28	PO28-P25	Estimation of Rock Mass Stress State Based on Convergence Measurement during Gallery Excavation K. Aoyagi, M. Nago, K. Kamemura and K. Sugawara Anisotropic Distribution of the Rock Mass Resistant Coefficient	1013				
27	PO27-P201	Fluid Flow Simulation through 3-D Discrete Fracture Networks N. Huang, Y. Jiang, R. Liu and B. Li	1005				
26	PO26-P163	Development of Hydraulic Stimulation Simulator for Comprehensive EGS Stimulation Design S. Park, L. Xie, H. Yoo, KI. Kim and KB. Min					
25	PO25-P145	A Study on The Extraction of Slope Surface Orientation using LIDAR with Respect to Triangulation Method and Sampling on The Point					
24	PO24-P144	Study of Physical and Numerical Model in Determination of Fracture Toughness Mode I Using Three Point Bending and Brazilian Test for Andesite, Limestone and Cement Paste S. Aqla, N.P. Widodo and M.A. Rai					
23	PO23-P141	Study a Correlation of Ultrasonic Wave and Numerical Modeling under Biaxial Load Test in Laboratory Scale Herman, N.P. Widodo, I. Arif and B. Sulistianto					
22	PO22-P128	Unloading Crack of Hard Rock and its Restraining Support Method: Case Study in a Large Underground Cavern with High Geostress Condition Q. Jiang, YL. Fan, XT. Feng, Y. Li, W. He and GF. Liu					
21	PO21-P118	Strain and Strength of Saturated and Dried Rock Samples Under a Freeze-Thaw Cycle R. A. Sudisman, T. Yamabe and M. Osada					
20	PO20-P116	Application of Rock Mass Quality Rating (RMQR) and Rock Mass Classification System at Andesite Open Pit Mining in West Sumatera M. A. Fikri, and Y. Azzuhry					
19	PO19-P91	Integrated Evaluation of In-situ Stress Measurement and Borehole Scanning Result for Estimation of Rock Stress State in Pohang Basin S. H. Bae, S. Jeon, KB. Min and J.S. Kim					
18	PO18-P81	Numerical Simulation on Shear Behavior of Rock Discontinuities under Various Thermal, Hydraulic and Mechanical Conditions T. Kim, S. Jeon and SB. Choi	925				
17	PO17-P75	<i>Effect of Difficult Ground Conditions on Double Shield TBM</i> <i>Performance</i> E. Avunduk, A. S. Mamaghani and D. Tumac	915				
16	PO16-P66	Hydraulic Fracturing in Inada Granite under Brittle-Ductile Condition M. Egawa, N. Watanabe and K. Sakaguchi	905				
15	PO15-P58	Correction Model for Strength Parameters of a Multistage Triaxial Compression Test on Sandstone X. Shi, L. Liu, Y. Meng, S. Mao, W. Wang, J. Wu and C. Wen					

30	PO30-P47	Travel Distance Prediction Analysis for Work Safety Distance On The Potential of Mining Slope Failure in Indonesia R. R. Putra and Y. Azzuhry						
31	PO31-P72	Numerical Simulation of Transient Heat Conduction in Anisotropic Medium Based on SPH-FDM Coupling Algorithm X. Tao, C. Peipei , B. Bing and Z. Chenggang	1041					
32	PO32-P90	 3-D Analysis of Time-dependent Behavior of Tunnel Crossing Weak Rock Formation J. Kodama, S. Tabata, D. Fukuda, Y. Fujii, H. Murayama, H. Niwa and A. Sainoki 						
33	PO33-P109	9 Implementation of Study Rockfall Hazard Rating System (RHRS) 9 Method for Slope Stability Analysis at Samarinda Seberang District, East Kalimantan, Indonesia N. Rohmah, T. Trides, M. Fitra, G. I. Santoso and Suhbajir						
34	<i>Experimental Study on the Measurements of Electrical Impedance and</i> <i>P-wave Velocity of a Low Permeable Rock Core during the</i>							
35	PO35-P165	Rock Slopes Stability Evaluation Based on Comparison Empirical Methods "Slope Mass Rating" and Analytical Method at Discontinuities Rock Mass Condition (Case Study at Sandstone Mines, Tani Aman Village, Loa Janan Sub District, Samarinda, East Kalimantan, Indonesia) T. Trides, J. P. Londa and P. Laksono	1069					
36	PO36-P215	Stick-Slip Behavior of Rock Discontinuities and Its Implications in the Estimation of Strong Motions during Earthquakes N. Iwata, K. Adachi, Y. Takahashi and Ö. Aydan						
37	PO37-P37	A Review of the Non-destructive Testing Methods to Evaluate Tunnel Lining Integrity Y. Gao and Y. Jiang						
38	PO38-P96	Analysis of a Geothermal Double-well System Based on Numerical Simulation and In-situ Tracer Test S. Luo, E. Song and Z. Zhao	1097					
39	PO39-P191	Correlation between Full Core and Half Core Specimen for Point Load Index in Poboya River Reef Gold-Silver Deposit D. Kusumanto, A. B. Pramusi, C. Nursetyo and A. Rahman	1107					
40	PO40-P226	Prediction of Rock Failure Strength Based on Comparison Between Water Surface and Finite Element Analysis (FEA) Steady State Y. Sugianto, M. A. Azizi and H. Saliman	1115					
41	PO41-P132	Numerical and Analytical Study on the Plane Elastic Waves Propagating in Layered Saturated Porous Half-Space P. Li and E. Song						
42	PO42-P214	Elasto-Plastic Analysis of Deformations in Twin Interacting Horse Shoe Tunnels I. A. Khan, K. Venkatesh and R. K. Srivastava	1133					
43	PO43-P11	Core Disking Analysis to Characterize Potential High Horizontal Stress in Open Pit Mine J. W. Tu'u, I. Arif, N. P. Widodo and E. Widijanto	1141					

	Plastic Zone Prediction Using Finite Element Method on Cikoneng	
PO44-P3	Decline Tunnel at PT. Cibaliung Sumberdaya	1149
	B. P. Putra, B. Sulistianto, G. M. Simangunsong and N. P. Widodo	
	Proceeding Only	
	Evaluation of Shear Strength of Rock Discontinuities on Direct Shear	
PR1-P7	Test Result of Sawtooth Joint Models	1159
	Kartini, Jackie, G. M. Simangunsong and B. Sulistianto	
	Measurement of Blast Fragmentation Using Image Processing	
PR2-P156	Analysis 3D Photogrammetry	1167
	S. Hidayat, G. M. Simangunsong and D. Suwardhi	
	Application of Clustering System to Analyze Geological Geotechnical	
PR3-P124		1175
	and Hydrogeological Data base according to HC-System Approach	1175
	L. E. Widodo, T. A. Cahyadi, S. Notosiswoyo and E. Widijanto	
PR4-P30	Experimental Investigation of Contact Area on Wave Propagation and	
	Closure Deformation of Rock Joints	1185
	N. N. Li, J. C. Li, L. F. Rong and H. B. Li	
	The Development of Wetmuck Classification as a Tool for Controlling	
DD5 D105	and Monitoring Mudrush Hazard (PT Freeport Indonesia Wetmuck	1193
FK3-F103	Case History - Part I)	1195
	L. I. Rachmad, A. Sjadat and A. P. Ginting	
	A Comparison on Rock Slope Stability Analysis of Phu kam Copper-	
$DD \in D224$	Gold Open Pit Mine, Laos PDR by Limit Equilibrium, Finite Element	1199
rko-r224	and Finite Difference Methods	1199
	K. Manivang, G. M. Simangunsong and R. K. Wattimena	
	PR2-P156 PR3-P124	PO44-P3Decline Tunnel at PT. Cibaliung Sumberdaya B. P. Putra, B. Sulistianto, G. M. Simangunsong and N. P. WidodoProceeding OnlyPR1-P7Evaluation of Shear Strength of Rock Discontinuities on Direct Shear Test Result of Sawtooth Joint Models Measurement of Blast Fragmentation Using Image Processing

	LEGEND					
EN	:	ENERGY				
IN	:	INFRASTRUCTURE				
RMC	:	ROCKMASS CHARACTERIZATION				
CMNM	:	CONSTITUTIVE MODELS & NUMERICAL MODELLING				
RE	:	ROCK EXCAVATION				
UMOS	:	UNDERGROUND MINE OPENING STABILITY				
OPSS	:	OPENPIT SLOPE STABILITY				

Evaluation of Ground Support by Rock Mass Index and Finite Element Method Numerical Modelling PT Cibaliung Sumberdaya Banten

A. Adhareza^{a*}, S. Saptono^a and B. D. Nagara^a ^a Mining Engineering, UPN "Veteran" Yogyakarta ^{*}adhareza.adriel@gmail.com (corresponding author's E-mail)

Abstract

PT Cibaliung Sumberdaya is one of gold mining company which using cut and fill method for the underground mining system. In underground mining system, all activity doing in ground from surface. The common problem in underground mining activity is the instability of tunnel. Thus, the corrective action needed is evaluate the ground support system itself.

System of ground support certainly requires an analysis from a safety and economic part. Ground support system should be revised refer to mining progress or based on emerging technology in mining area. The evaluation aims to update the primary ground support system in mining which applied by recommendation of Geotechnical Unit, Dept. Quality Control, PT Cibaliung Sumberdaya classified by Rock Mass Rating (RMR) with the new ground support system classified by Rock Mass index (RMi) ones. The meaning of evaluation is to evaluate from a ground support quantity aspect (total split set requirement and thickness of shotcrete) and ground support effective aspect to gain a high safety value. Manual calculation about safety factor (FK) value, plastic zone, stress distribution surrounding the tunnel also available with added a total displacement and strength factor (SF) value from analysis of numerical calculation finite element method with Phase2 v.07 to ensure the empiric method. Result of research in 3 locations e.g Cikoneng Decline, Cikoneng Xcut 2B level 1125 North, Cikoneng Xcut 4 level 1065 Ore Drive 1 South, evaluation of ground support system by Rock Mass index (RMi) more efficient from support quantity and effective from support utility, also give a high value of safety factor for a tunnel.

Keywords: Underground Mine, Ground Support, Rock Mass Classification, Finite Element

1. Introduction

In geographic, PT Cibaliung Sumberdaya located in end South West of Java and in administrative located in Province of Banten. In astronomic, the location of PT Cibaliung Sumberdaya occur at 6° 30' - 6° 52' S and 102° 02' - 105° 37' E. To go to this location from Jakarta could be reached by car transportation via Jakarta – Serang – Pandeglang – Labuan - Cibaliung route in 6 (six) hour.

The purpose of this research is to evaluate the ground support by RMi with the ground support which applied in PT Cibaliung Sumberdaya and compare with numerical modelling (finite element method) to reach an effective and efficient ground support for the tunnel instability potential in underground mining. The limitation of this research is do in Cikoneng area only and the critical condition of stability (safety factor) calculated by Mohr-Coulomb failure criterion. The rock mass classified with Rock Mass index (RMi) by Arild Palmström (2000) and the numerical modelling was calculated and presented with software Phase2 v.07.

2. Theories (or Experiments)

2.1 Theories

Rock Mass index (RMi) is a classification system based on inherent of the rock mass. Basically, this system combine the compressive strength from the intact rock and the parameter of joint condition.

There are 5 (five) input parameters to classify the rock mass by RMi system: Uniaxial of compressive strength (c), Volume block (Vb), Joint roughness factor (jR), Joint alteration factor (jA), and Joint continuity factor (jL). The value of Rock Mass index (RMi) parameters could be shown in Table 1.

Block volume (Vb)					value in m ^a (from observations at site or on drill cores, etc.)				
Joint	Joint condition factor (jC)				jC = jR	jC = jR x jL / jA (ratings of jR, jA and jL from the tables below)			
jR (je	oint roughness facto	r, which is con	posed of I	arge sca	le and sma	Il scale undulatio	ons, similar to Jr in	the Q-syster	
					arge sca	le waviness	of joint plan	e	
(Th	e ratings in bold Italic are	e similar to Jr)	Plan	ar u	Slightly indulating	Undulating	Strongly undulating	Stepped or interlocking	
4 8	Very rough		2		3	4	6	6	
ant	Rough		1.5		2	3	4.5	6	
Small scale smooth- ness of joint surface	Smooth		1		1.5	2	3	4	
sof	Polished or slickensi	ded "	0.5		1	1.5	2	3	
ES E	For filled joints jR = 1 For irregular joints a rating of jR = 6 is suggested								
	ioint alteration factor				in the Q-sy	vstem)			
		Healed or well	d or welded joints filling of quartz, epidote, etc.		ote, etc.		jA = 0.75		
50	CLEAN	Fresh joint wa	Fresh joint walls		no coating or filling, except from staining (rust)			1	
Contact between joint walls	JOINTS:	Altered joint walls		- one grade higher alteration than the rock			2		
Dint and				- two grades higher alteration than the rock			rock	4	
8	COATING or	Frictional mate	erials	sand, silt calcite, etc. without content		f clay	3		
	THIN FILLING OF:	Cohesive mat	erials	clay, chlorite, talc, etc.			4		
		Frictional mate	rials	sand, sil	t calcite, etc.	(non-softening	jA = 4	8	
ar no	THICK FILLING OF:	Hard, cohesive	materials	clay, chi	orite, talc, etc	c.	6	5 - 10	
Party or no wall contact	The recent of the	Soft, cohesive materials		clay, chi	clay, chlorite, talc, etc.		8	12	
4 N		Swelling clay n	naterials	material	I exhibits swelling properties		8 - 12	13 - 20	
							Thin filling (< 5 mm)	Thick filling	
	oint size factor, whic or foliation partings	and the second se	d of the len ength < 0.5	*	continuity o	f the joint)	Continuous joints jL = 3	Discont. joints jL = 6	
w			vith length 0	ength 0.1 - 1 m			2	4	
				- 10 m			1	2	
Joints					ngth 10 - 30 m				
Joints			vith length 1	0 - 30 m			0.75	1.5	

Table 1 Value of rock mass index (RMi) input parameters

There is a formula to define the value of RMi based on the jointed rock, as shown in Eq.1

$$RMi = \sigma_c . JP \tag{1}$$

where σ_c = uniaxial compressive strength based on the UCS/PLi test JP = joint parameter value

To define the value of joint parameter (JP) can be found

 $JP = \sigma_{c} \cdot 0.2\sqrt{jC} \cdot Vb^{D}$ where jC = joint condition factor $Vb = block \text{ of rock volumes (m}^{3})$ $Db = diameter \text{ of rock block (m}^{3})$ (2)

$$Db = 0.37 \cdot jC^{-0.2}$$
(3)

RMI is obtained a value of RMi on tunnel or hole openings are examined. There are 6 (six) class on the value of the RMI. For more details can be seen in the following table

RMi =	100	-	40	Very high
RMi =	40	-	10	High
RMi =	10	-	1	Moderate
RMi =	1	-	0.4	Low
RMi =	0.4	-	0.1	Very low
RMi =	0.1	-	0.01	Extremely low

Table 2 Rock mass index (RMi) classification

Values of the RMi obtained must be calculated again based on continuity of rock mass factor (CF). Continuity of rock mass factor is a factor of joint continuity. If joint that does not intersect with another joint then it can be said to be of continuity of ground type is massive or highly jointed or particulated (CF < 5 or > 100). If the joint intersect with other joint, then it can be said the continuity of ground type is jointed (CF 5 to 100). The value of the CF was obtained from the following formula

$$CF = Dt (span) / Db$$
(4)

where Dt = tunnel diameter

Db = the diameter of rock blocks

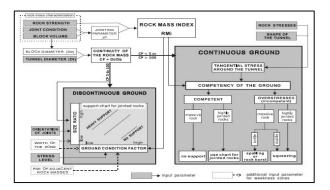


Fig.1 . Rock mass index (RMi) flowchart

The value of the CF can be grouped into 2 (two) type continuity of the ground. For a continuous ground, the value of the RMi will be calculated to get the value of the competency of the ground (Cg) based on the value of tangential pressure ($\sigma\theta$). And, the value of tangential pressure ($\sigma\theta$) around the hole openings of the pressure of rocks either vertically (ρv) and horizontal (ρ h), influence of ground water (ground water), shape, span (Wt), and the diameter of the hole openings (D). For discontinuous ground, the value of the RMi will be calculated to get the value of the ground condition factor (Gc) based on the stress factor level (SL) and the size ratio (Sr) based on the orientation of the joint. For more details and calculations in determining any needs of the RMi obtained, it as shown in Figure.1.

2.2Experiments

1. Rock Mass Condition and Properties

Mechanical and physical properties of rock mass can be seen in Table 3 as follows:

No	Location	Rock Mass	σc (MPa)	GSI	Cohe sion (c)	Angle of Friction (°/deg)	Young Modulus (MPa)	Tensile Strength (MPa)
1	Cikoneng Decline	Porphiry Andesite	36.3	34	0.42	40.19	978.61	0.01
2	Cikoneng Xcut 2B level 1125 North	Quartz Vein Breccia – Clay Matrix Breccia – Porphiry Andesite	64.5	36	0.25	46.76	1561.60	0.01
3	Cikoneng Xcut 4 level 1065 Ore Drive 1 South	Stockwork – Clay Matrix Breccia – Quartz Vein	53.7	33	0.35	37.91	1197.46	0.01

Table 3 Mechanical & physical properties of rock mass

2. Joint Condition (jC)

Joint Condition (jC) obtained from the calculation of the 3 parameters i.e. joint roughness (JR), joint alteration (jA), and the joint length (jL). For more details can be seen in Table 4 below.

No	Location	Joint Roughness (jR)	Joint Alteration (jA)	Joint Continuity (jL)	Joint Condition (jC)
1	Cikoneng Decline	2 (slightly undulating – rough)	4 (thin filling – clay)	1.5 (10 – 30 m)	0.75
2	Cikoneng Xcut 2B level 1125 North	3 (undulating – rough)	4 (thin filling – clay)	2 (1 – 10 m)	1.5
3	Cikoneng Xcut 4 level 1065 Ore Drive 1 South	3 (undulating – rough)	3 (thin filling – silica)	2 (1 – 10 m)	2

Table 4 Joint condition (jC)

3. Joint Parameters (JP) and the value of the Rock Mass index (RMi)

Joint Parameter is the parameter values obtained from joint based on the calculation of the value of the volume of blocks rocks (Vb), contants D, and joint condition (jC). Based on the value of this JP can be calculated the value of Rock Mass index (RMi) at each location. For more details can be seen in Table 5 as follows.

Table 5 Joint parameter (JP))
------------------------------	---

No	Location	Joint Condition (jC)	Volume of Block Rocks (Vb)	Konstanta D	Joint Parameter (JP)	RMi Value
1	Cikoneng Decline	0.75	0.200 m ³	0.39	0.090	3.27 (III – moderate)
2	Cikoneng Xcut 2B level 1125 North	1.5	0.070 m ³	0.34	0.099	6.39 (III – moderate)
3	Cikoneng Xcut 4 level 1065 Ore Drive 1 South	2	0.004 m ³	0.3	0.043	2.31 (III – moderate)

4. Continuity Factor (CF)

Cikoneng Decline tunnel diameter i.e. 4.78 m and the value of the Db that is 0.62 m so that the value of the CF gained i.e 8 with the category of discontinuous ground. As for the location of Cikoneng Xcut 2B level 1125 North tunnel diameter i.e. 5.11 m and the value of the Db that is 0.41 m so that the value of CF obtained i.e. 12 with the discontinuous category. Then, for the location of the 1065 level 4 Xcut Cikoneng Ore Drive 1 South has a diameter tunnel i.e 4.32 m and the value of the Db that is 0.16 m so that the value of CF obtained i.e. 27 with the discontinuous category of ground.

5. The Influence Surrounding the Tunnel

Based on the results of the calculations are then obtained the influence of stress level (SL), groundwater (GW), factor of joint set adjustment (Nj), the inclination and orientation on the roof and the wall as follows. (see Table 6).

No	Location	Stress Level (SL)	Ground -water (GW)	Roof Inclination (C _{roof})	Wall Inclination (C _{wall})	Roof Orientation (Co _{roof})	Wall Orientation (Co _{wall})	Factor of Joint Set Adjustment (Nj)
1	Cikoneng Decline	1.50	1	2.80	2.30	1	2	0,50 (6 joint sets)
2	Cikoneng Xcut 2B level 1125 North	1.50	1	2.60	3.30	1	1.50	0,75 (4 joint sets)
3	Cikoneng Xcut 4 level 1065 Ore Drive 1 South	1.50	1	3.60	1.90	1	1.50	1,50 (2 joint sets)

Table 6 Influence of stress level, groundwater, the inclination and orientation

6. Ground Condition (Gc), Size Ratio (Sr), and the Determination of Bolt Length (Lb)

Here are graphs that contain a combination of support quantity needs from Ground Condition (Gc), Size Ratio (Sr) values and bolt length (Lb). (see Table and Figure below).

No	Location	Ground Condition (Gc)		Size Ratio (Sr)		Bolt Length (Lb)	
		Roof	Wall	Roof	Wall	Roof	Wall
1	Cikoneng Decline	14	11	16	26	1.4 m	2.0 m
2	Cikoneng Xcut 2B level 1125 North	25	32	17	25	1.5 m	2.1 m
3	Cikoneng Xcut 4 level 1065 Ore Drive 1 South	12	7	18	27	2.5 m	1.4 m

Table 7 Ground condition (Gc), size ratio (Sr), and bolt length (Lb)

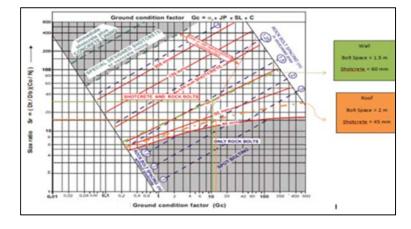


Fig. 2. Cikoneng decline rockbolt and shotcrete support combinations

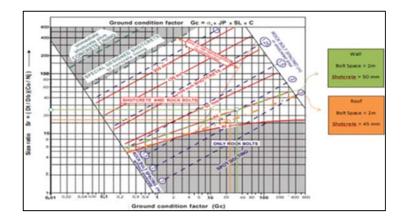


Fig. 3. Cikoneng xcut 2b level 1125 north rockbolt and shotcrete support combinations

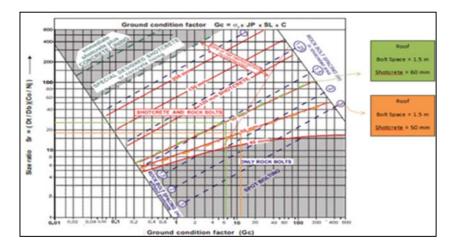
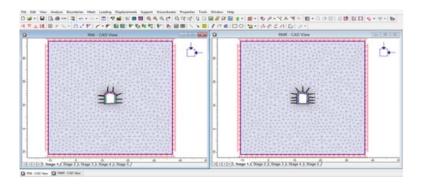


Fig. 4. Cikoneng xcut 4 level 1065 ore drive 1 south rockbolt and shotcrete support combinations

7. Safety Factor, The Rate of Displacement, Distribution of Stress Surrounding the Tunnel, and Plastic Zone

			Cikone	ng Decline		g Xcut 2B 25 North	level 1065	g Xcut 4 Ore Drive outh
			Roof	Wall	Roof	Wall	Roof	Wall
Safety Fa			0.97	1.56 – 1.65	0.61	0.72 – 0.74	0.66	1.28 – 1.39
Rate of C Displace (Vr)		ıl		22 x 10 ⁻⁵ n/day	37.570 x 1	0 ⁻⁵ mm/day	49.460 x 1	0 ⁻⁵ mm/day
Rate of M Displace		num (Vr max)		73 x 10 ⁻² n/day	28 x 10 ⁻	³ mm/day	61 x 10 ⁻³	³ mm/day
		Major Stress (σ_1)	3.63	1.00	2.80	1.44	1.75	0.78 – 0.86
I.		Minor Stress (σ_3)	0.43	0.08 – 0.11	0.34	0.12	0.21	0.14
Distribution of Stress Surrounding the Tunnel	(MPa)	Vertical Stress (σ _v)	3	3.34	1.	.41	2.	98
Stress Surround		Horizontal Stress (σ _h)	1 1.04		0.65		0.98	
ribution of 9		Radial Stress (σ_r)		0		0		0
Dist		Tangential Stress (σ_{θ})	7.83	-0.22	3.58	0.54	7.96	-2.02
		Shear Stress $(\sigma_{r\theta})$		0		0		0
Plastic Z	one (m)	1	.74	1	.71	1.61	


Table 8 Safety factor, the rate of displacement, distribution of stress, and plastic zone

3. Result and Discussion

1. Support Requirement

No	Location	Rock Mass	Rockbolt	(Splitset)	Shotcrete Thickness	Additional
INO	Location	Value	Space	Quantity	Shotchete Thickness	Additional
	Cikoneng	RMi = 3.26	1.5-2 m	8 pcs	1 st layer 45 – 60 mm	
1	Decline	RMR = 39	1.20 m	11 pcs	1 st layer 50 mm, 2 nd layer 100mm fibrecrete	Forepolling 2.40 m
	Cikoneng	RMi = 6.37	2 m	7 pcs	1 st layer 45 -50 mm	
2	Xcut 2B level 1125 North	RMR = 41	1.50 m	9 pcs	1 st layer 50 mm	
	Cikoneng Xcut 4 level	RMi = 2.30	1.50 m	8 pcs	1 st layer fibrecrete 50 – 60mm	
3	1065 Ore Drive 1 South	RMR = 38	1.10	11 pcs	1 st layer 50 mm, 2 nd layer 100mm fibrecrete	Forepolling 2.40 m

Table 9 Support requirement

Fig. 5.Cikoneng decline support quantity

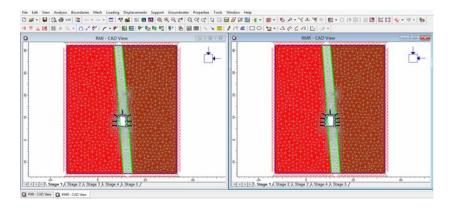


Fig. 6.Cikoneng xcut 2b level 1125 north support quantity

🗅 🖆 ବ 🖬 🖪 📾 💐 ରେ ବ ର ବ 🖽 📢 🖬 🖬 🖬 🗮 🔍 କ୍ର୍ଟ୍ଟ ପ୍ର୍ଟ୍ ପ୍ରି		
		8 💊 • 🗞 • 🖶
이 ゔ ム 28 回 彡 べ・ 白 ご が ア・ギ 回 回 作 12 時 旺 宇 16 回 回 \ ゝ 5		
🖬 RMi - CAD View 💿 🔍 🛍	RMR - CAD View	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Fig. 7. Cikoneng xcut 4 level 1065 ore drive 1 south support quantity

2. Strength Factor

		Support Design	Strength Factor (SF) Value					
No	Location	by Rock Mass	No	Support	Supported			
		Classification	Roof	Wall	Roof	Wall		
1	1 Cikoneng Decline	RMi	0.95	0.95 – 1.26	1.89	3.16 - 4.11		
1		RMR	0.95	0.93 - 1.20	1.89	2.53 - 3.79		
C	Cikoneng Xcut 2B	RMi	0.95	0.95	0.95 - 1.58	1.58 - 2.21		
2	level 1125 North	RMR	0.95	0.93	0.95 - 1.26	1.58 - 2.21		
	Cikoneng Xcut 4	RMi			1.58	3.79 - 4.74		
3	level 1065 Ore Drive 1 South	RMR	0.95	1.26 - 1.89	1.58	3.47 - 4.79		

Table 10 Strength factor value

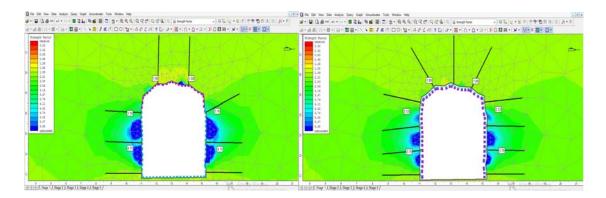


Fig. 8.Cikoneng decline strength factor value

Fig. 9. Cikoneng xcut 2b level 1125 north strength factor value

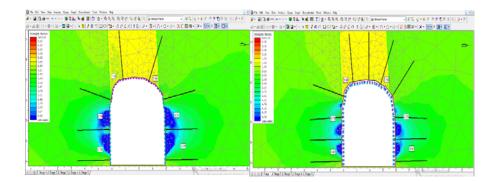


Fig. 10. Cikoneng xcut 4 level 1065 ore drive 1 south strength factor value

4. Conclusions

- a. Quantity of rockbolt requirement (splitset) and thickness of shotcrete on the support modelling which classified base on classification of Rock Mass index (RMi) fewer in number of splitset and much thinner in shotcrete also do not require fibrecrete nor forepolling.
- b. In general review from support requirements and strength factor value, RMi support design modeling is more effective in support quantity terms as well as efficient in terms of the needs of support.

Acknowledgement

The author would like to thanks for the valuable opportunity to participate in 9th ARMS.

References

- Palmström, A., 1995, *RMi A Rock Mass Characterization System for Rock Engineering Purposes* (Master's thesis), Retrieved from Norwegian Geotechnical Institute, Norway.
- Palmström, A., 1995, Recent Development in Rock Support Estimates by the RMi, *Journal of Rock Mechanics and Tunneling Technology Vol.6 No.1*, Norway.
- Palmström, A., 1995, RMi a system for characterizing rock mass strength for use in rock engineering, *Journal of Rock Mechanics and Tunneling Technology Vol. 1 No. 2*, Norway.
- Hoek, E. and Brown, E. T., 1982, Underground Excavation in Rock, Institution of Mining and Metallurgy, London.