DAFTAR ISI

Halaman

ABSTRAK... v

ABSTRACT.. vi

KATA PENGANTAR .. vii

DAFTAR ISI .. viii

BAB

I PENDAHULUAN ... 1
1.1. Latar Belakang .. 1
1.2. Rumusan Masalah .. 2
1.3. Tujuan Penelitian .. 2
1.4. Batasan Masalah .. 3
1.5. Hipotesis ... 3
1.6. Hasil Yang diharapkan .. 3
1.7. Manfaat Penelitian ... 3

II TINJAUAN UMUM .. 6
2.1. Lokasi Kesampaian Daerah .. 6
2.2. Geologi Umum ... 7
2.3. Kegiatan Penambangan .. 9
2.4. Sistem Penyangga .. 11

III DASAR TEORI .. 16
3.1. Klasifikasi Rock Mass Rating (RMR) .. 16
3.2. Kriteria Runtuh Hoek & Brown .. 17
3.3. Analisis Balik .. 19
3.4. Keberadaan bidang diskontinu dalam mengontrol Kestabilan lubang bukaan .. 20
3.5. Tegangan Insitu ... 21
3.6. Tegangan di sekitar lubang bukaan (tegangan terinduksi) 22
3.7. Metode Elemen Hingga (Finite Element Method) 18
3.8. Sistem penyanga pada tambang bawah tanah 29
3.8.1. Baut batuan (rockbolt) ... 30
3.8.2. Beton tembak (shotcrete) ... 32
3.8.3. Kawat Baja (wiremesh) ... 34
3.9. Perhitungan Faktor Keamanan ... 35

IV HASIL PENELITIAN ... 37
4.1. Data Empirik ... 37
4.1.1. Uji Kuat Tekan Batuan Utuh (UCS) ... 39
4.1.2. Pengukuran Rock Quality Designation (RQD) 40
4.1.3. Pengukuran Bidang Diskontinu 40
4.2. Data Analitik .. 41
4.2.1. Kondisi lubang bukaan bawah tanah 41
4.2.2. Sifat fisik dan sifat mekanik batuan 41
4.2.3. Sifat rockbolt dan shotcrete 42
4.3. Pengolahan data Klasifikasi RMR 43
4.3.1. Penentuan Orientasi Keluarga Kekar 43
4.3.2. Parameter Kuat Tekan Batuan 44
4.3.3. Parameter RQD .. 44
4.3.4. Parameter Jarak Kekar ... 44
4.3.5. Parameter Kondisi Kekar ... 45
4.3.6. Parameter Kondisi Air Tanah 45
4.3.7. Pengaruh Arah Umum Bidang Diskontinu terhadap Penggalian ... 45
4.3.8. Penentuan Nilai dan Kelas RMR 46
4.3.9. Penentuan Tinggi Runtuh dan Beban Runtuh 47
4.3.10. Penentuan Penyangga Berdasarkan RMR 48
4.4. Analisis Balik Dengan Menggunakan Permodelan Numerik (finite element method) .. 49
4.5. Permodelan Penyangga Menggunakan Permodelan Numerik (finite element method) ... 54

V PEMBAHASAN .. 56
5.1. Klasifikasi Dan Kekuatan Massa Batuan Blok Cibitung 56
5.1.1. Karakteristik Dan Klasifikasi Massa Batuan Blok Cibitung 56
5.1.2. Kekuatan Massa Batuan Blok Cibitung Berdasarkan Analisis Balik ... 56
5.2. Analisis Kecukupan Penyangga Berdasarkan Permodelan Numerik ... 57
5.3. Analisis Desain Sistem Penyangga Berdasarkan Permodelan Numerik ... 59

VI KESIMPULAN DAN SARAN .. 65
6.1. Kesimpulan .. 65
6.2. Saran .. 65

DAFTAR PUSTAKA

LAMPIRAN
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bagian Alir Penelitian... 4</td>
</tr>
<tr>
<td>2.1</td>
<td>Peta Kesampaian Daerah dan Lubang Bukaan Bawah Tanah PT. Cibaliung Sumberdaya ... 6</td>
</tr>
<tr>
<td>2.2</td>
<td>Wilayah Izin Usaha Pertambangan PT. Cibaliung Sumberdaya 8</td>
</tr>
<tr>
<td>2.3</td>
<td>Peta Geologi Area Cibaliung dan Lokasi Bor 8</td>
</tr>
<tr>
<td>2.4</td>
<td>Cut and fill dengan ramp ... 9</td>
</tr>
<tr>
<td>2.5</td>
<td>Blok Model Cibitung-Cikoneng .. 10</td>
</tr>
<tr>
<td>2.6</td>
<td>Steelset jenis H-Beam ... 12</td>
</tr>
<tr>
<td>2.7</td>
<td>Cribbing ... 12</td>
</tr>
<tr>
<td>2.8</td>
<td>Wiremesh .. 13</td>
</tr>
<tr>
<td>2.9</td>
<td>Shotcrete .. 13</td>
</tr>
<tr>
<td>2.10</td>
<td>Kombinasi splitset dan wiremesh .. 14</td>
</tr>
<tr>
<td>3.1</td>
<td>Grafik Hubungan Antara RMR, Span, dan Stand Up Time (Bieniawski, 1989) ... 16</td>
</tr>
<tr>
<td>3.2</td>
<td>Ambrukan baji pada atap dan dinding lubang bukaan (Kaiser, 1998) 21</td>
</tr>
<tr>
<td>3.3</td>
<td>Ilustrasi tegangan utama yang bekerja pada lubang bukaan (Hoek dan Kaiser, 1998) ... 23</td>
</tr>
<tr>
<td>3.4</td>
<td>Tegangan radial, tegangan tangensial, dan tegangan geser di sekitar lubang bukaan (Kirsch, 1898) ... 24</td>
</tr>
<tr>
<td>3.5</td>
<td>Near and Far Field Zone pada Lubang bukaan (Duffaut, 1981) 24</td>
</tr>
<tr>
<td>3.6</td>
<td>Baut Batuan (rockbolt) (Hoek, 1993) .. 31</td>
</tr>
<tr>
<td>3.7</td>
<td>Komponen Baut Batuan (Hoek, 1987) .. 31</td>
</tr>
<tr>
<td>3.8</td>
<td>Wiremesh .. 35</td>
</tr>
<tr>
<td>3.9</td>
<td>Kriteria Keruntuhan Mohr-Coulomb .. 36</td>
</tr>
<tr>
<td>4.1</td>
<td>Lokasi pemetaan kekar CBT_996_XC8_STH .. 38</td>
</tr>
<tr>
<td>4.2</td>
<td>Lokasi pemetaan kekar CBT_966_XC9_STH .. 38</td>
</tr>
<tr>
<td>4.3</td>
<td>Lokasi pemetaan kekar CBT_951_XC10_STH 38</td>
</tr>
<tr>
<td>4.4</td>
<td>Lokasi pemetaan kekar CBT_Decline ... 39</td>
</tr>
<tr>
<td>4.5</td>
<td>Pengujian kuat tekan .. 39</td>
</tr>
<tr>
<td>4.6</td>
<td>Kondisi lubang bukaan CBT_996_XC8_STH .. 51</td>
</tr>
<tr>
<td>4.7</td>
<td>Kondisi lubang bukaan CBT_966_XC9_STH .. 51</td>
</tr>
<tr>
<td>4.8</td>
<td>Kondisi lubang bukaan CBT_951_XC10_STH 52</td>
</tr>
<tr>
<td>4.9</td>
<td>Kondisi lubang bukaan CBT_Decline ... 52</td>
</tr>
<tr>
<td>5.1</td>
<td>Sigma 1 Permodelan Penyangga Existing dan Hasil Penelitian 60</td>
</tr>
<tr>
<td>5.2</td>
<td>Sigma 3 Permodelan Penyangga Existing dan Hasil Penelitian 61</td>
</tr>
<tr>
<td>5.3</td>
<td>Sigma 1 Permodelan Penyangga Existing dan Hasil Penelitian 62</td>
</tr>
<tr>
<td>5.4</td>
<td>Sigma 3 Permodelan Penyangga Existing dan Hasil Penelitian 63</td>
</tr>
<tr>
<td>Tabel</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>3.1. Kelas Batuan RMR (Bieniawski, 1989)</td>
<td>16</td>
</tr>
<tr>
<td>4.1. Hasil Uji Kuat Tekan</td>
<td>40</td>
</tr>
<tr>
<td>4.2. Hasil Pengukuran RQD</td>
<td>40</td>
</tr>
<tr>
<td>4.3. Kondisi lubang bukaan aktual</td>
<td>41</td>
</tr>
<tr>
<td>4.4. Hasil pengujian triaksial</td>
<td>41</td>
</tr>
<tr>
<td>4.5. Hasil pengujian sifat fisik kuarsa (ore)</td>
<td>41</td>
</tr>
<tr>
<td>4.6. Hasil pengujian sifat fisik breksi andesit (waste)</td>
<td>41</td>
</tr>
<tr>
<td>4.7. Propertis Splitset</td>
<td>43</td>
</tr>
<tr>
<td>4.8. Propertis Shotcrete</td>
<td>43</td>
</tr>
<tr>
<td>4.9. Arah umum bidang diskontinu lokasi penelitian</td>
<td>44</td>
</tr>
<tr>
<td>4.10. Hubungan RQD dan kulitas batuan</td>
<td>44</td>
</tr>
<tr>
<td>4.11. Jarak kekar lokasi penelitian</td>
<td>45</td>
</tr>
<tr>
<td>4.12. Kondisi kekar lokasi penelitian</td>
<td>45</td>
</tr>
<tr>
<td>4.13. Kondisi air tanah lokasi penelitian</td>
<td>45</td>
</tr>
<tr>
<td>4.14. Pengaruh strike dip bidang diskontinu terhadap arah penerowongan</td>
<td>46</td>
</tr>
<tr>
<td>4.15. Nilai RMR CBT_996_XC8_STH</td>
<td>46</td>
</tr>
<tr>
<td>4.16. Nilai RMR CBT_966_XC9_STH</td>
<td>46</td>
</tr>
<tr>
<td>4.17. Nilai RMR CBT_951_XC10_STH</td>
<td>47</td>
</tr>
<tr>
<td>4.18. Nilai RMR CBT_Decline</td>
<td>47</td>
</tr>
<tr>
<td>4.19. Tinggi runtuh dan beban runtuh</td>
<td>48</td>
</tr>
<tr>
<td>4.20. Kombinasi penyangga berdasarkan RMR</td>
<td>49</td>
</tr>
<tr>
<td>4.21. Propertis batuan utuh kuarsa (ore) dan breksi andesit tiap lubang bukaan</td>
<td>49</td>
</tr>
<tr>
<td>4.22. Kekuatan massa batuan tiap lubang bukaan</td>
<td>50</td>
</tr>
<tr>
<td>4.23. Kekuatan massa batuan kuarsa (ore) dan breksi andesit berdasarkan Kriteria Hoek-Brown, analisis balik, dan nilai FK tiap sisi lubang bukaan</td>
<td>53</td>
</tr>
<tr>
<td>4.24. Kombinasi Penyanga dan Nilai FK Hasil Penelitian</td>
<td>54</td>
</tr>
<tr>
<td>4.25. Kombinasi Penyanga dan Nilai6 FK Hasil Penelitian</td>
<td>55</td>
</tr>
<tr>
<td>5.1. Karakteristik dan klasifikasi massa batuan Blok Cibitung</td>
<td>56</td>
</tr>
<tr>
<td>5.2. Penurunan Kekuatan Massa Batuan Tiap Lubang Bukaan</td>
<td>57</td>
</tr>
<tr>
<td>5.3 FK Analisis balik CBT_996_XC8_STH</td>
<td>58</td>
</tr>
<tr>
<td>5.4. FK Analisis balik CBT_966_XC9_STH</td>
<td>58</td>
</tr>
<tr>
<td>5.5. FK Analisis balik CBT_951_XC10_STH</td>
<td>59</td>
</tr>
<tr>
<td>5.6. FK Analisis balik CBT_Decline</td>
<td>59</td>
</tr>
<tr>
<td>5.7. Perbandingan FK sistem penyanga existing dan hasil penelitian</td>
<td>60</td>
</tr>
<tr>
<td>5.8. Perbandingan kombinasi penyanga existing dan hasil penelitian</td>
<td>60</td>
</tr>
<tr>
<td>5.9. Perbandingan FK sistem penyanga existing dan hasil penelitian</td>
<td>62</td>
</tr>
<tr>
<td>5.10. Perbandingan kombinasi penyanga existing dan hasil penelitian</td>
<td>62</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

<table>
<thead>
<tr>
<th>LAMPIRAN</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Hasil Permodelan Numerik Finite Element Method Dengan Software Phase2 v8.0 Rocscience</td>
<td>65</td>
</tr>
<tr>
<td>B. Arah Umum Bidang Diskontinu Terhadap Penggalian Menggunakan Software Dips v5.103 Rocscience Free Trials For Post Graduate Student</td>
<td>70</td>
</tr>
<tr>
<td>C. Lisensi Penggunaan Software Phase2 v8.0 Rocscience</td>
<td>72</td>
</tr>
</tbody>
</table>