Rock Mechanics in Underground Construction
ISRM International Symposium 2006
4th Asian Rock Mechanics Symposium

Rock Mechanics in Underground Construction

8 – 10 November 2006 Singapore

Editors

C. F. Leung
National University of Singapore, Singapore

Y. X. Zhou
Defense Science & Technology Agency, Singapore

World Scientific
PREFACE

The 4th Asian Rock Mechanics Symposium (ARMS) received overwhelming response for its call for papers in early 2006 with about 450 abstracts received by the Organising Committee. After a rigorous selection process, just over 300 papers were finally accepted for the proceeding, a record for ARMS. This is also the first time that the ARMS proceedings volume consists of printed copies of full papers of keynote lectures and extended abstracts of all the technical papers while the full technical papers are provided in a CD-ROM. This has enabled the Organising Committee to accept as many high quality technical papers as possible.

The theme of the Symposium is “Rock Mechanics in Underground Construction”. Fittingly all the seven keynote lectures from Asia, Australia, Europe and North America deal with underground rock engineering topics. In fact, about half of the technical papers concern with underground construction such as tunnelling, rock caverns and underground mining. In addition, a large number of the remaining technical papers are directly or indirectly involved with rock mechanics in underground construction. Although the majority of the technical papers are contributed by rock engineers and researchers from Asia, the editors are glad to note that there are considerable number of contributions of high quality technical papers from many countries outside Asia.

The contributions of the technical paper reviewers and the ARMS 2006 award selection committee members are gratefully acknowledged. They play important roles to ensure that the papers in this proceedings volume are of high standard. The editors would like thank the able compilation and thorough checking of the scripts by Ms Chelsea Chin and her colleagues from World Scientific Publishing Company, and the diligent assistance of the staff from the symposium Secretariat, Meeting Matters International. With the efforts of all the above persons, the editors hope that this proceedings volume will serve as a useful reference for the engineers and researchers in rock mechanics and rock engineering.

C. F. Leung
Y. X. Zhou
ORGANISATION

ORGANISING COMMITTEE

Chairman: Yingxin ZHOU
Honorary Secretary: Jungang CAI
Honorary Treasurer: Sek Kwan TANG
Members: Eng Choon LEONG
Chun Fai LEUNG
Guowei MA
Leslie PAKIANATHAN
Jian ZHAO
Zhiye ZHAO

So-Keul CHUNG (corresponding member - Korea)
Yujing JIANG (corresponding member - Japan)
Chun’an TANG (corresponding member - China)

INTERNATIONAL ADVISORY BOARD

Mojtaba Gharavy (Iran)
Yossef Hatzor (Israel)
François Heuze (USA)
John A Hudson (UK)
Chung-In Lee (Korea)
Nielen van der Merwe (South Africa)
Yuzo Ohnishi (Japan)
Qihu Qian (China)
John St. George (New Zealand)
A Varadarajan (India)
Kwet Yew Yong (Singapore)
Jian Zhao (Singapore)
ACKNOWLEDGEMENT OF PAPER REVIEWERS

The editors gratefully appreciate the efforts of the following reviewers who have helped to maintain a high standard of the proceedings. The editors would like to apologise if some names have been left out or misspelled.

Maurice B DUSSEault Canada Seok-Won LEE Korea
Shougen CHEN China Il-Jae SHIN Korea
R. K. GOEL India Hyu-Soung SHIN Korea
Shinichi AKUTAGAWA Japan Jae-Joon SONG Korea
Yasuaki ICHIKAWA Japan Joong-Ho SYNN Korea
Yujing JIANG Japan Yong-Gyun YOON Korea
Kiyoshi KISHIDA Japan Kwang-Ho YOU Korea
Harushige KUSUMI Japan Ming LU Norway
Yasuhiro MITANI Japan Yonggeng YE Switzerland
Norikazu SHIMIZU Japan Jian ZHAO Switzerland
Koichi SHIN Japan Gang CHEN USA
Soo-Ho CHANG Korea Jungang CAI Singapore
Seokwon JEON Korea Eng Choon LEONG Singapore
Chee-Hwan KIM Korea Guowei MA Singapore
Young-Keun KIM Korea Leslie PAKIANATHAN Singapore
Gyu-Sang LEE Korea Sek Kwan TANG Singapore
Hee-Seok LEE Korea Zhiye ZHAO Singapore
This page is intentionally left blank
CONTENTS

Preface v

Organisation vii

Acknowledgement of Paper Reviewers ix

KEYNOTE LECTURES

Forensic Engineering for Underground Construction 3
E. T. Brown

Thermo-Mechanical Behavior of Rock Masses around Underground LNG Storage Cavern 19
S.-K. Chung

Rock Mechanics and Hazard Control in Deep Mining Engineering in China 29
M. C. He

Rock Mechanics Considerations for Construction of Deep Tunnels in Brittle Rock 47
P. K. Kaiser

Development and Application of Discontinuous Deformation Analysis 59
Y. Ohnishi, S. Nishiyama and T. Sasaki

The Role of On-Site Engineering in Underground Projects 71
W. Schubert

Rock Mechanics and Excavation by Tunnel Boring Machine – Issues and Challenges 83
J. Zhao and Q. M. Gong

ROCHA MEDAL AWARD PAPER 97

Strategy for In-Situ Rock Stress Measurements 99
D. Ask and F. H. Cornet
1. TUNNELLING

1.1. General

Discontinuum Analysis of a Highway Tunnel
R. Chitra, M. Gupta and A. K. Dhawan

Ground Reaction to Deep Draining Tunnels
M. El Tani

Behaviour of Tunnels in Jointed Rock Mass
M. Gupta, R. Chitra and A. K. Dhawan

On the Stability of a Twin-Tube Tunnel Under Complex Geology
Y. Y. Jiao, J. Zhao, S. L. Wang, Q. S. Liu and J. B. Zhu

New Approach of Tunnel Observation Using Digital Photogrammetry
K. Y. Kim, C. Y. Kim, S. H. Baek and S. D. Lee

Optimization of the Round Length in Design Stage for Tunnel Excavation in Weak Rock
Y.-Z. Lee, W. Schubert and C.-Y. Kim

The Impact of Rock Tunnelling on Groundwater in Epi-Fissure-Karst Zone and Ecological Conditions
X. Z. Li, X. B. Zhao and J. Sun

Study on Prediction of Tunnel Deformation Considering Degradation of Rock Mass
T. Matsunaga, T. Asakura, K. Tsukada, H. Kumakura and Y. Kojima

Observational Method for Tunnel Construction Considering Environmental Impact to Groundwater Using the SWING Method
Y. Ohnishi, H. Ohtsu, K. Takahashi and T. Yasuda

Net Penetration Rate and Cutter Consumption in Jook-Ryung TBM Tunnel
C. W. Park, C. Park, J. H. Synn, J. W. Choi and S. Jeon

Stability Analysis of Surrounding Rock of Deep-Lying Long Tunnels
X. Ren, J. Zhang, J. Shu and H. Jiao

A Tool for Rock Tunnel Design by Convergence-Confinement Method
B. Tontavanich, K. H. Park, S. Suwansawat and Y. J. Kim
Contribution to the Design of Tunnels with Pipe Roof Support
G. M. Volkmann and W. Schubert

Estimation of Excavation Damaged Zone of Long-Span and Shallow Overburden Tunnel
S. Wang, T. Yang, B. Chen, S. Wang and N. Zhang

Deformation Monitoring on the Diverging Tunnel at Baziling, P. R. China
Z. Wang, S. Li and W. Chen

Fundamental Study on Excavating Characteristic of Rock Type Slurry Shield in Soft-Rock
D. Yuan and A. Koizumi

1.2. Theoretical and Numerical Analyses

3-D and Quasi-3-D Analyses of Underground Excavations
M. Ahmadi, K. Goshtasbi and R. Ashjari

Analysis of Time-Dependent Tunnel Behavior Using a New Rock-Support Interaction Model
S.-H. Baek, H.-K. Moon and E.-J. Jo

Modeling Coupled Hydro-Mechanical Response of Heterogeneous Fractured Rock During Tunnel Excavation
W. Chen and H.-N. Ruan

Theoretical Solutions for NATM Excavation in Soft Rock Under Non-Hydrostatic In-Situ Stresses
Z. Guan, Y. Jiang and Y. Tanabashi

3D Numerical Modeling of Gate Shafts and Surrounding Tunnels in Gotvand Dam Project
A. Jafari and J. Hedayatjo

Elastic-Plastic Analysis of Circular Openings in Broken Surrounding Rocks
B. Jiang, Q. Zhang and Y. He

Continuum Methods for Stress and Stability Analysis of Boreholes and Tunnels
P. A. Nawrocki

Elasto-Plastic Numerical Simulation of Deep Circular Tunnel Subjected to Non-Hydrostatic Loading
T. Nishimura, T. Fukuda and H. Kiyama
Numerical Analysis of the Change in Groundwater System with Tunnel Excavation in Jointed Rock Mass
 J.-W. Park, B.-K. Son and C.-I. Lee

A Parameter Study of the Damaged Rock Zone Around Shallow Tunnels in Brittle Rock Mass
 D. Saiang and E. Nordlund

Study on Tunnel Stability in Soft Rock Considering Volumetric Strain Using Coupled Analyses
 T. Sakata, K. Kishida, T. Hosoda, A. Tomita and T. Adachi

Boundary Element Analysis of Tunneling through a Weak Zone
 K.-J. Shou

Physical and Numerical Modelling of Underground Opening in Jointed Rock Mass
 M. Singh, J. Choudhari and T. Kaleshwara Rao

Three Dimensional Modelling of a Tunnel Cave-In and Spiling Bolt Support
 Q. N. Trinh, E. Broch and M. Lu

Circular Tunnel Elastic-Plastic Analysis
 L. Wang, J. Zhao and X. Li

Numerical Study of Cavity Unloading in Brittle-Plastic Rock

Numerical Simulation for Shallow Tunnel Under Unsymmetrical Pressure
 S. Wang, S. Li and G. Wang

Technique for Determination of Boundary Stress Conditions in Deep Tunneling
 C. X. Yang, Y. H. Wu, T. Hon and D. M. Chen

1.3. Field and Laboratory Studies

Study on Minimal Rock Cover and Route Optimal Scheme of Subsea Road Tunnel
 W. Ding, Shucai Li, Shuchen Li and W. Zhu

TBM Breakdown Causes and Effects on Tunneling Performance in Tarabya Sewerage Tunnel
 C. Feridunoglu, D. Tumac and N. Bilgin

Experience on the World’s Longest Railway Tunnel St. Gotthard
 M. Herrenknecht and K. Bäppler
A Microseismic Monitoring Trial for the Stability Assessment of a Super Tunnel at Jinping Dam, China
X. Luo, H. Su, C. Sha and C. Luo

Stress-Strain Analysis of “HS Kozjak” Tunnel Due to Movements in Tectonic Fault
B. Macuh and B. Žlender

Instrumentation and Monitoring Technology for Underground Construction in China – Review and Forecast
Z. R. Mei, S. W. Ma and X. N. Wang

Comparison of Identification and Quantification of Squeezing Condition by Different Approaches
N. Shafieizadeh

Instrumentation at Head Race Tunnel Under Adverse Geological Conditions
Sripad, R. Singh, K. Sudhakar, R. N. Gupta and R. N. Khazanchi

Modification of the Proposed System of Rating for Rock Tunnelling Machine Selection Using the AHP Method
A. Taheri and H. A. M. Borujeni

Influence on Groundwater Level Change Due to Water Seepage in Chikushi Shinkansen Tunnel, Japan
C. Wang, T. Esaki, Y. Mitani, B. Xu, A. Murakami and C. Qiu

2. ROCK CAVERNS

2.1. General

A Thermo-Mechanical Analysis Around Lined LNG Storage Cavern

Evaluation of the Stability for Underground Tourist Cavern in an Abandoned Coal Mine
K. C. Han and Y. S. Jeon

Hydrogeologic Analysis of Groundwater Drainage System for Underground LNG Storage Cavern

Design of Rock Caverns in High In-Situ Stress Rock Mass
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of the Groundwater Resources in Bedrock Using Rock Caverns</td>
<td>167</td>
</tr>
<tr>
<td>T. Nishi, H. Momota, M. Suzuki and M. Honda</td>
<td></td>
</tr>
<tr>
<td>Cavern Design Consideration with Modern Drilling Equipment</td>
<td>168</td>
</tr>
<tr>
<td>G. Nord, H. Stille and M. Bagheri</td>
<td></td>
</tr>
<tr>
<td>Application of Composite Element Method to PuBugou Underground Engine</td>
<td>169</td>
</tr>
<tr>
<td>S. Qiang, Y. Zhang, S. H. Chen, Z. G. He and L. L. Xue</td>
<td></td>
</tr>
<tr>
<td>Geotechnical, Environmental and Structural Aspects of Underground Stor</td>
<td>170</td>
</tr>
<tr>
<td>Hazardous Substances</td>
<td></td>
</tr>
<tr>
<td>G. Reik and W. Rahn</td>
<td></td>
</tr>
<tr>
<td>Influence of Concealed Karst Caverns on Tunnel Stability</td>
<td>171</td>
</tr>
<tr>
<td>Z.-P. Song, N. Li, L.-S. Deng and J.-L. Cheng</td>
<td></td>
</tr>
<tr>
<td>Fundamental Study on Long-Term Stability of the Underground Cavern</td>
<td>172</td>
</tr>
<tr>
<td>Y. Suzuki and K. Sugawara</td>
<td></td>
</tr>
<tr>
<td>Design Methodology for Hydrocarbon Caverns, Influence of In-Situ Stres</td>
<td>173</td>
</tr>
<tr>
<td>Large Sections</td>
<td></td>
</tr>
<tr>
<td>T. You, N. Gatelier and S. Laurent</td>
<td></td>
</tr>
<tr>
<td>2.2. Theoretical and Numerical Analyses</td>
<td>175</td>
</tr>
<tr>
<td>Finite Element Analysis of Underground Nuclear Repositories with Tem</td>
<td>177</td>
</tr>
<tr>
<td>Dependent Rock Properties</td>
<td></td>
</tr>
<tr>
<td>T. Chakraborty and K. G. Sharma</td>
<td></td>
</tr>
<tr>
<td>Behaviour Study of Large-Scale Underground Opening in Discontinuous Rock Masses</td>
<td>178</td>
</tr>
<tr>
<td>by Using Distinct Element Method</td>
<td></td>
</tr>
<tr>
<td>Y. J. Jiang, B. Li, Y. Yamashita, Y. Etou, Y. Tanabashi and X. D. Zhao</td>
<td></td>
</tr>
<tr>
<td>Hydro-Thermal Coupled Analysis of Ice Ring Formation in Underground Pilot LNG Cavern</td>
<td>179</td>
</tr>
<tr>
<td>Heat Transfer and Boil-Off Gas Analysis Around Underground LNG Storage Cavern</td>
<td>180</td>
</tr>
<tr>
<td>Numerical Simulation and Displacement Field Measurement of Powerhouse Cavern Excavation</td>
<td>181</td>
</tr>
<tr>
<td>S. Li, Y. Liu and F. Wu</td>
<td></td>
</tr>
</tbody>
</table>
One System Analysis Method in Underground Chambers Excavation and Application
 X. J. Li, W. S. Zhu, W. M. Yang, S. C. Li and Y. S. H. Guo

Numerical Modelling for Feasibility Analysis of PowerHouse Chambers in Weak Formation

3D Analysis of Power Cavern in Rock Mass using Joint Factor and Nonlinear Hyperbolic Model
 V. B. Maji and T. G. Sitharam

Comparison of 2D&3D Analyses Results of Masjed Soliman Powerhouse Caverns by ANSYS Software
 A. A. Safikhani

Numerical Simulation of Gas Storage Caverns in Qom Region
 M. Sharifzadeh and A. M. Ghasr

Stability Analysis of a Large Underground Powerhouse Cavern by 3D Discrete Element Method
 T. Wang and L. Chen

2.3. Field and Laboratory Studies

Stability Analysis of Lavarak Underground Powerhouse Cavern Using Back Analysis Results
 M. Assari, M. Moosavi and A. Taherian

Microseismic Monitoring Around Large Underground Storage Caverns During Construction

KAERI Underground Research Facility for the Validation of a High-Level Radioactive Waste Disposal Concept in Korea

Monitoring and Analysis about Stabilization on the Tai’an Pumped-Storage Station Underground House
 J. Li, Shucai Li, Shuchen Li and G. Wang

Design Analysis of Experimental Lined Rock Cavern for Natural Gas Storage in Japan
 K. Niimi, T. Ibata, J. Ono, M. Aiba and Y. Tsutsumi

Experimental Lined Rock Cavern for Natural Gas Storage in Japan
 T. Okuno, N. Wakabayashi, K. Takeuchi, M. Iwano and Y. Tsutsumi
3. MINING

Instability Modes of Abandoned Lignite Mines and the Assessment of Their Stability
Ö. Aydan, M. Daido, T. Ito, H. Tano and T. Kawamoto

Physical Simulation of Full-Seam Mining for a 20m Thick Seam by Sub-Level Caving Mining Method
T. Kang, Y. Li, Z. Chai and S. Zhang

Numerical Investigation on Stability of the Rock Pillar in an In-Situ Experiment
L. C. Li and C. A. Tang

Stability Behaviour of Roadway Intersection in Deep Underground
T. Lu, L. Chen, Y. Liu and B. Guo

Effect of Backfilling on Stability of Pillars in Highwall Mining Systems
K. Matsui, H. Shimada, T. Sasaoka and M. Ichinose

New Method of Roof-Fall Hazard Evaluation in Polish Copper Mines
S. Orzepowski and J. Butra

Dimensioning of Salt-Rock Pillars in “Polkowice-Sieroszowice” Copper Deep Mine Based on FEM
W. Pytel and J. Butra

Failure Modes and Responses of Abandoned Lignite Mines Induced by Earthquakes
A. Sakamoto, N. Yamada, K. Sugiura, Ö. Aydan, H. Tano and M. Hamada

A Damage Model of Acoustic Emission in Pillar Failure and Its Numerical Simulation

Measuring Rock Mass Modulus of Deformation in a Stoping-Affected Cross-Cut in Pongkor Underground Gold Mine
R. K. Wattimena, B. Sulistianto, K. Matsui, B. Dwinagara and E. Barnas

Correlating Apparent Stresses Predicted by Microseismic Monitoring and Tunnel Displacements Measured with Convergencemeter in the DOZ Block Caving Mine
R. K. Wattimena, E. Widijanto and R. Ernawan

Geotechnical Challenges in the DOZ Block Cave Mine
E. Widijanto, N. Arsana and A. Srikant

Modeling of Mining Induced Delay Outbursts in Terms of Material Degradation
T. Xu, C. A. Tang, L. C. Li and S. Y. Wang
Study on Creep Behavior of Coal Rock and Stability of Tunnel Through Coal-Rock Layer

C. Zhang, C. Yang, C. J. Liu and F. Chen

3-D Numerical Simulation and Calculation Models Discussion of Mining Subsidence

Q.-S. Zhang, Shucai Li, Shuchen Li and Y.-F. Gao

Development of GIS-Based System for Predicting Coal Mining Subsidence and Assessment of Environment Impacts in North China

X. Zhao, Y. Jiang, Z. Song and T. Esaki

Massive Collapse of Pillars in Mines

Z. Zhou, X. Li, G. Zhao and Xiling Liu

Dynamic Simulation and Optimum Analysis on Construction Process for Joint Arch Tunnel in Partial Pressure

H. Zhu, N. Zhuang, Xuezeng Liu and Y. Cai

4. BLASTING AND DYNAMICS

Effect of Stress Level and Excitation Size on Compression Waves in Jointed Rocks

M. S. Cha and G. C. Cho

Wave Propagation and Attenuation in Discontinuous Rock Media

J. Chen, J. Li, G. Ma and Y. Zhou

Test and Theory Study on Middle-Deep Cut-Hole Blasting in Hard Rock Tunnel

S. Chen

Calculation of the Burden of Periphery Blast-Holes in Smooth Blasting for Deep Tunnel Driving

J. Dai

Validation of UDEC Modeling 2-Dimensional Wave Propagation in Rock

W. D. Lei, J. Zhao, A. M. Hefny and J. Teng

Penetration Depth of Long-Rod Into Geomaterials

J. C. Li, M. H. Yu and G. W. Ma

Study on the Stability Safety of Dangerous Rock No.2 in Suofengying Hydropower Station

Xiaoqing Liu, L. Li and T. Li
In-Situ Experimental Study on Blasting Vibration Wave Propagation Rules in Complicated Underground Tunnel Group

X.-P. Li, C.-L. Zhang, T. Wang, Y.-H. Li and Y. F. Dai

Blasting Vibration Analysis in Shallow Buried Tunnel Excavation

C. Lin, L. Yang and J. Cui

Dynamic Response of Surrounding Rockmass Induced by the Transient Unloading of In-Situ Stress

W. B. Lu, P. Yan and C. B. Zhou

Research on Frozen Weathered Rock Blasting Techniques in Shaft

Q.-Y. Ma

Assessment of Blast-Induced Vibration in Jointed Rock Mass

B. K. Park, S. Jeon and G. J. Park

Study on Split-Second Delay Time of Parallel Cut Blasting in Rock Drifting

D. Qiao

Seismic Analysis of Tunnels — The Quasi-Static Method

R. Resende and J. V. Lemos

Long Hole Blasting Excavation in Single-Track Railway Tunneling

H. Sasao and T. Asakura

Ballistic Penetration and Perforation of Granite Target Plates by Hard Projectiles

C. C. Seah, T. Børvik, S. Remseth and T. C. Pan

Optimized Blasting Design for Large-Scaled Quarrying Based on a 3D Spatial Distribution of Rock Factor

Prediction of Fragmentation Zone Induced by Blasting in Rock

Y. J. Sim and G. C. Cho

Stability Assessment of 290 Level Cave Subjected to Blast-Induced Vibrations

H. Sun, Q. Chen, S. Wang, X. Niu and W. Chen

Modeling Dynamic Split Failure of Granite using Smoothed Particle Hydrodynamic Method

X. J. Wang and G. W. Ma

Blasting Vibration Effect in Excavating a Multi-Arch Tunnel

C. Wu, X. Chen, Z. Xu and Q. Zhang
5. SUPPORT AND REINFORCEMENT

Design of Rock Support System for Sub-Sea Dock Excavation
J. Bergh-Christensen and T. K. Sandaker

Non-Destructive Evaluation System of the Tunnel Concrete Lining Using Wavelet Transform Analysis and New Acoustic Tapping Measurement
H. Enomoto, K. Tsukada and T. Asakura

Benefits and Comparisons of Pre-Reinforcement Applications in Tunnelling
R. Fuchs

Numerical Analysis for Better Understanding Mechanism of Support Effect on Ground Stability by Using Distinct Element Method
T. Funatsu, T. Hoshino, M. Ishikawa and N. Shimizu

Full-Column Grouted Rock Bolts and Support Pressure
R. K. Goel

Concrete Segmental Liner Instrumentation to Quantify Stresses Induced by Ground Freezing
J. F. Hatley, M. E. Fowler and R. Beddoes

Testing Equipment for Rock Under Coupling Loads
X. Li, Z. Zhou, Q. Li and L. Hong

FEM Analysis and Detection for Structural Damage of Tunnel Lining
D. Liu, Y. Deng, G. Xu and D. Gu

Ground Reaction Curve for a Phenomenological Damage Model
F. Martin, R. Desmorat and A. Saitta
The Evaluation of the Effect of Long Face Bolting by 3D Distinct Element Method
Y. Mitarashi, H. Tezuka, T. Okabe, S. Morimoto and Y. Jiang

Mechanism and Measures of Coarse Aggregate Spalling in Aged Tunnel Concrete Linings
S. Nishio, T. Sasaki and Y. Kojima

Effect of Contact Roof Zone on the Performance of Longwall Powered Supports
V. R. Sastry, R. Nair and M. S. V. Ramaiah

Comparison Between Numerical Analyses and Actual Test in Field for Prestress Anchors (Monobars)
M. R. Shahverdiloo and B. Ahadi Manafi

Shear Reinforcing Effect of Rust Proofing Expansive Rock Bolts
M. Shinji, H. Mukaiyama, N. Kanda and H. Tanase

Deterioration Mechanisms of Tunnel Lining Concrete
H. Ueda, S. Nishio, T. Sasaki and Y. Matsuda

Floor Heave Roadway Prestressed Anchor and Inverted-Arch Combined Support Design and Its Numerical Analysis

Experimental Study on the Influence Factors of Cable Bolt Reinforcement
Y. D. Xue and H. W. Huang

Auxiliary Method to Stabilize Cutting Face of Mountain Tunnel
H. Yamada, M. Baba and Y. Jiang

Reinforcing Analysis of New Prestressed Anchored Rope Based on Interface Element Method
Q. Zhang, Z. Li, J. Zhuo and X. Sun

6. ROCK MASS

6.1. General

A Proposal for the Modification of RQD (MRQD)
M. S. Araghi, F. B. Samani and M. T. Goudarzi

Rock Mass Characterization and Rock Mass Property Variability Considerations for Tunnel and Cavern Design
M. Cai and P. K. Kaiser
Strain-Dependent Permeability Tensor for Coupled M-H Analysis of Underground Opening

Y. Chen, Y. Sheng and C. Zhou

Application and Research of Seismic Investigation Methods to Predict Rock Mass Conditions Ahead of the Face

T. Dickmann and S. K. Tang

Analyzing of the Representative Length of Rock Mass Subjected to Load by In Situ Loading Tests to Evaluation of Rock Mass Deformation Modulus

L. Faramarzi and K. Sugawara

Rock Mass Quality Evaluation by Fractal Dimension of Rock Mass Discontinuity Distribution

Risk Evaluation of Water Inrush During Shaft Excavation in Fractured Rock Masses

H. Ohtsu, Y. Sakai, H. Saegusa, H. Onoe, Y. Ijiri and T. Motoshima

Simulation of Fracture Mechanics for Rock Masses Under Very Low Temperature Conditions

New Approach for Prediction of Bearing Capacity in Rock and Rock Mass

K. S. Rao, R. P. Tiwari and C. Kumar

Prediction of Ground Condition and Evaluation of Its Uncertainty by Simulated Annealing

Considerations on Long-Term Strength of Jointed Rock Upon the Homogenized Crack Propagation

K. Sugawara, Y. Suzuki and T. Tokuoka

Modified Rock Mass Classification System for Preliminary Design of Rock Slopes

Abbas Taheri, Ali Taheri and K. Tani

Engineering Behaviour of Simulated Block Mass Models

R. P. Tiwari and K. S. Rao

Evaluation of Rock Mass Quality and Its Application

L. Wang, J. Li, H. Deng and J. Liu

Complete Stress-Strain Curve for Jointed Rock Masses

T. T. Wang and T. H. Huang
A Parametric Study on Flow of Groundwater in Fractured-Porous Media: 3D Simulation

6.2. Theoretical and Numerical Analyses

Simulation of Stratified Rocks Using COSSERAT Model
S. G. Chen

Application of Meshless Method for Behavior Analysis of Jointed Rock Mass
M. Hajiazizi, N. Hataf, F. Daneshmand and A. Ghahramani

M. Hajiazizi, N. Hataf, F. Daneshmand and A. Ghahramani

Stochastic Simulation of Rock Mass Properties Using a Modified Genetic Algorithm
C. Hong and S. Jeon

Numerical Analysis on Rock Failure Mechanics Under Loading and Unloading Conditions
P. Jia, C. A. Tang and Z. Z. Liang

Application of a Fuzzy Model to Estimate the Engineering Rock Mass Properties

An Analytical Study on Electrical Resistivity-Based Rock Mass Classification
H.-H. Ryu, G.-C. Cho and I.-M. Lee

Applying the Theory of Seismic Interferometry to Geological Survey Using Artificial Sources in Tunnels

Geotechnical Concerns During the Development of the AB Tunnels in PT Freeport Indonesia
F. Sinaga, I. Qudraturrahman and A. Srikant

Numerical Modeling of Jointed Rock Mass: A Practical Equivalent Continuum Model
T. G. Sitharam and V. B. Maji

Application of Extended Finite Element Method to Cracking Analysis of Rock Masses
T. Yu and L. Li

A 2-D Natural Element Model for Jointed Rock Masses
T. Yu and M. Y. Otache
6.3. Field and Laboratory Studies

Physical Properties of Fractured Rock Mass Determined by Geophysical Methods
A. F. Idziak and I. Stan-Kleczek

301

Rock Mass Mechanics at the Mining of Large Ore Bodies in the Uranium Deposit
of Rožná
B. Michálek, P. Kříž and A. Grmela

302

Prediction of Modulus of Elasticity and Deformability of Rock Masses from Laboratory
and Geotechnical Parameter
M. R. Shahverdiloo

303

Scale Effect of Shear Strength of Conglomerate Evaluated by Field and Laboratory
Triaxial Tests
K. Tani

304

Effect of Rock Strength Properties on Breakage of Rock Mass: An Experimental
Analysis of Indian Mines
N. R. Thote and D. P. Singh

305

Study on Design Scheme for Control of Seepage of Pingtou Underground
Hydropower Plant
Y.-M. Zhu, W.-J. Cen, B.-Y. Lin and X.-L. Fan

306

7. ROCK PROPERTIES

7.1. General

Estimation of Geomechanical Parameters of Reservoir Rocks, Using Conventional
Porosity Log
V. Azizi and H. Memarian

309

Prediction of Mechanical Parameters of Rock, Using Shear Wave Travel Time
V. Azizi and H. Memarian

310

Rock Strain-Strength Criterion and Its Application
Y. Chang

311

The Effect of Calcium Carbonate Content of Marlstones on the Strength Response
A. H. Ghazvinian, A. Fathi, Z. A. Moradian and M. R. Nikudel

312
Analysis of Structure Properties and Load Carrying of Destructive Rock Under Different Constraints

L. Han, Y. He and H. Zhang

Characteristics of Roughness Mobilization

E. S. Hong, J. S. Lee, H. S. Shin, S. O. Choi and I. M. Lee

Brief Rock Evaluation by Shock Response Value and MRCI

Y. Ito, S. Nakagawa, K. Kikuchi, T. Kobayashi and T. Saito

Three Dimensional Thermo-Hydromechanical Modeling of a Heating Test in Mudstone

Y. Jia, Y. Wileveau, K. Su, G. Duveau and J. F. Shao

Element Free Analysis for a Material Heterogeneity: 2D Example

H. M. Kim, J. Inoue and K. Ando

Impact of Pyrite Oxidation on Mechanical Properties of Rock and Environment

J. G. Kim, G. H. Lee, I. Woo, T. H. Kim, C.-M. Chon and J.-S. Lee

Characterisation of Marble and Effect of High Confining Pressure

R. Kumar, K. G. Sharma and A. Varadarajan

Behavior of a Sandstone Under AXI- and Asymmetric Compressive Stress Conditions

M. Kwaśniewski and M. Takahashi

An Investigation of Hydromechanical Behaviour and Transportability of Rock Joints

B. Li, Y. J. Jiang, R. Saho, Y. Tasaku and Y. Tanabashi

Evaluation of the State of Stress in the Vicinity of a Mine Drift Through Core Logging

C. C. Li

Theoretical and Experimental Analysis on the Mechanism of Kaiser Effect of Acoustic Emission in Brittle Rocks

Y. H. Li, R. F. Yuan and X. D. Zhao

Numerical Modelling of Size Effect of Single-Edge-Notched Brittle Specimens Subjected to Uniaxial Tension

Site Investigation for Underground Oil and Gas Storage Rock Caverns at Jurong Island of Singapore

M. Lu, J. G. Cai and A. Beitnes

Lithophysal Porosity Effect on Mechanical Properties of Welded Topopah Spring Tuff

L. Ma and J. J. K. Daemen
A. Miyata, Y. Ohnishi, S. Nishiyama, T. Yano and M. Takahashi

Using Artificial Neural Networks to Predict Pressure-Deformation of Solids with Flat Jacks
M. Moosavi and R. Doostmohammadi

Influence of Water Vapor Pressure of Surrounding Environment on Fracture Toughness of Rock
Y. Obara, K. Sasaki, T. Matsuyama and T. Yoshinaga

Recent Experiences in Singapore Limestone Rocks
L. J. Pakianathan, K. Jeyatharan, C. F. Leung and V. Chepurthy

Subsurface Assessment in the Karst Area Using 3-D Resistivity Technique
S. M. Park, M. J. Yi, J. H. Kim, C. Kim, J. S. Son and S. J. Cho

Considerations in Developing an Empirical Strength Criterion for Bimrocks
H. Sonmez, H. Altinsoy, C. Gokceoglu and E. W. Medley

Ground Stability at Limestone Region with Ubiquitous Cavities by Fluctuation of Groundwater
J. H. Synn, C. Park and W. K. Song

Strength Degradation of Granite Under Constant Loading
L. G. Tham, Q. X. Lin, Y. M. Liu, P. K. K. Lee and J. Wang

Application of Design of Experiments to Process Improvement of PFC Model Calibration in Uniaxial Compression Simulation
J. Yoon, O. Stephansson and G. Dresen

Acoustic Emission Behavior in the Progressive Failure of Rock Sample Containing Weak Zones
H. Zhang, Y. He, L. Han, W. Kang and C. Tang

Study on the Damage Evolution Equation of the Fractured Rocks Based on the Triaxial Compression Tests
J. M. Zhu and Q. Nie

Growth and Coalescence of Internal Flaws in Brittle Materials
W. S. Zhu, Y. S. H. Guo, S. C. Li, R. H. C. Wong and X. J. Li
7.2. In-Situ and Laboratory Tests

Modeling Brittle Failure of Rock Using Damage-Controlled Test

D. S. Cheon, C. Park, Y. B. Jung and S. Jeon

341

Determination of Elastic Constants for Transversely Isotropic Rock Specimens by a Single Uniaxial Compression Test

342

Mechanical Response of Vindhyan Sandstones Under Drained and Confined Conditions

R. K. Dubey

343

Roof Geostructure Logging System Using Portable Pneumatic Drilling Machine

K.-I. Itakura, S. Tomita, S. Iguchi, Y. Ichihara, P. Mastalir, T. Bergner and C. Coyte

344

Effect of Porosity Between Spiral Bar and Crushed Rock in Borehole

S. S. Kang, S. Kokaji and A. Hirata

345

Determination of Mode II Stress Intensity Factor Using Short Beam Compression Test

T. Y. Ko and J. Kemeny

346

Experimental Study on Strength and Deformation Characteristics of Phyllite

A. Kumar, N. K. Samadhiya and M. Singh

347

Study of Anisotropy of Rock Elastic Properties of Fairbanks Schist Utilizing Ultrasonic Waves

H. Li and G. Chen

348

Experimental Investigation of Creep in a Salty Mudstone

W. Liang, C. Yang, Y. Zhao and M. B. Dusseault

349

Comparison of Direct Shear Test Results Using a Portable Developed and Conventional Direct Shear Test Apparatus

M. Gharouni-Nik and S. Hashemi

350

Measuring Electric Resistivity of Rock Cores for the Underground Sequestration of Carbon Dioxide

K. Onishi, Y. Ishikawa, K. Okamoto, Z. Xue, Y. Yamada and T. Matsuoka

351

Research of Mechanical Energy and Temperature Distribution During Dynamic Loading of Rocks

V. Petroš, J. Šancer and P. Michalčík

352

Experimental Study on Deformation Behavior of Rock under Uniaxial Compression and Direct Tension

Q. Xie, X. Yu, C. D. Da Gama, Y. Na and Y. Zhang

353
Field Test and Analysis of Rocks of the South-To-North Water Diversion Project

H. F. Xing, Q. B. Li, Z. H. Liu, G. B. Ye and C. Xu

Experimental Study on Mechanical Properties and Longitudinal Wave Characteristics of Tuff, Granite and Breccia After High Temperature

Z. G. Yan and H. H. Zhu

Experimental Study on the Permeability of Soft Rock

L. D. Yang, X. B. Yan, Y. Li and X. X. Zhang

Requirements for Rock Stress Measurements in Pressure Tunnels of Seymareh Dam Project

M. Yazdani

8. DISCONTINUITIES

8.1. General

Effect of Excavation Sequence and Fault Orientation on Stresses and Deformation Around a Cavern

H. C. Chua and E. C. Leong

Importance of Infilled Joints in Shear Strength Assessment of Rock Mass

M. Jayanathan, B. Indraratna and H. S. Welideniya

Unstable Phenomena at the Face Based on the Quantification of Discontinuity in Rock Masses for TBM Excavation

M. Kawakita, I. Ohtsuka, M. Iwano, S. Shimaya and M. Matsubara

Influence of the Elasticity of Rock Walls at Large Scale on the Mechanical Behavior of Rock Joints

F. Vallier, M. Boulon, Y. Mitani and T. Esaki

Surrounding Rock Reinforcement of Underground Powerhouse by Joint Mapping

Three Dimensional Joint Mapping and Its Application on Rock Mass Simulation

F. M. Zhang, J. Li, L. Wu, X. G. Wang and Z. Y. Chen

8.2. Theoretical and Numerical Analyses

Improvement on Spacing Simulation in 3-D Network Modeling of Discontinuities in Rockmass

Numerical Modeling of Shear Behaviour of Inclined Saw-Tooth Mudstone-Concrete Joint using FLAC

K. H. Kong, A. Haque, J. Kodikara and P. G. Ranjith

Unified Shear Model for Rock Joints

J. Muralha

New Considerations on Rock Loads for Mined Tunnels

B. F. Townsend, C. R. Sperrs and H. Lagger

Research on Coupled Penetrating-Dissolving Model and Experiment for Rock Salt Crack

8.3 Field and Laboratory Studies

Hydromechanical Behavior of Rock Joints by Rotary Shear-Flow Test

Y.-Y. Jeong, E. Kim and C.-I. Lee

Study of the Interaction Between Hydraulic Fractures and Geological Discontinuities

E. M. Llanos, R. G. Jeffrey, R. R. Hillis and X. Zhang

Experimental Study and Numerical Modeling of Direct Shear Tests of Rock Joints Under Constant Normal Stiffness

B. K. Son, C. I. Lee and J. J. Song

Crossing of Fault Zones in the MFS Faido by Using the Observational Method

R. Stadelmann, M. Rehbock-Sander and M. Rausch

Estimation of Permeability Structure of the Median Tectonic Line Fault Zone in Ohshika-Mura, Nagano, Japan, by using Laboratory Tests Under High Pressure

S. Uehara and T. Shimamoto

Effect of Dilation Angle on Failure Mode and Entire Deformational Characteristics of Rock Specimen

X. B. Wang

9. BLOCK THEORY AND DDA

Vibration Analysis of Laminated Blocks by Discontinuous Deformation Analysis

S. Akao, Y. Ohnishi, S. Nishiyama, T. Yano, T. Fukawa, T. Nishimura and K. Urano

Block Removability Analysis of A Rock Slope Using Statistical Joint Modeling

S. W. Cho and J.-J. Song
Seismic Risk Determination Using Numerical Analysis of Block Displacements in Historical Monuments with DDA

R. Kamai and Y. H. Hatzor

Determination of Block Sizes Considering Joint Persistence

B. H. Kim, M. Cai and P. K. Kaiser

Numerical Manifold Method for the Potential Problem for the Groundwater Flow

Coupling of Certain and Stochastic Discontinuities in 3-D Discontinuity Network Modeling

Engineering Geology Characteristic and the Low-Loose Method of Caving Mining System in Xiadian Gold Mine

F. Ren, S. Wang, P. Wang and T. Mu

Cutting Joint Blocks and Finding Key Blocks for General Free Surfaces

G.-H. Shi

An Experimental-Computational Approach to the Investigation of Damage Evolution of EDZ in Anisotropic Rock Mass

10. FAILURE, FRACTURE AND BURST

Numerical Study of Fracture Control Technique for Smooth Blasting

X. M. An and G. W. Ma

Numerical Analysis of Rock Fracturing Process by DEM using Bonded Particles Model

K. Aoki, Y. Mito, C. S. Chang and T. Maejima

Development of Fluid Flow Analysis Program in 3-D Discrete Fracture Network Including Consideration of Its Input Parameters and Hydraulic Behaviour

S. H. Bang and S. Jeon

The Conductivity Variations of Single Rock Fracture During Normal Loading

C. Y. Chao, T. H. Huang and L. S. Chang

Influence of Celestial Body Activity on the Rock Burst Occurrence in Coal Mine

X. H. Chen and M. L. Huang
Experimental Assessment of Healing of Fractures in Rock Salt

K. Fuenkajorn

Elastic-Plastic Fracture Damage Analyses on the Rock Cover of Ningbo Xiangshan Harbor Subsea Tunnel

G. Wang, S. Li and S. Wang

A Coupled Approach for Gas Outburst Simulation

S. G. Chen

Numerical Study of the Shearing of Large Fractures Having Propagating Boundaries

H. Hakami

Study of Occurrence Conditions and Criteria of Rock Burst in Coal Mine

M.-L. Huang, X.-H. Chen and W. Lu

Analyzing Scale and Pressure Dependent Properties of Fracture Using CT Scanner

T. H. Kim and D. S. Schechter

Effects of Shearing Processes on Fluid Flow and Particle Transport in a Single Rock Fracture

T. Koyama and L. Jing

Study on Interactive Mechanisms of Two Cracks Under Compressive Conditions

M. T. Li, S. C. Li, H. Zhou and W. T. Ding

Geological Setting of the Rockburst of Qinling Tunnels in Central China

J. Ma, B. S. Berggren and H. Stille

Localization of Water Flow in a Sheared Fracture as Estimated by Large Fractal Fractures

K. Matsuki and K. Sakaguchi

Rock Burst Characterization for Underground Constructions

C. A. Öztürk, A. Fisne and E. Nasuf

Rock Bursts, Experience Gained in Deep Tunnels and Mines

M. Rehbock-Sander, R. Stadelmann and A. Gerdes

Research on the Coupling Support Mechanism of Soft Rock Tunnel at Great Depth

X.-M. Sun, M.-C. He and J. Yang

Damage Assessment of EDZ in Rock Around Circular Opening by Acoustic Emission

Visualization and Quantitative Evaluation of Aperture Distribution, Fluid Flow and Tracer Transport in a Variable Aperture Fracture
 J. Xiao, H. Satou, A. Sawada and A. Takebe

Seismic Source Theory of Rock Burst and Analysis of Burst Process
 Y. Yan, L. Kang, X. Zhang and X. Wang

Induced Fracturing in the Opalinus Clay: An Intergrated Field Experiment
 S. Yong, S. Loew, C. Fidelibus, E. Frank, F. Lemy and K. Schuster

11. DAMS AND SLOPES

11.1. General

Stability Analysis of a Potentially Toppling Over-Tilted Slope in Granite
 L. R. Alejano, I. Gómez Márquez, B. Pons, F. G. Bastante and E. Alonso

Prediction of Post-Failure Motions of Rock Slopes Induced by Earthquakes
 Ö. Aydan, N. Tokashiki, T. Akagi and R. Ulusay

Calculation of Deterioration Depth of Rock Slope Caused by Freezing-Thawing in Korea
 Y. Baek, O.-I. Kwon, S.-B. Yim, Y.-S. Seo and S.-H. Shim

Slope Stability Analysis and Determination of Stable Slopes in Chador-Malu Iron Mine
 S. Bodaghabadi and M. Ataei

Fire Dam Construction for Underground Openings
 A. Fisne, C. A. Öztürk and G. Ökten

Analyses on the Rock Slopes Using Hazard Area Estimation System for Rock Mass Failure Debris
 T. Kuwano, Y. Ohnishi, S. Nishiyama, M. Kawakita and Y. Sasaki

Study on the Dynamic Response and Progressive Failure of a Rock Slope Subjected to Explosions
 Y. Q. Liu, H. B. Li, J. R. Li, Q. C. Zhou, C. W. Luo and X. Xia

Application of ANNs to Permeability Analysis at the Shivashan Dam, Iran
 H. Owladeghaffari, Y. Pourrahimian and A. Majdi

New Implementation Approach of Three-Dimensional Slope Stability Analysis Using Geographical Information System
 C. Qiu, T. Esaki, M. Xie, Y. Mitani and C. Wang
Investigation on Dam Foundation Grouting Process

H. Satoh, Y. Yamaguchi and T. Abe

Slope Deformation Characteristics and Instability Analysis

B. Yuan, L. Ren and X. Zhu

11.2. Theoretical and Numerical Analyses

Numerical Seismic Stability Safety Evaluation for Rock Slopes

M. Dai and T. Li

Study on the Prediction of the Hazard Area Due to Rock Slope Failure by Using Neural Network System

T. Kanamoto, Y. Ohnishi, S. Nishiyama, T. Kuwano, M. Kawakita and Y. Sasaki

Simulation Analysis of Toppling Failure of Rock Slope by Distinct Element Method Using Bonding Theory

H. Kusumi, S. Ohtsuki, T. Matsuoka and Y. Ashida

Seismic Response Analysis and Earthquake-Induced Slope Failure — A Case Study of LAS Colinas Landslide, El Salvador

H. Y. Luo, W. Zhou, S. L. Huang and G. Chen

A New Ground Water Analysis Method with Rainfall for Slope Stability Evaluation

S. Tachibana, Y. Ohnishi, S. Nishiyama and M. Ramli

Three-Dimensional Stability of Slopes with Building Loads

F.-C. Zhu, P. Cao and K.-S. Zhang

On Refined FEM Solution to Seepage in Arch Dam Foundation

Y.-M. Zhu, D.-M. Sun, E. Bauer and S. Semprich

11.3. Field and Laboratory Studies

Comprehensive Back Analysis Techniques for Assessing Factors Affecting Open Stope Performance

P. M. Cepuritis and E. Villaescusa

Presenting a Technical-Economical Solution for “Rockfall” Control in Section I of Rock Slope Facing Tehran-Fasham Road

M. A. Chermahini, A. A. Chermahini, F. Bahrami Samani and M. Züger

A Case Study of Deformation Measurements of Slates at Javeh Dam Site in Iran

S. Hashemi and M. Gharouni-Nik
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Factor Assessment Method for Rock Slope using Centrifuge Model Test</td>
<td>448</td>
</tr>
<tr>
<td>Y. Kusakabe, K. Miura, H. Ishikawa and Y. Ito</td>
<td></td>
</tr>
<tr>
<td>Case Study on the Causes for the Failure of Large-Scale Rock Slope Composed of Metasedimentary Rocks in Korea</td>
<td>449</td>
</tr>
<tr>
<td>B. S. Park, H. Jo, C. S. Kim and J. H. Lee</td>
<td></td>
</tr>
<tr>
<td>Probability of Rock Slope Failures at Part of a Mountain Road, Saudi Arabia</td>
<td>450</td>
</tr>
<tr>
<td>B. H. Sadagah</td>
<td></td>
</tr>
<tr>
<td>Water Pressure Tests for Dam Foundations</td>
<td>451</td>
</tr>
<tr>
<td>Y. Yamaguchi, H. Satoh and T. Araie</td>
<td></td>
</tr>
<tr>
<td>Measurement of the Dynamic Behavior of Unstable Rock Blocks Existing in the Rock Cliff</td>
<td>452</td>
</tr>
<tr>
<td>Y. Yamauchi, Y. Jiang and Y. Tanabashi</td>
<td></td>
</tr>
<tr>
<td>The Deformation Mechanism and Dynamic Stability on Creeping Slope of Fushun West Open Cast Side-Slopes</td>
<td>453</td>
</tr>
<tr>
<td>12. OTHER APPLICATIONS</td>
<td>455</td>
</tr>
<tr>
<td>Evaluation of the Excavation Damage Zone (EDZ) by using 3D Laser Scanning Technique</td>
<td>457</td>
</tr>
<tr>
<td>A. Bäckström, Q. Feng, F. Lanaro and R. Christiansson</td>
<td></td>
</tr>
<tr>
<td>Numerical Simulation of Ice-Rock Interface Under Shear Loading</td>
<td>458</td>
</tr>
<tr>
<td>A. Bashir, Y. Zhang and H. Zhang</td>
<td></td>
</tr>
<tr>
<td>Improvement of Rock Strata for Foundation of Reactor Buildings</td>
<td>459</td>
</tr>
<tr>
<td>A. Boominathan and S. R. Gandhi</td>
<td></td>
</tr>
<tr>
<td>Feasibility Analysis of Physical and Chemical Soft Rock Modifications</td>
<td>460</td>
</tr>
<tr>
<td>Z. Y. Chai, T. H. Kang and Y. B. Li</td>
<td></td>
</tr>
<tr>
<td>GIS System Development for Surface Subsidence Prediction Due to Complex Tabular Extractions</td>
<td>461</td>
</tr>
<tr>
<td>I. Djamaluddin, T. Esaki and Y. Mitani</td>
<td></td>
</tr>
<tr>
<td>Application of the Design Parameters from Statistical Analysis</td>
<td>462</td>
</tr>
<tr>
<td>J. G. Kim, T. W. Ha and H. S. Yang</td>
<td></td>
</tr>
</tbody>
</table>
Stability Analysis of Spread-Footing Foundations on Weak Rock Using Non-Linear FEM Modelling

D. Kumar and S. K. Das

Rock Damage Zone Analysis using Back-Calculated Critical Strain

Parameter Identification and Prediction of Subsidence Using Artificial Neural Networks and FEM Database

J. H. Lee, Y. Yokota and S. Akutagawa

Experimental Research on Pendulum Impact Properties of Frozen Clay

Q. Y. Ma and Q. H. Yu

Experimental Study on the Mechanical Behavior of the Rib Arch Structure

S. M. Na, S. J. Lee, S. H. Cho and S. D. Lee

Effects of Composition and Microstructures on Elastic Strain Energy in Clastic Rock

J. N. Pan, Z. P. Meng and J. C. Zhang

Stress Variability Around Large Structural Features and Its Impact on Permeability for Coupled Modelling Simulations

Q. Ta and S. Hunt

Application of Roadheader in High Strength Rock Formations

D. Tumac, C. Feridunoglu and N. Bilgin

The Measurement of Present Crustal Stress in Lijin Oil Field and Its Application

H. Wang, D. Sun, G. Zhu, X. Chen, Y. Yang and H. Li

Study on the Back Analysis of Multi-Parameters

S. L. Wang, Y. Y. Jiao, C. G. Li and X. R. Ge

Crustal Stresses in Ryukyu Islands of Japan

H. Watanabe, H. Tano, N. Tokashiki, T. Akagi and Ö. Aydan

Research of the Seepage Law of Adsorptive Gas in Single Coal Fracture

D. Yang, Y. Hu and Y. Zhao

Method of Susceptivity Analysis of Parameters and Engineering Application

W. Yang, S. Li, X. Li and S. Li

Stress and Pressure Changes Analyzed with a Fully Coupled Reservoir Model

S. Yin, M. B. Dusseault and L. Rothenburg
Numerical Method for Mixed Failure of Rocklike Materials Based on Virtual Multi-Dimensional Internal Bonds

Z. Zhang, X. Ge and M. Zhang

Author Index
This paper explains a rock mass deformation modulus measurement conducted in a cross cut at Pongkor underground gold mine, where there was an active stope underneath the cross-cut. It is revealed that the resulted rock mass deformation modulus was controlled by the stoping progress. The larger the dimension of the underneath stope, the higher the rock mass deformation modulus obtained, which was due to the higher induced stress in the test location. There was a 20-30% increase of rock mass modulus of deformation when the stope was advanced vertically from one mining slice to two mining slices, where the height of the slice was four metre.

Keywords: Rock mass; modulus of deformation; underground mine.

1. Introduction

Deformability is capacity of rock to strain under load or without load caused by an excavation that can be expressed quantitatively as modulus of elasticity or modulus of deformation (Goodman, 1989). Modulus of deformation of rock mass is one of the important factors required for design work within the rock mass, especially the design of an underground structure. It can be determined indirectly by applying a reduction factor to the rock elasticity modulus measured in laboratory or by using a number of formulas relating it with the rock mass quality or directly from \textit{in situ} measurement.

In Pongkor underground gold mine, the first \textit{in situ} measurement of rock mass modulus of deformation was carried out just recently. As the development and mining in Pongkor underground gold mine progress continuously, the measurement was conducted in an area that was affected by the stoping activities. The work reported in this paper is aimed at the investigation of the influence of stoping on the rock mass modulus of deformation measured in a cross-cut located above the stope.

2. Determination of Rock Mass Modulus of Deformation

2.1. Determination from intact rock modulus of elasticity

After reviewing a number of papers where laboratory and modelling properties were given, Mohammad, \textit{et al}. (1997) found that if the Young’s modulus results from laboratory tests (\(E\)) were plotted with those used in the model (\(E_m\)), the equation of the fitted straight line was:

\[
E_m = 0.469 E
\]

(1)

If the data were plotted as reduction factors, they also found a trend of increased reduction factors for low stiffness rock types and observed a number of very high reduction factors for very low stiffness rocks.
2.2. **Determination based on rock mass quality**

In the last 30 years, a number of authors have proposed formulas that can be used to estimate the rock mass modulus of deformation (E_m) from the Rock Mass Rating (RMR) and some of the formulas are given in the followings.

Bieniawski (1978) proposed that for fair to very good qualities rock masses with RMR greater than 50, the following formula could be applied:

$$E_m = 2 \text{RMR} - 100 \text{ [GPa]}$$

(2)

whereas Serafim and Pereira (1983) suggested that the relation is not linear but follows the following formula:

$$E_m = \frac{\text{RMR} - 10}{40} \text{ [GPa]}$$

(3)

For covering all qualities of rock mass, from very poor to very good qualities, the values in Table 1 were suggested by Chappel (1984).

<table>
<thead>
<tr>
<th>Rock mass quality</th>
<th>Description</th>
<th>RMR</th>
<th>E_m (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Very poor</td>
<td>0 – 20</td>
<td>0.05 – 0.5</td>
</tr>
<tr>
<td>IV</td>
<td>Poor</td>
<td>20 – 40</td>
<td>0.5 – 4</td>
</tr>
<tr>
<td>III</td>
<td>Fair</td>
<td>40 – 60</td>
<td>4 – 5</td>
</tr>
<tr>
<td>II</td>
<td>Good</td>
<td>60 – 80</td>
<td>5 – 25</td>
</tr>
<tr>
<td>I</td>
<td>Very good</td>
<td>80 – 100</td>
<td>25 – 50</td>
</tr>
</tbody>
</table>

As a result from his work with very poor to fair qualities rock masses with RMR less than 52, Stille (1986) introduced the following formula:

$$E_m = 0.05 \text{RMR} \text{ [GPa]}$$

(4)

Other non-linear relations between RMR and E were put forward by Mehrotra, *et al.* (1991), Iasarevic and Kovacevic (1996), and Berardi and Bellingeri (1998) as given respectively in Equations (5), (6), and (7) below.

$$E_m = \frac{\text{RMR} - 30}{50} \text{ [GPa]}$$

(5)

$$E_m = e^{(4.407 + 0.08 \text{RMR})} \text{ [GPa]}$$

(6)

$$E_m = 0.87 e^{0.0455 \text{RMR}} \text{ [GPa]}$$

(7)

Following the introduction of the Geological Strength Index (GSI) by Hoek (1994) and Hoek, *et al.* (1995) as a replacement of RMR in their failure criterion, Hoek and Brown (1997) modified the Serafim and Pereira (1983) equation for rock mass with intact rock uniaxial compressive strength σ_{ci} less than 100 MPa, as follows:
Furthermore, taking into account the blast damage and stress relaxation, Hoek and Brown (2002) introduced the disturbance factor D and modified Equation (8) as follows:

$$E_m = \left(1 - \frac{D}{2}\right) \sqrt{\frac{\sigma_{ci}}{100}} \frac{GSI-10}{40} \text{ [GPa]}$$

(9)

and for σ_{ci} greater than 100 MPa, the following equation was suggested:

$$E_m = \left(1 - \frac{D}{2}\right) \frac{RMR - 10}{10} \frac{GSI}{40} \text{ [GPa]}$$

(10)

2.3. In situ measurement

In the last few years, there are three types of in situ tests are mostly used to determine the rock mass modulus of deformation (Palmström & Singh, 2001): Plate jacking test, plate loading test, and Goodman’s jack test. In this work, rock mass modulus of deformation was determined by the Goodman’s jack test. The Goodman’s jack (see Figure 1) consists of a curved rigid bearing plate which can be forced inside an NX size borehole by a number of pistons. The displacement is measured with LVDT.

![Fig. 1. Goodman's jack](image)

The Goodman’s jack test is conducted by applying pressure to the borehole wall in a number of loading-unloading cycles, and the rock mass modulus of deformation (E_m) is calculated using the following formula (Goodman, et al., 1970):

$$E_m = \frac{\Delta Q}{\Delta u_d/d} K(\beta, \nu)$$

(11)

ΔQ = Pressure increment
d = Hole diameter
Δu_d = Change in hole diameter
K = Stress factor as a function of the central angle β of the load and of Poisson’s ratio ν
3. Data Collecting

3.1. Test location

The Goodman’s jack test was conducted in the Cross-Cut 6A Ciurug, Level 570, Pongkor Underground Gold Mine. Underneath the test location there was an active stope which was advancing towards the test location (see Figure 2). Three boreholes were used for the test, namely left, right, and front boreholes. The left and right boreholes penetrate the footwall (Andesitic breccia rock mass) whereas the front borehole was drilled into the Au-Ag orebody. In each borehole, three tests were conducted. In each test, eight measurements were conducted at eight different depths from the collar and at each depth four different loading directions were applied.

![Fig. 2. Test location and boreholes configuration](image)

3.2. Measured rock mass modulus of deformation

Table 1 shows the average values of the modulus of deformation of andesitic breccia rock mass and that of Au-Ag orebody. E_{Gj2} is modulus of deformation measured in a previous work (Hananta, 2005) that was conducted in the same boreholes, when the underneath stope was being mined in Slice 2 in Figure 2. E_{Gj3} is modulus of deformation measured in this work.

<table>
<thead>
<tr>
<th>Rock mass</th>
<th>Measured modulus of deformation (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesitic breccia</td>
<td>5.58 6.67</td>
</tr>
<tr>
<td>Au-Ag orebody</td>
<td>5.28 6.96</td>
</tr>
</tbody>
</table>
4. Discussions

4.1. Comparison with intact rock modulus of elasticity

The uniaxial compressive strength tests conducted on andesitic breccia and Au-Ag samples revealed that the uniaxial compressive strength (σ_{ci}) of andesitic breccia was 63.35 MPa with Young’s modulus (E) of 14.46 GPa. σ_{ci} and E for the Au-Ag ore were 57.83 MPa and 13.72 GPa, respectively. It means that the reduction factors are 0.46 for the andesitic breccia rock and 0.51 for the Au-Ag ore, which is generally in line with the findings of Mohammad, et al. (1997) described earlier in this paper.

4.2. Comparison with values estimated using rock mass quality

The Geotechnical Section of Pongkor Underround Gold Mine reported that the RMR of the andesitic breccia rock mass at the test locations was 52 and that of Au-Ag orebody was 53. Using these values in the equations relating rock mass modulus with RMR given earlier, the rock mass modulus of deformation were estimated and they are given in Table 2.

Table 2. Estimated rock mass modulus of deformation

<table>
<thead>
<tr>
<th>Formula</th>
<th>Estimated modulus of deformation (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Andesitic breccia</td>
</tr>
<tr>
<td>Bieniawski (1978)</td>
<td>4.50</td>
</tr>
<tr>
<td>Serafim & Pereira (1983)</td>
<td>11.38</td>
</tr>
<tr>
<td>Chappel (1984)</td>
<td>4.61</td>
</tr>
<tr>
<td>Stille (1986)</td>
<td>n.a.</td>
</tr>
<tr>
<td>Mehrrota, et al. (1991)</td>
<td>2.78</td>
</tr>
<tr>
<td>Iasarevic & Kovacevic (1996)</td>
<td>5.36</td>
</tr>
<tr>
<td>Hoek & Brown (1997)</td>
<td>9.06</td>
</tr>
<tr>
<td>Hoek & Brown (2002) with D = 0.7</td>
<td>5.89</td>
</tr>
</tbody>
</table>

It can be observed from Table 2 that rock mass modulus of deformation measured in this work are relatively closed to those estimated using the equations proposed by Iasarevic and Kovacevic (1996) and Hoek and Brown (2002). The measured values are lower than those estimated by Serafim and Pereira (1983), Berardian Bellingeri (1998) and Hoek and Brown (1997) formulas.

4.3. Effect of the underneath stoping

There was a 20-30% increase in rock mass modulus of deformation measured in this work compared to that obtained in the previous work. It is obvious that when the stope was mining in Slice 3 the excavation dimension was larger than the dimension when the stope was mining in Slice 2 which caused higher induced stresses to the rock mass in the test location. Consequently, due to the nature of the Goodman’s jack test, to enlarge the borehole diameter by a particular length, higher pressure was required for larger stope dimension. Subsequently, the gradient of pressure-displacement curve used in the determination of the rock mass modulus of deformation was higher which gave a higher rock mass modulus of deformation.
5. Conclusions

Determination of rock mass modulus of deformation in the area that was affected by underneath stoping has been carried out. It was observed that the stoping activity affected the measurement results. Higher rock mass modulus of deformation was obtained for larger underneath stope.

Acknowledgments

The authors wish to thank the management of Pongkor Gold Mining Business Unit of PT Aneka Tambang, Tbk. for giving permission to publish this paper.

References

