ISRM International Symposium 2008 Asian Rock Mechanics Symposium (ARMS5) **New Horizons in Rock Mechanics Developments and Applications** Editors: Abbas Majdi & Abdolhadi Ghazvinian ISRM

5th Asian Rock Mechanics Symposium 2008

(ARMS5)

Tehran, Iran 24-26 November 2008

Volume 1 of 2

Editors:

Abbas Mahdi

Abdolhadi Ghazvinian

ISBN: 978-1-61782-352-7

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2008) by the International Society for Rock Mechanics All rights reserved.

Printed by Curran Associates, Inc. (2011)

For permission requests, please contact the International Society for Rock Mechanics at the address below.

International Society for Rock Mechanics c/o LNEC Av. Brasil, 101 1700-066 Lisboa Portugal

Phone: (+351) 218443419 Fax: (+351) 218443021

secretariat.isrm@lnec.pt

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2634

Email: curran@proceedings.com Web: www.proceedings.com

CONTENTS

Preface

Organization

KEYNOTE LECTURES (Alphabetical order)	1
New Directions of Rock Mechanics and Rock Engineering: Geomechanics and Geoengineering Ö. Aydan	3
Important Aspects of Petroleum Resevoir and Crustal Permeability and Strength at Several Kilometers Depth N. R. Barton	23
Reflections on New Horizons in Rock Mechanics Design: Theory, Education and Practice Z. T. Bieniawski	37
Slurry Fracture Injection of Petroleum and Municipal Sanitation Wastes M.S. Bruno	51
Geotechnical Behavior of Sedimentary Argillaceous Rocks S. A. B. da Fontoura	59
Recent Development and Applications of Intelligent Rock Mechanics X. T. Feng	73
Microwave Assisted Drilling and its Influence on Rock Breakage: A Review F. Hassani, P. Radziszewski and J. Ouellet	87
The Future for Rock Mechanics and the ISRM J. A. Hudson	105

Recent Developments on Rock Joint Roughness, and Rock Joint and Rock Mass Strength and Deformability	119
P. H. S. W. Kulatilake	
Prediction of Fault Zones Ahead of Tunnel Face Using 3-D Displacement Monitoring	133
C. I. Lee, Y. J. Park and K. Y. Kim	
Joint Factor Concept in Solving Rock Engineering Problems	147
T. Ramamurthy	
Observational Method in Rock Engineering	157
H. Stille and M. Holmberg	
Rock Failure, Wave Propagation and Tunnel Stability under Dynamic Loads	167
J. Zhao, Y. X. Zhou and G. W. Ma	
Rock Characterization and Site Investigation	183
Investigation of Swelling Potential of Marls (Case Study)	185
R. Ajalloeian, M. Jafarkhalou, R. Yazdankhah and M. Dehghanian	
Effect of Anisotropy and Confining Stress on Rock Mass Deformation Modulus at Javeh Dam Site (Iran)	191
H. Aliasghari and S. Hashemi	
Mixed Mode I/II Crack Growth Asseessment for Dehbid Marble	197
M. R. M. Aliha, M. R. Ayatollahi and B. Kharazi	
Determination of Shear Fracture Resistance of Rocks	205
M. R. Ayatollahi, M. R. M. Aliha and R. Pakzad	
The Inference of Mechanical Properties of Rocks from Penetration Tests	213
Ö. Aydan , S. Watanabe and N. Tokashiki	
Confining Pressure Unloading with Axial Force Fixed Tests on Marble and its Time-Effect Property Study	221
B. Wang, J. B. Zhu, A. Q. Wu and Z. M. Xiong	

A Simple Practical Method to Determine the Biot Coefficient for Hydromechanical Analyses	227
S. Bodaghabadi and S. J. Moosavi	
Laboratory Study of Permeability in low Permeability Medium	231
W. Z. Chen, J. P. Yang, G. J. Wu, X. J. Tan, S. P. Jia, Y. H. Dai, H. D. Yu	
Investigation on Deformability Modulus of Asmary Formation Rock Mass, by Dilatometer Tests	239
A. Dadi Givshad, H. Memarian and F. Rezaei	
Swelling of Weak Rocks, Effective Parameters and Controlling methods	247
R. Doostmohammadi and M. Moosavi	
Interpretation of Plate Loading Test Results on major Projects	255
L. Faramarzi and H. Fatahi	
Determination of In-Situ Shear Strength of Rock-Concrete Contact Surface at the Abutments of a Concrete Dam M. Gharouni-Nik and S. Hashemi	261
Determination of the Failure Mode in Rock Bridge Using Neural Network Tools A. H. Ghazvinian, S. Setayeshi, V. Sarfarazi and S. A. Moosavi	267
Effect of the Back Rake Angle and Groove Geometry in Rock Cutting M. Ghoshouni and T. Richard	275
Rock Mechanics Tests for the Baixo Sabor Main Dam N. F. Grossmann and J. P. Neves	285
Comparing Different In-Situ Methods for Measuring Deformability Characteristics of Rock Masses in Roudbar Lorestan (Iran) S. Hashemi and M. Gharouni-Nik	293
Capability of a Rational Function as Rock Failure Criterion Considering Brittle-Ductile Transition M. Hashami, A. H. Ghazvinian and A. Taghichian	299

S-wave Velocity Structure Estimated by the Microtremor Survey Method H. Hayashi, S. Ling and T. Kondo	307
Evaluation of Stress Mode in the Hydropower Station of Bakhtyari Dam, Iran S. Hosseinizadeh, H. Jalalifar, S. Karimi-Nasab, F. Rafia and A. M. Radman	315
Shear Behavior of Rock Pile Material with Oversize Particles H. Hosseinpour and A. Fakhimi	321
The Analysis on Dynamic Rheological Parameters and Influencing Factors of Soft Rock Soil H. Hua	331
Creep Characteristics of Tuff in the Vicinity of Zelve Antique Settlement in Cappadocia Region of Turkey T. Ito, Ö. Aydan, R. Ulusay and Ö. Kasmer	337
The Effect of Water Saturation on the Strength of Marbles S. Kahraman, O. Gunaydin and M. Fener	345
Acoustic Emission Signal Processing Based on Wavelet Analysis Y. M. Kang	353
Comparing the Results of Acoustic Emission Monitoring in Brazilian and Uniaxial Compression Tests M. Keshavarz, F. L. Pellet, K. Amini Hosseni and C. Rousseau	357
Derivation of Input Parameters Using for Analysis of Ground Subsidence Due to Very Shallow Longwall Mining in Tabas Coal Field of Iran E. Khatibi, K. Shahriar and B. Ferdowsi	365
Proposal of Ground Evaluation Method by Polyhedron Transparent Borehole Casing E. Kondo, M. Nakamura and M. Yagisawa	371
Application of AE for Determining In Situ Stress at UG Mine S. Kramadibrata, R. K. Wattimena, I. Kamil, M. A. Rai and E. Widijanto	379

Lithology Prediction of Fahliyan Formation Based on Rock Physics Studies in Two Wells of Two Neighbor Oil Fields, Southwest of Iran **B. Mahbaz and H. Memarian**	387
Development of the Strain Rockburst Test in China	393
M. C. He, J. L. Miao, J. L. Feng and D. J. Li	
Influence of Intact Rock Properties on TBM Penetration Rate in Karaj-Tehran Water Conveyance Tunnel	401
M. Mansouri, S. R. Torabi, O. Forough and K. Goshtasbi	
The Impression Creep Test as a New Method for Fast Measurement of Creep in Soft Rocks	407
M. Moosavi, M. Jafari and F. S. Rassouli	
Analysis of the Shear Strength of Rock and Concrete Joints Using Results of the Constant Normal Load Shear Test	415
Z. A. Moradian, G. Ballivy, C. Gravel and K. Saleh	
Role of the Texture Characteristics on the Strength Properties of Crystalline Rocks	423
H. Noferesti and K. S. Rao	
Simultaneous Relationship Between Mechanical Properties and Index Tests of Intact Rocks	431
R. Noorani and A. H. Ghazvinian	
Effect of Joint Stiffness Values on Stresses of Jointed Rocks	437
A. Noorzad and M. Aminpoor	
Problems from Weak Rock Behavior in Operation of a Cut-and-fill Pond of a Pumped Storage Scheme	445
N. Phienwej	
Effect of Chlorides Solution on the Electrochemical and Physico-Chemical Properties of Western Venezuelan Shale	451
C. Rabe, F. V. Artola and J. A. O. Cherrez	

Laboratory Characterization of Norwegian North Sea Shale	459
C. Rabe and J. A. O. Cherrez	
Experimental Study on Crack Development in Rock Mass due to Strike-Slip Faulting	467
A. Sato, K. Tani and M. Sawada	
Geomechanical Properties along the First 10+400 KM of the Qomroud Long Tunnel Project in Iran	475
A. Shafiei and M. B. Dusseault	
Rock Mass Characterization at Kangir Dam Site in Iran	483
A. Shafiei and M. B. Dusseault	
Rock Mass Characterization along Lot No. 6 of Dez-Qomroud Tunnel project in iran	499
A. Shafiei, M. B. Dusseault, H. Rahdar and S. Mesgarzadeh	
Modulus Measurement with Flexible Dilatometer: Case Study of Siah Bishe Power plant	511
M. R. Shahverdiloo	
Proposal of a New Multiple-Step Loading Triaxial Compression Testing Method	517
A. Taheri and K. Tani	
Interpretation of Hydraulic Fracturing Pressure-Time Records to Evaluate In-Situ Stress Measurement Parameters	525
N. Valinezhad, H. Ghasemzadeh and B. Pahlavan	
Estimating the Poisson's Rate Value of the Rock Masses	533
B. Vásárhelyi	
Estimating Rock Mass Long-Term Strength Using In-Situ Measurement and Testing Results	537
R. K. Wattimena, M. A. Rai, S. Kramadibrata, I. Arif and B. Dwinagara	
A New Empirical Criterion for Prediction of the Shear Strength of Natural Infilled Rock Joints Under Constant Normal Load (CNL) Conditions	543
M. Zare, R. Kakaie, S. R. Torabi, S. M. E. Jalali	

Ground Improvement and Rock Slope Stability	551
Rock Slopes: Pole Counting or All-Wedge Analysis?	553
A. J. Gonzalez-Garcia	
Sarcheshmeh Pseudowedge Failure, A New Challenge in Expanding Western Sector of Sarcheshmeh Copper Mine, Iran N. Babanouri and S. Karimi-Nasab	559
Stress Model Generated by Freezing-Thawing Process in Rock Cracks	567
M. Bost and A. Pouya	
Hazard Evaluation of Rock-Fall Induced by Quarry-Blasting	575
M. Coli, G. Pini and C. Cantini	
Contact Detection Considering Force Direction in Discontinues Deformation Analysis	583
H. Ghasemzadeh, M. A. Ramezanpoor	
Influence of Load Direction on Parallel Fractured Rock Stress and Strain	591
H. Ghasemzadeh, M. A. Ramezanpoor	
Bishop's Simplified Method and Particle Swarm Optimization for Location the Critical Failure Surface in Rock Slope Stability Analysis	597
E. Javadzadeh and R. Javadzadeh	
Technology and application of reinforcing coal mine tunnel with carbon fibre reinforced plastic sheets	605
X. Y. Lu and Q. Y. Ma	
Effects of Geostructural Weaknesses on Flexural Toppling Failure Based on Principles of Solid and Fracture Mechanics A. Majdi and M. Amini	611
Hydrulic Investigations and Grouting Improvements Applied to Dam Sites in Brazil	619
E. F. Quadros and R. A. Abrahão	019

Evaluation of Permeability and Gruotability in Rock Mass of Ostur Dam Site	627
S. M. Sadeghiyeh, M. Hashemi and R. Ajalloeian	
Slope Failure Analysis in Road Cut Slope by Numerical Method	635
K. Sarkar and T. N. Singh	
Relationship Between Bearing Performance and Modulus in the Composite Foundation Improved by Flexible Piles F. Y. Tan, L. Zhao and X. Z. Wang	643
The Relationgship Between Rheological Characteristics and Slope Stability of Siltized Intercalation of Brown Mudstone	647
T. Yang, Y. F. Feng, Y. Rui, J. Liu, L. Shen and H. Yang	
Stability Analysis of Excavation Unloading on the Shuibuya Spillway Slope	653
L. Wang, J. Li, X. Wang, H. Deng, H. Mei and Z. Tao	
Internal force Features of Anti-Slide Piles During its Operations and Analysis on the Effectiveness of Landslide Control	661
D. P. Zhu, Q. L. Deng and E. C. Yan	
Bedrock Slope Failures in Tri-State Region	667
M. Zoghi and J. Mahar	
Underground Stability	673
Some Aspects of Model Uncertainties of Block Stability Estimation	675
M. Bagheri and H. Stille	
The Study of Concrete Arc Pre-Supporting System Method in Twin Shallow Tunnels (Case Study: Tohid Twin Tunnels, Tehran, Iran)	683
H. Chakeri and B. Ferdowsi	
Characterization of Complete Radial Displacement of Tunnel Using a Horizontal Inclinometer	691
S. K. Chung, D. W. Ryu, W. I. Jang and H. S. Yang	

An Elastic-Viscose Solution for Estimating Displacements of Circular Tunnels in Hydrostatic Stress Field	697
A. Fahimifar and F. Monshizade Tehrani	
Design of Radial Active Grouted Rockbolts in Tunnel Stability with a New Theoretical Approach	703
A. Fahimifar and M. Ranjbarnia	
Geo-Mechanical Aspects of the Subsidence Phenomenon Due to Near Surface Excavations in Rocks Under High Horizontal Stresses	713
M. Fatehi Marji, A. Dabagh and A. R. Hajibagherpoor	
Influence of the Mechanical Behaviors of Weak Rocks on the Stability Analysis of Behesht Abad Water Transmission Tunnel	719
M. Fatehi Marji, A. Pourzargar and M. Hashemi	
Design of a Railway Tunnel	727
R. K. Goel, A. Swarup, A. Garg and R. K. Dayal	
Safety Analysis of the Spillway Tunnel on Granite Region with Developed Fault Fractured Zone	737
K. C. Han, D. W. Ryu and S. K. Kim	
Behavior of Contact Surfaces in Segmental Lining Under Dynamic Loading in Alborz Tunnels (Tehran-Shomal Freeway)	745
M. Hazrati Aghchai and H. Salari-Rad	
State of the Art and Current Design Approaches in Hard Rock TBM Tunnelling	753
M. Herrenknecht and K. Bäppler	
Stability Analysis of Headrace Tunnels in Siah-Bisheh Dam and Powerhouse Project	761
H. Hassani, H. Zamani and M. Shahandeh	
Mine Accidents Due to Strata Control Problems Vis-À-Vis Geotechnical Investigations	767
S. Javanthu, Y. V. Rao, V. Laxminarayana and M. Moniezi	

Microseismic Assessment of Reactivation of Weak Structures During Mining for Longwall Risk Management and Production Control <i>X. Luo</i>	777
An Investigation into the Compressive Strength and Failure Mechanism of Mine Pillars	783
H. Moomivand and V. S. Vutukuri	
Progressive Failure of 2D Symmetric Roof Rock Wedges	793
P. P. Nomikos and A. I. Sofianos	
Response of Horizontally Stratified Square Rock Roofs	801
P. P. Nomikos, A. Tzinieris and A. I. Sofianos	
Prediction of Displacements in Tunnels	809
N. Radončić, T. Pilgerstorfer and W. Schubert	
An Evaluation of Rock Mass Classification Methods Used for Tunnel Support Design	819
J. Ranasooriya and H. Nikraz	
Design and Construction of Tunnels in Poor and Faulted Rock Masses W. Schubert	827
Successful Tunneling through a Very Weak Conglomerate	835
A. Shafiei, M.B. Dusseault, H. Rahdar and S. Mesgarzadeh	
Design of High Speed Railway Tunnel in a Large Sized Fault Zone	845
H. S. Shin and S. O. Choi	
Proposal of Countermeasure against Fault Rupture Damages to Mountain Tunnels	853
K. Tani	
Study on Relationship between Stress Fields of Deep-Buried Tunnels in a Hydraulic Power Plant	861
C. H. Wang, Q. L. Guo and Y. S. Zhang	

Study on Numerical Simulation of the Stability of Rocks Surrounding Gateway with Different Wide Coal-Pillars in Fully Mechanized Top-Coal Caving <i>K. Yang, G. X. Xie, J. C. Chang</i>	869
Stability Analysis Based On Monitoring Results, Case Study: TBM Launch Cavern Asgaran-Ghomroud	875
M. Zare, H. Tavakoli	
Rock Stresses and Their Influence on Tunnel Behaviour	881
Y. Zhou, H. L. Ong, and J. Wong	
Rock Dynamics and Foundation on Rocks	889
Three Dimensional Numerical Modeling of Stress-Dependent Permeability Considering Aperture Distribution through Fractured Rock Masses Case Study: Roudbar Dam Foundation	891
J. Abbasi, M. Sharifzadeh and B. Ferdowsi	
Numerical Dynamic Analysis of Seismic Effect on SiahBisheh Pump-Storage Caverns	899
M. Ahmadi, M. Yazdani and A. Rahnama	
The Role of Shape in Stress Distribution around Openings and its Implications for Long-Term Survivability of Civil Structures in an Earthquake Zone Y. Ates and Y. Askin	907
The Seismic Effects on the Bukit-Tingi WWII Underground Shelter by 2007 Singkarak (Solok) Earthquake	917
Ö. Aydan and M. Geniş	
An Experimental Study on the End Bearing Capacity of Rock-Socketed Drilled Shaft S. Choi, W. Park and S. Jeon	925
Blast Induced Pressures in Some Granitic Rocks	933
M. M. Dehohan Ranadaki and R. Mohanty	

Experiments and Analysis of Influence on Vibratory Load to Shear Strength of Red Clay	941
H. Hua and C. Yong	
Application of Energy Concentration Effect in Rock Drilling Blast	947
L. X. Huang	
Reinforcement Force Analysis and Evaluation for Downstream Toe of High Arch Dam	953
P. Lin, R. K. Wang, Q. Yang, Y. N. Zhou and W. Y. Zhou	
Rock Burst Possibility Analysis Based on In-Situ Stress Index and Numerical Simulation Validation at a Underground Water-Sealed Oil Storage Cavern L. Liu, C. Wang, Q. Chen and J. Zhang	959
The Dynamic Response of Rocks during Fracturing and its Implications in Geo- Engineering and Earth Science Y. Ohta, Ö. Aydan and N. Tokashiki	965
Reliability Analysis of Rock Foundation	973
L. Rouaski and S. Belkacemi	
Instrumentation, Monitoring and Numerical Analysis in Geomechanics	981
An elasto-plastic damage model in multi-laminate framework	983
R. Ashjari and M. Ahmadi	
A Numerical Investigation of Hydraulic Fracturing Process in Oil Reservoirs Using Non-Linear Fracture Mechanics V. Bahrami and A. Mortazavi	991
Dynamic Modelling of Twin Tunnels Under Seismic Action	999
A. Bagherzadeh, B. Ferdowsi and A. H. Vosogh	
A Coupled Normal-Shear Damage Model for Rock Joint Elements	1007
P. Bemani Yazdi and A. Pouva	

Geomechanical Effects of Gas Storage in Depleted Gas Fields	1015
N. Castelletto, M. Ferronato, G. Gambolati, C. Janna, I. Salce and P. Teatini	
Determination of Ground Response Curve of the Supported Tunnel Considering Progressive Hardening of Shotcrete Lining A. Fahimifar and A. R. Hedayat	1023
Loy Yang Mine Ground Movement Investigation and Modelling (Case Study) A. Farazmand, J. Missen and S. Newcomb	1031
On the Boundary Element Analysis of Stresses and Strains Around Underground Excavations in Rocks M. Fatehi Marji, A. Hosseinmorshedy and A. R. Shadpour	1039
Simulation of Hydraulic Fracturing in Brittle Rocks A. Golshani and T. Tran-Cong	1047
The Exact Formulation of Joint-Element Stiffness Matrix in Element Free Galerkin Method	1055
M. Hajiazizi, N. Hataf and A. Ghahramani	
Towards a Three-Dimensional Version of Numerical Manifold Method L. He and G.W. Ma	1061
Stability Analysis of Right Pressure Shaft at Siah-Bishe Pumped Storage Project; Iran A. Karimi and M. Moosavi	1069
A Bonded Particle Modelling for Rock Material T. Kazerani and J. Zhao	1077
Identifying Common Area of Blocks in Face-to-Face Contact State in Main Plane Method of Contact Detection for 3D-DDA S. A. R. Keneti and A. Jafari	1085
Finite Element Study of Blast-Induced Vibration from Construction of Tunnels with Particular Emphasis on its Effect to Nearby Slopes A. K. L. Kwong and J. Y. C. Lo	1093

Modeling Initiation of Hydraulic Fractures from a Wellbore	1101
A. Lakirouhani, A. Bunger and E. Detournay	
Development of Reinforcement module in serial and parallel Lagrangian Analysis Program	1109
Z. Li, Sh. Fu, L. Zeng and R. Dai	
Three-Dimensional Damage Model for Heterogeneous Rock Failure Process and Numerical Tests	1117
Z. Z. Liang, C. A. Tang, L. C. Li and Y. B. Zhang	
Numerical Analysis of the Effect of Joint Geometric Parameters on Grouting Process in Jointed Rock Mass	1125
A. Maadikhah and A. Mortazavi	
Determination of Stress Intensity Factors for Jointed Brittle Rock Medium Using Element Free Galerkin Method	1135
H. Mirzaei, R. Kakaie and B. Hassani	
Simulation of Rock True Tri-Axial Compression Test Using a Multilaminate Elastoplastic Model	1143
M. Nikkhah, S. A. Sadrnejad, M. Ahmadi	
Numerical Analysis of Coupled Behavior of Ground Water Flow Around an Excavation Damaged Zone in Discontinuous Rock Mass	1151
J. S. Park, D. W. Ryu, C. I. Lee and C. H. Ryu	
Numerical Simulation of Direct Shear Test on Rock Joint Using PFC3D	1159
J. W. Park and J. J. Song	
Three-Dimensional Transient Thermo-Hydro-Mechanical Analysis of Underground Nuclear Repository	1167
S. K. Patel and K. G. Sharma	
Numerical Study of Rock and Concrete Behavior by Multi-laminate Element Modeling	1175
S. A. Sadrnejad	

Modeling Heterogeneity and Anisotropy of Rocks	1183
S. A. Sadrnejad	
Crack Propagation Modeling of Rock-Like Materials from Surface Flaw Under Uniaxial Compression	1191
S. B. Tang, C. A. Tang, R. H. C. Wong, Z. Z. Liang, Y. B. Zhang, L. C. Li and T. H. Ma	
Numerical Research on Zonal Disintegration of Rock Mass Around Deep Tunnel	1199
Y. B. Zhang, C. A. Tang, Z. Z. Liang, Y. J. Zuo and Y. J. Zhang	
Numerical Simulation on Influence of Rock Heterogeneity on Dynamic Response of Roadway in Transversely Isotropic Rock Mass	1207
Y. J. Zuo, C. A. Tang and S. C. Li	
Earth Resources and Coupled Processes in Rock Mechanics	1215
Effect of Water Flow Velocity in Rock Discontinuities on Safety Factor	1217
M. Ahmadi and M. Islami	
Study on the Range of Frost-Thaw of Surrounding Rock and the Effects of Insulation Material in Cold Regions	1221
W. Z. Chen, X. J. Tan, J. P. Yang and S. Huang	
Estimation of the Rock Strength While Drilling with Roller-cone Bits	1229
L. F. Franca and A. Mahjoob	
Magnitude of In-Situ Stresses in Sabalan Geothermal Reservoir	1237
M. Haftani, B. Bohloli, M. Eliassi and B. Talebi	
Investigation of Cementation Factor "M" in Reservoir Parameters Estimation "A Case Study of Sarvak Formation in One of The Iranian Hydrocarbon Fields"	1245
H. Hassani and H. Hassani	
Coupled Fluid-Flow and Geomechanics in Naturally Fractured Reservoirs	1253
M. R. Jalali and M. B. Dusseault	

Interpretation of Mechanical Integrity Tests	1263
M. Karimi-Jafari, P. Berest, B. Brouard and L. Van Sambeek	
Coupled Thermo-Hydro-Mechanical Analyses of Thermal Effects on Fluid Flow with 2D Finite Element Method L. C. Li, C. A. Tang, S. B. Tang and G. Li	1271
Application of Kriging as a Geostatistical method and ANNs to Permeability Analysis at Ag-chaie Dam, Iran S. Nadimi, D. Javani and K. shahriar	1279
Stochastic Finite Elements in a Complex System: Vibrating Non Stationary Fluid Flow, Mass Transport, Heat Conduction S. Osmani and M. Qirko	1285
Using a Geomechanics Study to Define the Optimum Mud Window and the Best Trajectory to be Re-Drilling the Horizontal Bor-30 Well, Borburata Field, Venezuela <i>C. Rabe, M. Prado, D. Escalona, and S. Soto</i>	1295
Joint Study Based on K-Means Clustering, Asmari Formation, South West Iranian Oil Fields	1303
B. Tokhmechi, H. Memarian, H. Ahmadi Noubari and B. Moshiri	
A Coupled Model for Brittle Porous Rocks with Stress-dependent of Permeability T. Xu, C. A. Tang and L. C. Li	1309
Research of Cracks' Propagation Rule under Rock Seepage-stress Coupling Condition	1317
N. Zhuang, B. B. Shi and K. Z. Zhu	
Building Stones /Ornamental Stones	1323
Sawing Problems of Poly-Mineral Carbonate Natural Stone	1325
S. Kulaksiz, F. Bayram, N. E. Yaşitli and E. Yilmazkaya	

New Development, Special Topics and Applications in Rock Mechanics			
Rock Cutting by Picks and Blades	1333		
H. Alehossein			
Investigation of Combined Opening –Sliding Fracture Toughness Behaviour in Some Cracked Rock Samples	1339		
M. R. Ayatollahi and M. R. M. Aliha			
Study of Deformability of Fractured Rocks with Correlated Fracture Length and Aperture	1347		
A. Baghbanan and L. Jing			
Simulation of the Bayanlou Debris Flow through Cellular Automata Modeling	1355		
A. Fahimifar and S. Amirpour			
Protection Against Rockfall Hazards by the Means of Rockfall Barriers (Case Study of Kamarkhani Project)	1363		
M. A. Faraghat and H. Zahedi			
A Study of Unusual TBM Disk Cutters Wears in Karaj-Tehran Water Conveyance Tunnel	1371		
M. Farokhnia, K. Shahriar, M. Sharifzadeh, H. R. Tavakoli and G. H. Shamsi			
Rock Mass Quality Evaluation from Muck Pile and Operational Parameters Analysis during TBM Excavation Process	1379		
E. Farrokh and E. Fasihi			
The Effect of Surface Irregularities On Joint Closure Behavior Using New Modeling Techniques	1385		
A. H. Ghazvinian, Z. Y. Yang, and A. Taghichian			
Direction of Principal Stresses in Sabalan Geothermal Region	1393		
M. Haftani. M. Eliassi. B. Bohloli And B. Talebi			

Determination of Relationship between Drilling Parameters by Clustering Techniques	1401
M. Hamzaban and H. Memarian	
Modeling and Estimation of Rock Mass Deformation Modulus Using Geostatistical Approaches in Bakhtiary Dam, Iran	1411
H. Hamzehpour, A. Parhizkar, A. M. Radman and V. Raslouli	
Geotechnical Risk Based Decision-Making for Selection of Rock TBM in Difficult Ground Conditions Using Fuzzy AHP	1419
J. Khademi Hamidi, K. Shahriar and H. Bejari	
A Study on the Correlation Between Drilling Parameters Using Rock Model Drilling Test	1427
K. Y. Kim, C. Y. Kim, K. S. Kim and H. K. Yoon	
An Investigation of Hydraulic Aperture Evolution by Flow Through Test for Circular Shearing using Laboratory Experiments and Numerical Simulation E. Kim, J. Rostami, C. I. Lee and Y. Y. Jeong	1437
Weathering Mechanism and Degradation of Hallasan Trachyte in Jeju Island, Korea	1447
S. B. Lee, T. F. Cho, J. H. Kim, K. S. Won and G. B. Lee	
Soundless Cracking Technique and its Application in Hard-Rock Tunnel in High Gas Coal Mine	1461
Q. Y. Ma and X. Y. Lu	
Fuzzy Rock Quality Designation	1465
A. Mahmoodi, H. Mansouri, M. A. Ebrahimi Farsangi and H. Nezamabadi	
Experiences Gained from Gas and Water Inflow Toward the Tunnel, Case Study: Aspar Anticline, Kermanshah, Iran	1469
H. Mirmehrabi, J. Hassanpour, M. Morsali and S. Tarigh Azali	
Properties of Frozen Soil for Excavation on the Moon	1477
J. Rostami, L. Gertsch and R. Gustafson	

Some Advances in Rapid Tunneling Techniques in Korea	1487
C. H. Ryu, B. H. Choi, J. G. Kim and H. S. Yang	
Grout Flow in Fractured Rock Media	1491
S. A. Sadrnejad	
The Application of Digital Image Processing to Estimate the Joint Volumetric Distribution	1499
V. Serajian and H. Salari-Rad	
Design Challenges Of The Gotthard Base Tunnel Pillar Stability in the Multifunction Station Faido	1507
R. Stadelmann, M. Rausch and Z. Q. Wei	
The Stability Assessment of Natural Rock Structures in Ryukyu Limestone N. Tokashiki and Ö. Aydan	1515
Recommended Rock Testing Methods for Predicting TBM Performance: Focus on the CSM and Ntnu Models	1523
S. Yagiz, J. Rostami and L. Ozdemir	

Author Index

ESTIMATING ROCK MASS LONG-TERM STRENGTH USING IN-SITU MEASUREMENT AND TESTING RESULTS

R.K. WATTIMENA¹, M.A. RAI¹, S. KRAMADIBRATA¹, I. ARIF¹ and B. DWINAGARA²

¹Department of Mining Engineering, Institut Teknologi Bandung, Indonesia (e-mail of corresponding author: rkw@mining.itb.ac.id)

²Department of Mining Engineering, UPN Veteran Yogyakarta, Indonesia

Abstract

A method for estimating rock mass long-term strength (σ_{LT}) using the results of *in situ* measurement and test has been developed. It consists of estimation of rock mass strength (σ_{cm}) using Hoek-Brown criterion, determination of rock mass modulus of deformation (E_m) through Goodman's jack test, and construction of rock mass rheological model based on displacement monitoring data, taking into account the stress changes due to stoping activities underneath the test and monitoring locations. The rheological model is used to determine the rock mass long-term modulus of deformation (E_{LT}). It is proposed that the long-term strength of rock mass can be estimated by using the rock mass strength and deformation modulus, rock mass long term modulus, and a coefficient that depends on the rock mass characteristics.

Keywords: Rock mass; Hoek-Brown criterion; Long-term strength; Rheological model.

1. Introduction

Reliable estimate of rock mass strength is required for almost any form of analysis used for the design of underground excavations. Hoek and Brown [1] proposed a method for obtaining estimates of the strength of jointed rock masses, based upon an assessment of the interlocking of rock blocks and the condition of the surfaces between these blocks. This method was modified over the years in order to meet the needs of users who applied it to problems that were not considered when the original criterion was developed. A review of the development of the criterion and of the equations proposed at various stages in this development is given in [2].

Although it is very useful for estimating the rock mass strength, the Hoek-Brown criterion can not be used in estimation of rock mass long-term strength, for which there is no method currently applicable [3, 4, 5]. This work suggests an alternative method for estimating the long-term strength of the rock mass, in particular that in Pongkor underground gold mine, Indonesia. It combined laboratory test, *in situ* test and monitoring, and numerical and rheological modelling.

2. Rock and Rock Mass Strengths

2.1. Intact Rock Strength

Among others, uniaxial and triaxial compression tests seem to be the most frequent tests conducted for design purposes. However, researches have revealed that the uniaxial compressive strength is not an intrinsic material property, as it depends on the specimen geometry (size and shape) and loading rates.

Researches on the geometrical effects have concluded that there is a reduction in strength with increasing sample size. Medhurst and Brown [6] have reported that for coal from Moura mine in Australia, the 'critical' sample size is about one metre, above which the strength remains constant. This argument was further extended by Hoek and Brown [2] who suggested that when dealing with large scale rock masses, the strength will reach a constant value when the size of individual rock pieces is sufficiently small in relation to the overall size of the structure being considered.

A number of studies also reported that the strength decreases as the sample slenderness increases. In addition, it has been observed over the years that higher loading rate leads to higher uniaxial compressive strength. Bieniawski [7], for example, reported this phenomenon after conducting uniaxial compression tests with test duration ranged from 10 minutes to 5 years, as illustrated in Figure 1.

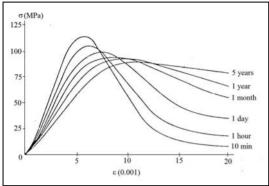


Fig. 1. Effect of test duration on uniaxial compression strength and stress-strain curve [7]

2.2. Rock Mass Strength

The Hoek-Brown criterion has been widely used to estimate rock mass strength. The generalised Hoek-Brown criterion for jointed rock mass is defined by [2]:

$$\sigma'_{1} = \sigma'_{3} + \sigma_{ci} \left(m_{b} \frac{\sigma'_{3}}{\sigma_{ci}} + s \right)^{a}$$
 (1)

where σ'_1 and σ'_3 are the maximum and minimum effective stresses at failure respectively, m_b is the value of the Hoek-Brown constant m for the rock mass, s and a are constants which depend upon the characteristics of the rock mass, and σ_{ci} is the uniaxial compressive strength of the intact rock pieces.

To derive Hoek-Brown criterion, laboratory triaxial test is conducted to obtain m_i , which is the constant m for the intact rock, and σ_{ci} . The m_b , s, and a are then determined by taking into account the characteristics of the rock mass and applying the following relationships [2]:

$$m_b = m_i \exp\left(\frac{GSI-100}{28}\right) \tag{2}$$

where GSI is the Geological Strength Index [8].

For GSI > 25 (reasonable to good quality rock mass), the Hoek-Brown criterion is applicable with

$$s = \exp\left(\frac{GSI - 100}{9}\right) \tag{3}$$

and

$$a = 0 \tag{4}$$

For GSI < 25 (very poor quality rock mass), the Hoek-Brown criterion applies with

$$s = 0 \tag{5}$$

and

$$a = 0.65 - \frac{GSI}{200} \tag{6}$$

Moreover, it can be said the Hoek-Brown criterion is a useful tool for relating the intact rock strength to rock mass strength. However, as the triaxial test is carried out with loading rate (0.1 MPa/s or 10 minutes of test duration) that is much higher than that experienced by the rock mass, further investigations are required to apply the criterion for estimating the long-term strength of the rock mass. Similar requirement is also needed to relate the long-term strength of intact rock to that of rock mass.

3. Estimating Rock Mass Long-Term Strength

3.1. Approach

In many cases, back analyses of underground excavations instabilities using numerical modelling have been widely used to estimate the rock mass long-term strength. In this approach the rock mass strength parameters are adjusted until the model gives a similar result with that occurs in the field. It is obvious that this approach requires an instability case which was not available in the work reported in this paper. An alternative approach was then implemented in this work as described in the followings.

Regarding the previous description of Hoek-Brown criterion, the criterion is applicable in the estimation of rock mass strength (σ_{cm}), based on σ_{ci} and GSI. The σ_{cm} and rock mass modulus of deformation (E_m) obtained from the *in situ* test can then be utilised to obtain the hypothetical rock mass failure strain (ϵ_m) by utilising the stress-strain curve.

Furthermore, displacement monitoring data can be used to construct the rheological model of the rock mass, which can be used to estimate the rock mass long-term modulus of deformation (E_{LT}). Again, by consulting the stress-strain curve, the long-term strength of rock mass (σ_{LT}) is likely between the stress straining the rock mass to ε_m and that straining the rock mass to ε_{LT} .

Figure 2 shows how this approach is conducted by utilising the stress-strain curves.

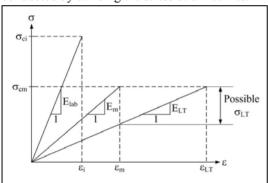


Fig. 2. Approach in estimating rock mass long-term strength

It can be seen in Figure 2, that the following relationship is applicable:

$$\sigma_{LT} = \psi \frac{\sigma_{cm}}{E_m} E_{LT} \tag{7}$$

where,

 σ_{LT} = rock mass long-term strength.

 $\sigma_{cm} = \text{rock mass strength.}$

 $E_{\rm m} = {\rm rock \ mass \ modulus \ of \ deformation.}$

 E_{LT} = rock mass long-term modulus of deformation.

ψ = a coefficient.

3.2. Application

The above approach was implemented in the estimation of long-term strength of rock mass in cross-cut 6A of Pongkor underground gold mine, Indonesia (Figure 3).

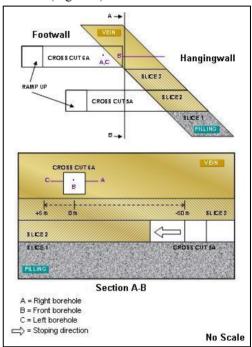


Fig. 3. Research location in Pongkor underground gold mine

3.2.1. Rock mass strength

An intensive structural geology mapping has been conducted in the research location, including scan-line and window mappings and GSI of the andesitic-breccia rock mass (hangingwall and footwall) has also been calculated and an average value of 59 was obtained. As the average $\sigma_{\rm ci}$ of the intact rock was 88.30 MPa, application of Hoek-Brown criterion then gave a $\sigma_{\rm cm}$ of 22.02 MPa.

3.2.2. Rock mass modulus of deformation

A number of Goodman's jack tests have been carried out and a detailed description of the tests can be found in [9]. The measured E_m of the rock mass was 6.17 GPa. This value was 47% of the

average E_{lab} and this was in accord with the review reported by Mohammad *et al.* [10].

3.2.3. Rock mass rheological model

Displacement monitoring using multi point borehole extensometer and convergencemeter were conducted in the research location. Figure 4 depicts the installation of the displacement monitoring devices.

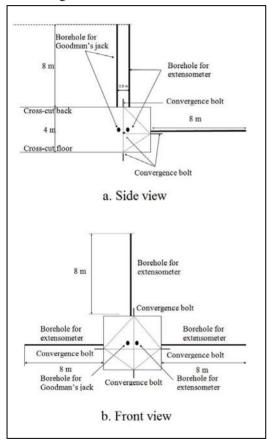


Fig. 4. Installation of displacement monitoring devices

As there were stoping activities underneath the research location, the displacement monitoring were obviously not conducted in a constant stress environment. Consequently, the stress changes had to be quantified and taken into account in the construction of the rheological model of the andesitic-breccia rock mass

The stress changes quantification was carried out by utilising three dimensional numerical modelling. The modelling revealed that induced stress in the research location increased as the stope advancing toward the location and became constant after the stoping passed the location. Referring to this phenomenon, the appropriate time period for the construction of the rheological model was then decided, as depicted in Figure 5.

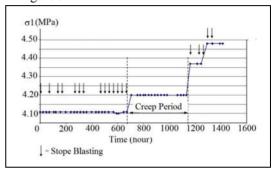


Fig. 5. An example of modelled induced stress changes

Furthermore, the Burger rheological model has been found most suitable for the Pongkor andesitic-breccia. The rheological model for the rock mass is as follows:

$$\varepsilon(t) = \frac{\sigma}{E_2} + \frac{\sigma}{E_1} - \frac{\sigma}{E_1} e^{-(E_1 t/3\eta_1)} + \frac{\sigma}{3\eta_2} t \tag{8}$$

where all the rheological model parameters are given in Table 1.

Table 1. Rheological model parameters

Sidewall	E ₁ GPa	E2 GPa	η1 GPa.hour	η2 GPa.hour
Right	12.7	13.90	7.29e2	8.64e3
Left	0 8.92	5.39	3.88e2	7.00e3

Equation (8) can be written in the form of E(t) and by using the rheological model parameters in Table 1, the E(t) curves for rock masses in the right and left sidewalls could be constructed. The starting point of the asymptotic part of the curve was then taken as the rock mass long-term modulus of deformation ($E_{\rm LT}$), which in average was 2.53 GPa.

Using this value of E_{LT} , the estimated long-term strength of the Pongkor and esitic-breccia is likely between 9.03 MPa and 22.02 MPa, which is 10%-25% of the σ_{ci} .

4. Discussion

The rock mass strength estimated in this work is 25% of the intact rock strength. This fact clearly shows that rock mass strength is controlled by the interlocking of rock blocks and the condition of the surfaces between these blocks, which are represented by the GSI. Extensive laboratory tests and field studies on excellent quality Lac du Bonnet granite [11] suggested that the *in situ* strength of this rock is only about 70% of that measured in the laboratory.

Rock mass modulus of deformation measured in this work is 47% of that obtained in the laboratory. Although it is in line with the review carried out by Mohammad et al. [10], further investigation of factors affected the Goodman's jack test, in particular the induced stresses, is still required.

The long-term strength of Pongkor andesitic-breccia might be only 10%-25% of the intact rock strength. Undoubtedly, if this value is taken into consideration in the design, much conservative design will be recommended and support costs will be much higher. This fact, however, could advise the mining that after some years, the rock mass strength will decrease and some support repair will be required.

5. Conclusions

A method of estimating rock mass long-term strength has been developed. It contains laboratory test, *in situ* test and measurement, and numerical modelling.

The method has not been verified, as there is no rock mass failure case history that can be used to back analyse the rock mass strength. Once the failure is available, refinement of the approach used in the development of the method must be conducted.

Acknowledgments

The authors thank the Ministry of National Education of the Republic of Indonesia, Institut Teknologi Bandung, PT Aneka Tambang, Tbk., and Kyushu University for sponsoring the work reported in this paper.

References

- 1. Hoek, E. and E. T. Brown. 1980. *Underground excavations in rock*. London: Inst. Min. Metall.
- 2.Hoek, E. and E. T. Brown. 1997. Practical estimates of rock mass strength, *Int. J. Rock Mech. & Mining Sci.* 34(8), 1165-1186.
- 3. Brown, E.T. 2005. Personal communication.
- 4. Hoek, E. 2005. Personal communication.
- 5. Hudson, J. 2005. Personal communication.
- 6.Medhurst, T. P. and E.T. Brown. 1996. Large scale laboratory testing of coal, *Proc.* 7th ANZ Conf. Geomech. (Ed. M. B. Jaksa, W.S. Kaggwa, and D.A. Cameron). Canberra: IE Australia, 203-208.
- 7.Bieniawski, Z. T. 1974. Rock mechanics design in mining and tunneling. Rotterdam: A. A. Balkema.
- 8. Hoek E. 1994. Strength of rock and rock masses, *ISRM News Journal*, 2(2), 4-16.
- 9. Wattimena, R. K., B. Sulistianto, K. Matsui, B. Dwinagara, and E. Barnas. 2006. Measuring rock mass modulus of deformation in a stoping-affected cross-cut in Pongkor underground gold mine. *Proc.* 4th ARMS Conference. Singapore.
- 10.Mohammad, N., D. J. Reddish, and L. R. Stace. 1997. The relation between in-situ and laboratory rock properties used in numerical modelling". *Int. J. Rock Mech. & Mining Sci.* 34(2), 289-297.
- 11.Martin, C.D. and N.A. Chandler. 1994. The progressive failure of Lac du Bonnet granite. *Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.* 30(7), 643-659.