PERAN KOMPOSISI MEDIA TANAM DAN PUPUK KALIUM DALAM PENINGKATAN HASIL TANAMAN TOMAT (Lycopersicon esculentum Mill.)

Role of Planting Media Composition and Potassium Fertilizer in Increasing Tomato Plant Yield (Lycopersicon esculentum Mill.)

Sumarwoto1, Mahalia Dwita Budiastuti2, Maryana1

1 Program Studi Agroteknologi Fakultas Pertanian UPN “Veteran” Yogyakarta (55283)

ABSTRACT

The experiment of applying several kinds of media compositions and doses of KCl fertilizer aimed to determine media composition and potassium doses best for tomato plant (Lycopersicon esculentum Mill.) growth and yield. This experiment was conducted on February until Juny 2011 at “Balai Benih Induk Hortikultura” farm (± 625 m above sea level), Ngipikari, Kaliurang, Sleman, Yogyakarta. The experiment used a Completely Randomized Factorial Design with three replications. The first factor was kinds of planting media composition (v/v/v): M1 = soil:goat faeces:sand (1:1:1); M2 = soil:goat faeces:sand (2:1:1); and M3 = soil:goat faeces:sand (1:1:2). The second factor was doses of potassium: D1 = KCl 75 kg ha⁻¹; D2 = KCl 100 kg ha⁻¹; = KCl 125 kg ha⁻¹; and D4 = KCl 150 kg ha⁻¹. The results of experiment showed that there is significant interaction between media compositions and doses of potassium on plant dry weight, and fruit diameter and thick. The M2D3 treatment resulted in highest contents of vit. C while the M2D2 in sugar content. The M1D1, M1D2, M1D3, and M1D4 treatments produced better taste than the others. The vegetative growth (plant height, flowering time and harvest time) was only significantly affected by the media composition while the fruit yield by potassium fertilizer in which largest yield was found in the D3 treatment (3.75 g plant⁻¹).

Key words: Planting media composition, potassium fertilizer and tomato.

PENDAHULUAN

Tomat merupakan salah satu jenis tanaman sayur penghasil buah yang termasuk ke dalam kelompok hortikultura dengan kandungan vitamin C yang bermanfaat bagi tubuh manusia. Buahnya dapat digunakan sebagai penyedap masakan, bahan dasar pembuatan jus, obat jerawat, pembuatan saos, pembuatan sari perasan, pembuatan pasta, dan pembuatan tepung kering. Tomat juga merupakan sumber vitamin A dan C yang berguna untuk kesehatan mata dan ketahanan tubuh, sedangkan manfaat lain yaitu sebagai zat yang penting bagi pembangun jaringan tubuh manusia dan dapat meningkatkan energi untuk bergerak, berpikir, dan lain-lain. Kandungan vitamin A dan C pada suite 100 gram berturut-turut adalah sebagai berikut: sari buah tomat 600 mg dan 10 mg; buah muda 320 mg dan 30 mg; dan buah masak 1500 mg dan 40 mg (Cahyono, 1998). Kandungan zat yang lain, berbentuk pigmen utama berupa likopen dan karoten. Likopen penting sebagai antioksidan dan pencegah radikal bebas yang merusak sel. Sebagai antioksidan, dapat untuk mencegah kanker prostat pada pria dan dapat untuk mencegah kanker payudara, kanker serviks, dan kanker ovarium, serta menekan terjadinya osteoporosis pada wanita (Husas, 2009).

Tomat merupakan komoditas penting bagi pemenuhan kebutuhan hidup manusia, sehingga selalu diusahakan dengan peningkatan produksi melalui peningkatan luas tanam dan hasil per satuan luasnya. Namun demikian ternyata pada tahun 2010 Indonesia masih mampu mengekspor sebesar 1.656 ton, sedangkan nilai impor masih jauh lebih besar yaitu 10.429 ton dalam bentuk buah segar maupun
olah dari berbagai negara belahan dunia (BPS dan Dirjen BP Hortikututra, 2011).

Berdasarkan dari nilai impor yang masih sangat besar, menunjukkan bahwa permintaan akan komoditas tomat juga sangat besar, sehingga market share-nya masih sangat luas. Untuk itu perlu dilakukan peningkatan luas panen dan hasil per satuan luas secara berkelanjutan. Namun sayang peningkatan luas tanam ini, tidak diikuti dengan peningkatan hasil yang tinggi sehingga produksinya belum dapat mencapai seperti yang diharapkan. Untuk itu, perlu diambil langkah-langkah tertentu untuk dapat meningkatkan produksi secara menyeluruh. Tindakan yang dapat dilakukan diantaranya dengan cara intensifikasi, diantaranya adalah penggunaan pupuk, pemilihan media tanam yang tepat, dan pemilihan varietas yang tepat. Dosis pupuk kalium dan komposisi media tanam, dapat memberikan pengaruh yang positif apabila diberikan pada tanaman tomat sesuai kebutuhan tanaman, namun dapat juga berpengaruh negatif apabila terjadi kesalahan dalam penyediaan media tanam dan pemberian dosis pupuk kalium. Saat ini telah banyak dhasilkan banyak varietas yang berpotensi memberikan hasil tinggi, termasuk varietas Kalirang yang merupakan varietas alternatif yang cocok dikembangkan di daerah Kalirang. Oleh karena itu dalam percobaan ini dipilih varietas Kalirang yang merupakan varietas yang berasal dari BBI Hortikultura, Kalirang dan merupakan varietas unggul, berpotensi hasil tinggi, warna buah menarik, dan kualitasnya baik.

Pada percobaan ini diharapkan penggunaan komposisi media tanam tertentu dengan pemberian dosis pupuk kalium tertentu dapat diperoleh kondisi yang cocok, sehingga mampu memberikan pertumbuhan dan peningkatan hasil yang maksimal pada tanaman tomat. Tujuan percobaan ini adalah selain menguji ada tidaknya interaksi antara komposisi media tanam dan dosis pupuk kalium yang digunakan, juga untuk memperoleh dosis pupuk kalium yang tepat, serta komposisi media tanam yang paling baik untuk pertumbuhan dan hasil tanaman tomat (Lycopersicon esculentum Mill.).

BAHAN DAN METODE

Penelitian berupa percobaan lapangan terkontrol dengan menggunakan polibag, yang dilaksanakan di kebun Balai Benih Induk Hortikultura, Ngipiksari, Kalirang, Sleman, Daerah Istimewa Yogyakarta. Tinggi tempat berada pada ± 625 m dpl (di atas permukaan laut) dengan suhu 25°C-27°C pada siang hari dan 18°-20°C pada malam hari serta kelembaban udara berkisar 85%-95%. Percobaan dilaksanakan selama empat bulan mulai bulan Februari sampai dengan Juni 2011.

Percobaan menggunakan Rancangan Acak Lengkap Faktorial, yang terdiri atas dua faktor. Faktor pertama berupa komposisi media tanam, terdiri atas tiga ars : M1 = tanah, pupuk kotoran kambing, pasir 1:1:1 (v/v/v); M2 = tanah, pupuk kotoran kambing, pasir 2:1:1 (v/v/v); dan M3 = tanah, pupuk kandang kambing, pasir 1:1:2 (v/v/v). Adapun faktor ke dua adalah dosis pupuk kalium berupa KCl terdiri atas empat ars : D1 = KCl 75 kg ha⁻¹ (2,25 gram polibag⁻¹); D2 = KCl 100 kg ha⁻¹ (3 gram polibag⁻¹); D3 = KCl 125 kg ha⁻¹ (3,75 gram polibag⁻¹); dan D4 = KCl 150 kg ha⁻¹ (4,5 gram polibag⁻¹). Masing-masing kombinasi perlakuan diulang tiga kali dan setiap kombinasi perlakuan terdiri atas 9 polibag, sehingga berjumlah 3 x 4 x 3 x 9 = 324 polibag. Untuk memenuhi kebutuhan unsur hara, pada semua tanaman masing-masing polibag juga diberikan pupuk tambahan berupa pupuk ZA sebanyak 6 g, SP-36 sebanyak 5 g.

Pengamatan dilakukan sampai tanaman berumur 56 hari setelah tanam (hst), ditujukan
terhadap lima tanaman sampel yang ditentukan secara acak dan dilakukan setiap 14 hari sekali. Semua data hasil pengamatan dianalisis dengan analisis varian pada jenjang nyata 5%. Untuk mengetahui beda nyata antar perlakuan dengan Uji Jarak Berganda Duncan (UJBD) pada jenjang nyata 5%.

Dalam pelaksanaan percobaan dimulai dari persiapan media tanam dalam polibag dan persiapan bibit. Persiapan media tanam, diawali pengambilan tanah *inceptisol* pada lapis olah dari desa Pakembinangun yang bebas dari beban dan kotoran lain. Pasir berasal dari sungai lemah gunung merapi, sedangkan kotoran kambing diambil dari penduduk sekitar tempat percobaan. Masing-masing bahan media tanam dicampur merata sesuai dengan komposisi media perlakuan, kemudian dimasukkan ke dalam polibag. Untuk persiapan bibit, dimulai dengan merendam benih ke dalam air hangat selama 20 menit. Perendaman ini dimaksudkan untuk menghentikan masa istirahat (dormansi), kemudian benih direndam dalam larutan fungsida selama 5 menit untuk mencegah terjadinya serangan jamur. Untuk pesemaian benih, disiapkan campuran media terdiri atas pupuk kandang dan tanah dengan perbandingan 1:3. Campuran media dimasukkan ke dalam kantong plastik semai berukuran panjang 100 cm dengan diameter ± 4 cm, kemudian media dipadatkan dan dimasukkan ke dalam bak berisi air agar tanahnya lebih mampat. Plastik yang telah berisi media diberi lubang, kemudian dipotong dengan panjang 5 cm dan ditanami benih pada kedalaman 0,5 cm.

Penanaman dilakukan dengan cara memindahkan bibit yang telah berumur 3 minggu ke dalam polibag, setelah direndam fungsida dan bakterisida. Pemberian fungsida bertujuan untuk mencegah serangan jamur penyebab layu fusarium. Bakterisida untuk mencegah terjadinya serangan bakteri *Pseudomonas solanacearum* yang menyebabkan layu bakteri. Penanaman dilakukan pada setiap polibag satu bibit tomat dengan cara menanam bibit pada kedalaman 2 cm, kemudian polibag diatur penempatannya sesuai *lay out* percobaan dengan jarak antar polibag 50 cm x 60 cm.

Pemeliharaan tanaman meliputi: pemasangan ajir, pemupukan, penyulaman, penyiraman, penyiangan, dan pengendalian organisme pengganggu tanaman. Pengajiran dirumah pada saat tanaman masih kecil atau 3 hst dan pengikatan menggunakan tali rafia tidak boleh terlalu keras agar tidak merusak batang tanaman. Pemupukan dilakukan sesuai rekomendasi, pupuk ZA diberikan 3 kali, yaitu pada saat tanam, 7 hst, dan 21 hst masing-masing dengan dosis 2 g polibag. Pupuk SP-36 diberikan 1 kali, pada saat tanam dengan dosis 5 g polibag dan pupuk KCl sebanyak 2 kali, pada saat tanam dan 21 hst masing-masing setengah dari dosis perlakuan. Cara pemberian pupuk diberikan di sekitar tanaman dengan jarak 5 cm dari tanaman dengan cara ditaburkan.

Penyiraman dilakukan pada setiap pagi atau sore hari menggunakan gembor, dilakukan mulai awal penanaman hingga panen. Penyulaman dilakukan maksimal 7 hst, ditujukan terhadap tanaman yang mati atau tumbuh abnormal, dengan cara mengganti dengan tanaman sehat yang diambil dari tanaman yang pertumbuhannya sama. Penyiangan atau pengendalian gulma dilakukan secara manual pada setiap 1 minggu sekali, dengan cara mencabut gulma yang tumbuh di sekitar tanaman. Pengendalian organisme pengganggu tanaman dilakukan jika terjadi serangan hama dan penyakit. Pencegahan dapat dilakukan dengan menyeprti penanaman dengan jenis hama yang menyerang tanaman.

Pemanenan dilakukan saat cuaca cerah, dan dapat dimulai setelah tanaman mencapai umur tanam 90 hari dengan warna buah sudah orange. Panen dilakukan 5 kali dengan selang waktu 3 hari, pemanenan terakhir ketika tanaman tomat berumur 105 hari. Untuk menjaga kualitas, pemanenan dilakukan pada tingkatan warna peralihan, yaitu berwarna orange.

Macam parameter yang diamati adalah berupa parameter pertumbuhan dan hasil panen. Parameter pertumbuhan meliputi: tinggi tanaman, diameter batang, umur berbunga, umur panen dan bobot kering tanaman, sedangkan parameter hasil meliputi: jumlah buah per tanaman, diameter dan tebal buah, bobot buah per tanaman, kadar vitamin C, kadar gula, tekstur buah dan rasa buah.
HASIL DAN PEMBAHASAN

Pengamatan tanaman di tapak percobaan, mulai pengamatan awal umur 14 hingga sampai dengan 56 hst menunjukkan perkembangan pertumbuhan vegetatif yang cukup bagus dan serempak. Namun setelah dilakukan pengamatan secara seksama, dan data yang terkumpul diolah dapat digambarkan sebagaimana pada Gambar di Lampiran 1. Pada Gambar ini menunjukkan bahwa, sebagai faktor tunggal perlakuan komposisi media M2 dan perlakuan dosis K D3 memberikan peluang hasil terbaik terhadap pertumbuhan tanaman. Namun, setelah dianalisis lebih lanjut dengan menggunakan analisis ragam menunjukkan bahwa ada interaksi yang nyata antara komposisi media tanam dengan dosis pupuk K, terhadap bobot kering tanaman sebagai parameter pertumbuhan tanaman dan bobot buah serta tebal buah sebagai parameter kualitas hasil buah (selengkapnya hasil analisis disajikan pada Lampiran 2).

Untuk masing-masing pengaruh faktor perlakuan yang diuji, hasil secara lengkap disajikan pada Tabel-tabel di bawah ini.

Pada analisis parameter tinggi tanaman dan diameter batang tanaman, menunjukkan interaksinya tidak nyata antara perlakuan media tanam dengan dosis K. Tabel 1 menunjukkan, bahwa media M2 merupakan media tumbuh alternatif pertama paling baik untuk pertumbuhan tanaman (tinggi dan diameter batang), sedangkan perlakuan dosis K menunjukkan hasil yang sama. Hal ini disebabkan oleh tanah yang dicampur dengan pupuk kotoran kambing dan pasir dalam media tanam dengan perbandingan lebih tinggi dapat memberikan kondisi media yang paling baik dalam hal porositas tanah, kemampuan menyediakan unsur hara, ketersediaan lengas tanah, kapilaritas lengas tanah, serta perbandingan pori mikro dan makro paling ideal. Kondisi seperti ini tampaknya mendekati kondisi ideal sebagaimana yang disebutkan oleh Foth dan Adisomarto (1994), bahwa media yang volume komponen tanahnya terdiri atas 45% bahan mineral, 5% bahan organik, 25% air, dan 25% udara merupakan media yang baik bagi pertumbuhan tanaman.

Telah diketahui, bahwa tanah yang digunakan untuk bahan media tanam adalah berasal dari lapisan atas (top soil) banyak mengandung unsur hara sebagai hasil dari penimbunan dan pelapukan dari bahan organik. Media yang baik untuk tomat adalah jenis lempung berpasir yang subur, gembur, memiliki kandungan bahan organik yang tinggi, serta mudah mengikat unsur hara yang masuk ke dalam media tanam (AgroMedia, 2007). Oleh karena itu, tanah lapisan atas ini sangat baik sebagai campuran media tanam tomat. Lebih lanjut disebutkan oleh Lingga dan Marsono (2001), bahwa adanya pupuk kotoran kambing berperan penting dalam peningkatan sifat fisik, kimia, dan biologi tanah. Sifat fisik tanah akan mengalami perubahan struktur dan kandungan karbon yang tinggi sehingga pertumbuhan tanaman meningkat, merangsang agregat tanah, dan meningkatkan permeabilitas serta aerasi tanah.

Sifat kimia dalam tanah dari pupuk kandang kambing adalah meningkatkan Kapasitas Pertukaran Kation (KPK) yang berperan dalam tanah sehingga tanaman dapat menyerap unsur hara dan dengan lancar. Sifat biologi tanah dari pupuk kandang kambing dapat meningkatkan mikroflora dengan jumlah paling yang berperan dalam proses dekomposisi bahan organik (Yuwo, 2006).

Media tanam yang ditambahkan pasir sebagai campuran media tanam, mampu memperbaiki pertukaran udara dalam tanah. Bentuk fisik yang keras dan stabil sehingga sulit untuk dibuat gumpalan yang menyebabkan pasir dapat membantu keluar masuknya udara serta air dalam tanah. Penambahan pasir pada media tanam, pasir mempunyai pori-pori makro yang banyak sehingga dapat mempermudah penyebaran aksi dalam menyerap hara yang terkandung dalam media tanam. Komposisi media tanam yang digunakan dengan penambahan pasir dapat memperbaiki sifat fisik tanah, yaitu kerapatan tanah menjadi rendah dan tanah tidak memadat, disamping itu porositas tanah menjadi lebih tinggi yang dapat memperbaiki aerasi tanah, ruang pori makro, dan ketersediaan oksigen di dalam tanah sehingga pertumbuhan tanaman menjadi lebih baik (Soepardi, 1983).
Lampiran 1: Pertumbuhan Tanaman (Tinggi Tanaman, Diameter Batang) Mulai 14-56 hst pada Berbagai Perlakuan Komposisi Media Tanam dan Dosis Pupuk K.

Gambar : Pertumbuhan Tanaman (Tinggi Tanaman, Diameter Batang) Mulai 14-56 Hst Dari Berbagai Perlakuan Komposisi Media Tanam dan Dosis Pupuk K

Lampiran 2 : Rekapitulasi Sidik Ragam Seluruh Parameter Pertumbuhan Tanaman dan Hasil Buah yang Diamati pada Percobaan yang Dilakukan.

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat Bebas</th>
<th>Parameter</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tinggi Tanaman</td>
<td>Diameter Batang</td>
<td>Umur Berbunga</td>
<td>Umur Panen</td>
<td>Bobot Kering Tanaman</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>11</td>
<td>1,12**</td>
<td>1,62**</td>
<td>0,41**</td>
<td>2,25**</td>
<td>3,01**</td>
</tr>
<tr>
<td>M (komposisi Media)</td>
<td>2</td>
<td>3,75*</td>
<td>4,51*</td>
<td>0,86**</td>
<td>4,47**</td>
<td>0,92**</td>
</tr>
<tr>
<td>D (Dosis pupuk K)</td>
<td>3</td>
<td>0,11**</td>
<td>0,21**</td>
<td>0,19**</td>
<td>0,24**</td>
<td>4,01**</td>
</tr>
<tr>
<td>M x D</td>
<td>6</td>
<td>0,75**</td>
<td>1,37**</td>
<td>0,38**</td>
<td>2,51**</td>
<td>3,21**</td>
</tr>
<tr>
<td>Galat</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 35

Ket : ** : tidak nyata
*: nyata
**: sangat nyata
Lanjutan:

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat Bebas</th>
<th>Jumlah Buah per Tanaman</th>
<th>Diameter Buah</th>
<th>Tebal Buah</th>
<th>Bobot Buah per Tanaman</th>
<th>Tektur Buah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>11</td>
<td>1,88<sup>mn</sup></td>
<td>4,29<sup>*</sup></td>
<td>4,97<sup>*</sup></td>
<td>2,01<sup>tn</sup></td>
<td>1,65<sup>tn</sup></td>
</tr>
<tr>
<td>M (komposisi Media)</td>
<td>2</td>
<td>0,43<sup>mn</sup></td>
<td>4,94<sup>*</sup></td>
<td>8,22<sup>**</sup></td>
<td>1,23<sup>tn</sup></td>
<td>2,46<sup>tn</sup></td>
</tr>
<tr>
<td>D (Dosis pupuk K)</td>
<td>3</td>
<td>5,15<sup>*</sup></td>
<td>7,33<sup>**</sup></td>
<td>7,00<sup>**</sup></td>
<td>3,45<sup>*</sup></td>
<td>0,86<sup>tn</sup></td>
</tr>
<tr>
<td>M x D</td>
<td>6</td>
<td>0,73<sup>mn</sup></td>
<td>2,55<sup>*</sup></td>
<td>2,87<sup>*</sup></td>
<td>1,56<sup>mn</sup></td>
<td>1,77<sup>tn</sup></td>
</tr>
<tr>
<td>Galat</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: tn : tidak nyata
 * : nyata
 ** : sangat nyata

Tabel 1. Pengaruh Perlakuan Macam Komposisi Media Tanam dan Dosis Pupuk K terhadap Pertumbuhan Tanaman pada Akhir Pengamatan (56 hst).

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Pertumbuhan Tanaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tinggi tanaman (cm)</td>
</tr>
<tr>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>M-1</td>
<td>93,21 y</td>
</tr>
<tr>
<td>M-2</td>
<td>99,23 x</td>
</tr>
<tr>
<td>M-3</td>
<td>94,10 y</td>
</tr>
<tr>
<td>Dosis K</td>
<td></td>
</tr>
<tr>
<td>D<sub>1</sub> (2,25 g)</td>
<td>95,11 a</td>
</tr>
<tr>
<td>D<sub>2</sub> (3,00 g)</td>
<td>95,10 a</td>
</tr>
<tr>
<td>D<sub>3</sub> (3,75 g)</td>
<td>96,47 a</td>
</tr>
<tr>
<td>D<sub>4</sub> (4,00 g)</td>
<td>95,37 a</td>
</tr>
<tr>
<td>Interaksi</td>
<td>(-)</td>
</tr>
</tbody>
</table>

Ket: Rerata yang diikuti huruf yang sama pada kolom menunjukkan tidak berbeda nyata menurut Uji Jarak Berganda Duncan pada jenjang nyata 5%, tanda (-) menunjukkan interaksi tidak nyata.

Pada Tabel 1 juga menunjukkan, bahwa perbedaan media tanam dan dosis K tidak memberikan pengaruh nyata terhadap waktu umur berbunga tanaman. Sifat tanaman seperti ini tampaknya cenderung lebih ditentukan oleh sifat dalam (genetik) pada tanaman itu sendiri dan tidak dipengaruhi oleh lingkungan tumbuhnya. Demikian halnya pada parameter waktu panen, ternyata juga tidak dipengaruhi oleh perluasan perbedaan dosis K, sedangkan perbedaan media tanam ada pengaruhnya relatif tidak berarti, karena hanya kurang satu hari berbeda waktu panennya.

Tabel 2 menunjukkan bahwa, antara faktor perlakuan media dan dosis K interaksinya nyata, sehingga tampak bahwa kedua faktor tersebut memberikan pengaruh secara bersama terhadap bobot kering tanaman, diameter dan tebal buah. Data pada kualitas buah, disajikan sebagai pendukung untuk dapat diketahui seberapa jauh perlakuan memberikan pengaruh terhadap kandungan vitamin C, kandungan kadar gula dan rasa buah yang diuji secara organoleptik.

Tabel 2 juga menunjukkan, bahwa kombinasi yang relatif tinggi hasilnya adalah pada kombinasi perlakuan M₁D₄, diikuti beberapa kombinasi perlakuan lain yang tidak berbeda nyata. Pada diameter buah yang relatif tinggi dicapai pada perlakuan M₂D₃ sedangkan tebal buah yang memberikan hasil relatif tinggi adalah M₂D₃, M₂D₄ diikuti oleh M₃D₃, M₃D₄ dan M₃D₄. Pengamatan terhadap diameter
dan tebal buah dilakukan, diharapkan dapat mendukung terhadap kualitas yang dikehendaki pasar dan terhadap bobot buah pada hasil buah per tanaman atau per hektarnya. Hal ini disebabkan perlakuan komposisi media tanam dan dosis pupuk kalium berkaitan erat dengan penambahan dosis pupuk kalium. Komposisi media tanam menyediakan unsur hara yang cukup bagi tanaman terutama pada fase vegetatif yang akan menunjang fase generatif. Unsur hara yang diserap tanaman akan mempengaruhi besar kecilnya hasil fotosintat yang disalurkan ke buah sehingga akan mempengaruhi besar kecilnya diameter dan tebal buah, namun apabila terlalu banyak unsur hara yang tersedia maka tanaman tidak mampu menyerap semua unsur hara tersebut pada saat tanaman memasuki fase generatif (Hendarijati, 2003).

Menurut Amisnaipa et al. (2009), penambahan pupuk kalium yang melebihi batas optimum maka tidak dapat diserap oleh tanaman sehingga memerlukan asupan pupuk kalium dengan dosis yang tepat. Sesuai pernyataan Fantastico (1986), bahwa ukuran dan bobot buah dapat dinaikkan dengan pupuk K, hal ini tampak juga pada Tabel 3.

Tabel 2. Pengaruh Perlakuan Macam Komposisi Media Tanam dan Dosis Pupuk K terhadap Bobot Kering Tanaman (Pertumbuhan Tanaman); Diameter dan Tebal Buah (Hasil); Kandungan Vit. C; Kandungan Gula; dan Rasa Buah pada Saat Panen.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Tanaman Kering (g)</th>
<th>Diameter Buah (cm)</th>
<th>Tebal Buah (cm)</th>
<th>Kandungan Vit. C</th>
<th>Kandungan Gula</th>
<th>Rasa Buah</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1D1</td>
<td>17,80 b</td>
<td>5,28 b</td>
<td>4,55 b</td>
<td>32,64</td>
<td>1,22</td>
<td>1,00</td>
</tr>
<tr>
<td>M1D2</td>
<td>18,38 b</td>
<td>5,36 b</td>
<td>4,59 b</td>
<td>47,73</td>
<td>1,24</td>
<td>4,00</td>
</tr>
<tr>
<td>M1D3</td>
<td>30,62 a</td>
<td>5,68 ab</td>
<td>4,85 a</td>
<td>31,36</td>
<td>1,35</td>
<td>2,00</td>
</tr>
<tr>
<td>M1D4</td>
<td>22,24 ab</td>
<td>5,23 b</td>
<td>4,58 b</td>
<td>24,64</td>
<td>1,54</td>
<td>2,00</td>
</tr>
<tr>
<td>M2D1</td>
<td>17,61 b</td>
<td>5,45 ab</td>
<td>4,65 ab</td>
<td>23,44</td>
<td>1,37</td>
<td>3,33</td>
</tr>
<tr>
<td>M2D2</td>
<td>11,29 c</td>
<td>5,56 ab</td>
<td>4,97 a</td>
<td>28,64</td>
<td>1,61</td>
<td>2,00</td>
</tr>
<tr>
<td>M2D3</td>
<td>24,59 ab</td>
<td>5,86 a</td>
<td>4,97 a</td>
<td>34,42</td>
<td>1,44</td>
<td>1,00</td>
</tr>
<tr>
<td>M2D4</td>
<td>25,50 ab</td>
<td>5,43 ab</td>
<td>4,79 ab</td>
<td>24,22</td>
<td>1,16</td>
<td>3,00</td>
</tr>
<tr>
<td>M3D1</td>
<td>13,52 bc</td>
<td>5,61 ab</td>
<td>4,87 a</td>
<td>26,55</td>
<td>1,42</td>
<td>2,33</td>
</tr>
<tr>
<td>M3D2</td>
<td>26,13 ab</td>
<td>5,39 b</td>
<td>4,66 ab</td>
<td>24,45</td>
<td>1,27</td>
<td>1,00</td>
</tr>
<tr>
<td>M3D3</td>
<td>17,93 b</td>
<td>5,46 ab</td>
<td>4,89 a</td>
<td>32,67</td>
<td>1,17</td>
<td>1,00</td>
</tr>
<tr>
<td>M3D4</td>
<td>20,33 b</td>
<td>5,42 ab</td>
<td>4,60 ab</td>
<td>25,94</td>
<td>1,35</td>
<td>4,00</td>
</tr>
</tbody>
</table>

Interaksi (+) (+) (+) (*) (*) (*)

Ket : Angka yang diikuti huruf yang sama pada kolom menunjukkan tidak berbeda nyata menurut Uji Jarak Berganda Duncan pada jenjang nyata 5%, tanda (+) menunjukkan interaksinya nyata.

(*) tidak dilakukan analisis sidik ragam

175
<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Hasil Umbi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jumlah buah per tanaman (butir)</td>
</tr>
<tr>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>M(_{-1})</td>
<td>68,42 x</td>
</tr>
<tr>
<td>M(_{2})</td>
<td>74,25 x</td>
</tr>
<tr>
<td>M(_{-1})</td>
<td>73,92 x</td>
</tr>
<tr>
<td>Dosis K</td>
<td></td>
</tr>
<tr>
<td>D(_{1}) (2,25 g)</td>
<td>62,78 b</td>
</tr>
<tr>
<td>D(_{2}) (3,00 g)</td>
<td>72,44 b</td>
</tr>
<tr>
<td>D(_{3}) (3,75 g)</td>
<td>90,56 a</td>
</tr>
<tr>
<td>D(_{4}) (4,00 g)</td>
<td>63,00 b</td>
</tr>
<tr>
<td>Interaksi</td>
<td>(-)</td>
</tr>
</tbody>
</table>

Ket: Rerata yang diikuti huruf yang sama pada kolom menunjukkan tidak berbeda nyata menurut Uji Jarak Berganda Duncan pada jenjang nyata 5%, tanda (-) menunjukkan interaksi tidak nyata.

Tabel 3 menunjukkan bahwa hasil buah yang berupa jumlah buah pertanaman tertinggi dicapai pada perlakuan D\(_{3}\), demikian juga terhadap bobot buah per tanaman kecenderungan hasil yang relatif lebih tinggi dicapai oleh perlakuan D\(_{3}\). Untuk tekstur buah yang menunjukkan tingkat kekerasan buah yang ternyata berbagai perlakuan yang dicobakan tidak memberikan pengaruh yang nyata.

KESIMPULAN

Terdapat interaksi nyata antara perlakuan berbagai komposisi media dengan dosis pupuk K terhadap parameter pertumbuhan khususnya bobot kering tanaman dan hasil khususnya pada diameter dan tebal buah. Sebagai tambahan informasi, bahwa kandungan vitamin C tertinggi dicapai pada M\(_{2}\)D\(_{3}\), kandungan gula dicapai pada M\(_{2}\)D\(_{3}\), dan rasa buah yang enak dicapai pada perlakuan M\(_{2}\)D\(_{1}\), M\(_{2}\)D\(_{3}\), M\(_{3}\)D\(_{2}\), dan M\(_{3}\)D\(_{3}\).

Pada perlakuan faktor tunggal, media M\(_{2}\) (tanah; pupuk kotoran kambing:pasir = 2:1:1) memberikan hasil paling baik pada pertumbuhan berupa tinggi tanaman, waktu berbunga, dan waktu panen relatif lebih cepat, sedangkan dosis pupuk K tidak berpengaruh nyata. Pada parameter hasil, perlakuan komposisi media tidak berpengaruh nyata, sedangkan dosis pupuk K terbaik dicapai pada D\(_{3}\) (dosis 3,75 g per tanaman).

DAFTAR PUSTAKA

Jurnal Agroland diterbitkan sejak Tahun 1994, diterbitkan tiga kali setahun : April, Agustus dan Desember

Dewan Penyunting

Ketua : Muh. Basir Cyio
Wakil Ketua : Saiful Darman

Penyunting Ahli

Hj. Aisyah D. Sujono (Unpad)
Made Antara
H. Alam Anshary
Totok Agung Dwi Haryanto (Unsoed)
Fathurrahman
Akib Tuwo (Unhalu)
Mahfuz
Elkawakib Syam’un (Unhas)
Uswah Hasanah

Penyunting Pelaksana

Syamsuddin Laude
Irsun
Yulianti
Dewi Nur Asih

Administrasi

Sapiah

Rekening : BNI Capem UNTAD No : 0081740235 a.n Syamsuddin Laude
Alamat : Kampus Bumi Tadulako Fak. Pertanian Universitas Tadulako
Jl. Soekarno - Hatta KM. 9 Palu 94118
Telp/Fax : (0451) 429738. Email : agroland_untad@yahoo.com. website : www.jurnal-agroland.web.id
DAFTAR ISI

Pengaruh Jenis Pupuk Organik dan Porposi Pupuk Anorganik terhadap Karakter Fisiologi dan Serapan Hara N Tanaman Padi Sawah .. 149 – 154

Purwanto, Utomo, Bambang Rudianto Wijonarko dan Budi Supono Indaryanto

Pertumbuhan dan Hasil Dua Kultivar Padi dan Berbagai Jarak Tanam pada Sistem Pengairan Genangan dalam Parit... 155 – 161

Syamsuddin, Didi Indradewa, Bambang Hendro Sinarminoto dan Prapto Yudono

Perakitan Teknologi Produksi Padi Organik Berbasis Pupuk Organik Cair dan Pestisida Nabati .. Mujiono, Tarjoko, Suyono dan Budi Supono Indaryanto 162 – 168

Peran Komposisi Media Tanam dan Pupuk Kalium dalam Peningkatan Hasil Tanaman Tomat .. Sumarwoto, Mahalia Dwi Budiasasti dan Marjaya 169 – 177

Kajian Karakteristik dan Konduktivitas Hidrolit Tanah Jenuh pada Lahan Agroforestri Kakao .. Abdul Kadir Paloloang, Naik Sinukaban, Suria Darma Tarigan, Hendrayanto dan Uswah Hasanah 178 – 188

Karakterisasi Morfologi Batang dan Daun Tanaman Manggis (Garcinia mangostana L.) di Kabupaten Banggai Kepulauan .. Enny Adelina dan Adiyananto 189 – 194

Pengaruh Pemotongan Akar dan Konsentrasi Sitokin terhadap Pertumbuhan Kecambah Pinang .. Fathurrahman 195 – 200

Efektivitas Ekstrak Daun Selasih (Ocimum SP.) dan Daun Wangi (Melaleuca bracteata L.) sebagai Atraktan Lalat Buah pada Tanaman Cabai .. Shahabuddin 201 – 206

Neraca Air Bulanan dengan Peluang Curah Hujan untuk Perencanaan Pola Tanam di Desa Lawua Kecamatan Kulawi Kabupaten Sigi ... Muhammad Sirajuddin dan Hamid Nur 207 – 213

Pengaruh Ketiadaan dan Umur Inang terhadap Kemampuan Pemerasan Trichogramma japonicum Ashmead (HYMENOPTERA : TRICHOGRAMMATIDAE) Mohammad Yunos, Edhi Martono, Arman Wijonarko dan RC Hidayat Soesilohadi 214 – 220

Karakteristik Kualitas Air Laut dan Kelayakan Budidaya Rumpun Laut di Gugusan Kepulauan Togeai Kabupaten Touna ... Saharia Kassa, Asriani Hasanuddin dan Nur Said 221 – 227

Daya Dorong Komoditi Kakao Biji dalam Sisi Penawaran Perekonomian Wilayah : Studi Kasus Perekonomian Provinsi Sulawesi Tengah .. Sisfahyuni, M. R. Yantu dan Nilam Sari 228 - 235