#### GROWTH AND LEAVES DIGITAL IMAGE ANALYSIS OF RICE CULTIVATED IN VARIOUS LEVELS OF NITROGEN CONCENTRATION AND BROWN PLANTHOPPER INFESTATION

Partoyo<sup>1</sup>, Mofit Eko Purwanto<sup>1</sup>, Sari Virgawati<sup>1</sup>, Frans Richard Kodong<sup>2</sup>, Sri Sumarsih<sup>1</sup>

<sup>1</sup>Agrotechnology Department, Faculty of Agriculture <sup>2</sup>Informatics Department, Faculty of Industrial Technology UPN "Veteran" Yogyakarta \* Corresponding author: partoyo@upnyk.ac.id

#### ABSTRACT

The information of recommended fertilizer dosage and pest control that is locationspesific is required by the farmer for the success of its agricultural cultivation. In this research, digital image analysis of the rice leaf sample was conducted to obtain a basis data for determining its nutrient sufficiency status and pest attack level. Hydroponic rice planting is performed in the green house with variations of nitrogen sufficiency and variations of brown planthopper population. Along the rice crop development, rice leaf photography is performed to capture the digital image of rice leaf from various treatments of nitrogen sufficiency variation, pest attack level variation, and plant period variation. The process of digital image processing is performed to obtain image parameter, which are Red (R), green (G), dan blue (B). The variation of nitrogen content from 10% - 150% of recommended dosage produces various rice leaf greenness, amount of tillers, amount of panicles, and plant biomass weight. The increase of nitrogen content from 10% - 150% causes color diversity from greenish yellow with the value of R: 86, G: 131, and B: 46, to dark green with the value of R: 119, G: 169, and B: 72. Rice crop that is attacked by brown planthopper changes from green with the value of R: 206, G: 193, and B: 159 into brownish yellow with the value of R: 196, G: 98, and B: 86 along with the increase of it population.

Keywords: rice crop, nitrogen, planthopper, digital image.

#### INTRODUCTION

In 2014, the government targets a surplus of hulled rice in the amount of 10 million tons (Tri, 2012). The production means whose role is very vital in supporting the national rice production improvement is fertilizer. The recommendation of N, P, and K fertilizing on the Rice of Location-Specific Rice Field is regulated with Minister of Agriculture Regulation No. 40/Permentan/OT.140/04/2007 (Deptan RI, 2007). However, this recommendation has a limitation such as this recommendation is assembled on district level. The actual fertilizer dosage also can be lower than recommended dosage if its soil fertility variability is high. The use of PUTS is limited to the availability of equipments in the field so that the farmer cannot use it when needed (Virgawati, 2010). The productivity levelling off and the increase of fertilizer

price is a stimulation to improve the efficiency of agro-business system especially the efficiency of fertilization on rice field which is the biggest fertilizer consumer. Therefore, the determination of precise fertilizer dosage becomes urgent for achieving an efficient fertilization.

In 2010, *Education for Sustainable Development* (ESD) UPN "Veteran" Yogyakarta research team conduct a research about the application of *Precision Agriculture* (PA) concept and technology in several district in Magelang Regency (Virgawati et al., 2010). *Precision Agriculture* designs soil and crop management carefully according to diversity that is found in the land (Shibusawa, 2001). Plant and characteristic of soil in the land is not only varied on distance and depth, but also time. This diversity problem becomes the basic difference between *Precision Agriculture* dan *Conventional Agriculture* (Srinivasan, 2006).

Pest attack often becomes a problem in the rice productivity improvement effort. The main rice pest in Indonesia is green planthopper and brown planthopper. Green planthopper is a vector that spreads 'tungro' disease while brown planthopper spreads dwarf virus. This pest can form a huge population only in a short time and damage plants on every single growth phase. Planthopper attack can cause a loss whose amount is depended on the attack level, from low attack level until fail to pay back level (Anonim, 2010).

This research is designed to produce information especially recommended fertilizer dosage and pest control that is location-specific. For that reason, digital image analysis of the rice leaf sample was conducted to obtain a basis data for determining its nutrient sufficiency status and pest attack level. This research is aimed to assemble technology that combines *artificial neural network (ANN)* technique with digital image data communication technique to determine fertilizer need and pest control recommendation. This technology is designed so that the farmer can find out recommended fertilizer dosage and pest control recommendation needed for the agricultural land only by sending data in the form of rice leaf image through short messages (MMS) to the system.

#### MATERIALS AND METHODS

The details of each phase are as follow:

- A. Hydroponic rice planting in green house with nitrogen nutrient sufficiency variation and pest attack level variation.
  - 1. This phase begins with preparing plant media in the form of river sand. Before used, the sand is cleansed with tap water until the water is clear. The aim is to remove materials except sand that are possible to carry nutrition.
  - 2. Planting is performed in 69 plastic pots, consists of 23 treatments with 3 repetitions. The variety chosen is Ciherang with consideration as the most popular variety that is planted in the research area and shows a clear visual indication of planthopper attack.
  - 3. The liquid media of hydroponic is prepared with complete nutrient composition which is based on the need of rice crop according to IRRI (Yoshida *et al.*, 1976), except for the nitrogen content, variations of sufficiency percentage are made with the value of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%,

110%,120%, 130%, 140%, 150%.Meanwhile, for the pest attack treatments, rice is planted with optimum hydroponic media composition (100%) and infested with brown planthopper with population 1, 2, and 3 pair of adult planthopper (age of 4 days) with male and female comparison of 1:1 to arouse pest attack level variations.

4. The plant is kept until harvest age.

#### **B.** Observation of plant growth and planthopper population

- 1. Growth of the rice plant was observed for plant height, wet and dry weight of plant biomass, amount of tiller, and amount of panicle per pot.
- 2. Population of planthopper was observed every week from week 1 until week 7 to monitor the population change.

#### C. Photography of hydroponic rice leaf in green house.

- 1. This photography is performed to record digital image of rice leaf from various treatments of nutrient sufficiency variation, pest attack level variation, and plant age variation. This photography is performed by using digital camera Canon EOS 500D.
- 2. This photography is performed on selected leaf sample that has been completely developed (*fully expanded leaf*), starting from plant age of three weeks after transplanting (WAT) in 10 days of interval. This photography is performed until it comes into bud.

#### D. Parameter analysis of the digital image of rice leaf.

The process of digital image processing is performed to obtain image parameters, which are: Red (R), Green (G), dan Blue (B).

#### **RESULT AND ANALYSIS**

The plant height is mostly ranged between 95 and 105 cm. There are two treatments that produce plant height below 90 cm, i.e. 30% and 130% N concentration. The four topmost plant heights are treatment of 70%, 80%, 90%, and 100% (Figure 1). This result indicates a better nitrogen sufficiency in those four levels of nitrogen concentration.

The average amount of tillers per hill shows the mode in between 80% and 110% N concentration (Figure 2). It might be said that optimum nitrogen content for tillering is around 80% to 110% of recommended concentration. Lower or higher N concentration is resulted in the lesser amount of tiller per hill.

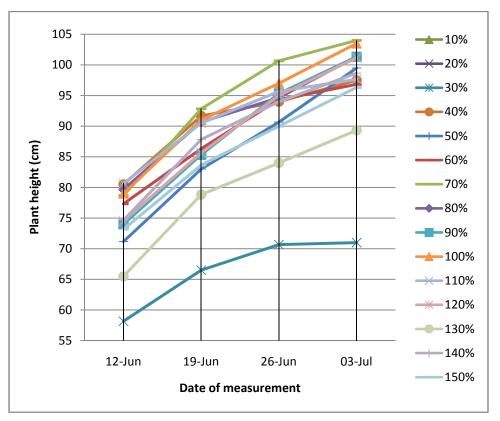



Figure 1. The average height of rice crop up to maximum vegetative

The pattern of amount of tiller per hill is similar to the average amount of panicles per hill (Figure 3). The weight of panicles per hill is connected with the amount of panicles per hill so that the weight diversity of panicles is similar with the amount of panicles per hill pattern (Figure 4). It can be seen that the most weight panicle was produced by 100% N concentration treatment.

The weight of plant tissue which includes straw and root shows that on treatment with nitrogen content higher than 100% until 150% produced plant tissue weight that is similar to treatment with nitrogen 100% (Figure 5). The rice straw on treatment with high nitrogen content (above 100% of dosage) still shows a high vegetative growth during panicles maturation. One of the indications is the leaf which tends to be constant in green although the panicles have turned into yellow until harvest age. Nevertheless, the produced tissue contained less dry weight as compared to 100% N concentration treatment (Figure 5).

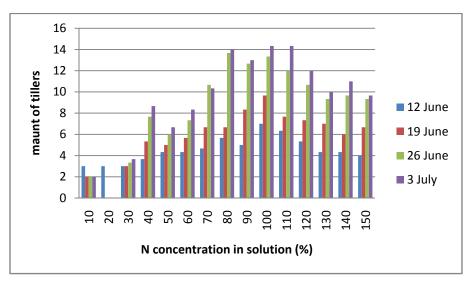



Figure 2. The average amount of tillers per hill at the harvest time

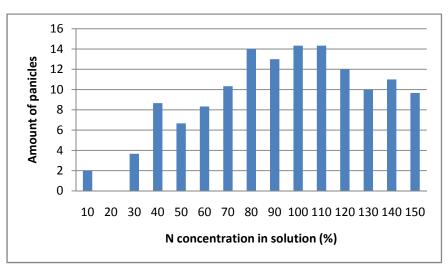



Figure 3. The average amount of panicles at the harvest time

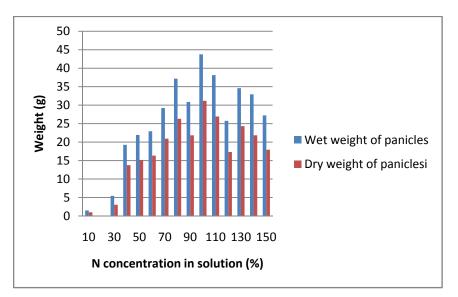



Figure 4. The average wet and dry weight of panicles

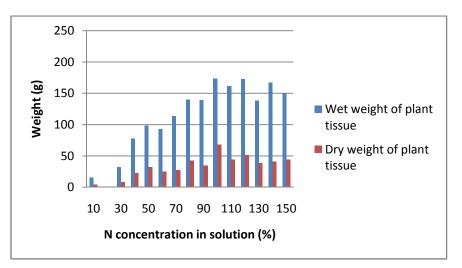



Figure 5. The average wet and dry weight of plant tissue

The experiment pot that is infested with brown planthopper is made into three limits of initial planthopper population with three repetitions and it uses hydroponic nutrition composition with 100% of nitrogen content. The experiment pot of brown planthopper attack is given a cover made from mica sheet. The infestation of brown planthopper is performed when the rice crop attains the age of 1 week. The population of brown planthopper population can be obtained. The initial population of brown planthopper influences the population development. The rice crop that is infested with adult brown planthopper (imago at the age of 4 days) with higher initial population will develop its population faster. The population of brown planthopper with three pair initial population increase is followed by rapid decrease as well. Rice crop that is relatively young is more sensitive toward brown planthopper attack, so that the high population will rapidly decrease its ability to provide nutrition for the next offspring. The low initial population will increase

population slowly and the crop damage as well, so that the population of brown planthopper will decrease slowly as the plant is increasingly damaged (Figure 6).

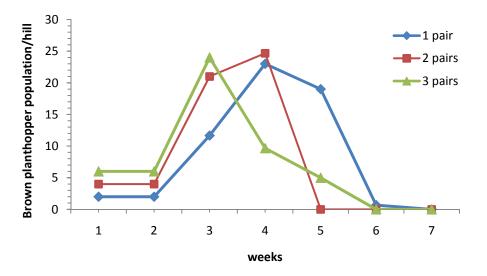



Figure 6. The population dynamic of brown planthopper on rice crop Ciherang variety, with initial population of 1, 2, and 3 pairs

The digital image parameter that has been successfully extracted from the data of leaf image for all treatments is Red, Green, dan Blue (RGB). The output of digital image processing is listed on Table 1.

|                        |          | itrogen (  | rogen (N) sufficiency, pest attack, at the age of 1, 7, and 8 weeks |                 |            |            |           |                   |            |           |
|------------------------|----------|------------|---------------------------------------------------------------------|-----------------|------------|------------|-----------|-------------------|------------|-----------|
| Treatment              | No       |            | Week 1                                                              |                 |            | Week 7     |           |                   | Week 8     |           |
|                        |          | Red        | Green                                                               | Blue            | Red        | Green      | Blue      | Red               | Green      | Blue      |
| 01-1-10 %              | 1        | 146        | 217                                                                 | 79              | 158        | 184        | 91        | 186               | 176        | 116       |
| 01-2-10%               | 2        | 121        | 199                                                                 | 87              | 102        | 165        | 34        | 125               | 136        | 111       |
| 01-3-10%               | 3        | 79         | 139                                                                 | 51              | 86         | 131        | 46        | 134               | 149        | 117       |
| 02-1-20%               | 4        | 129        | 185                                                                 | 88              | 129        | 139        | 111       | 130               | 142        | 88        |
| 02-2-20%               | 5        | 158        | 234                                                                 | 102             | 130        | 178        | 126       | 229               | 222        | 214       |
| 02-3-20%               | 6        | 80         | 134                                                                 | 38              | 189        | 196        | 156       | 165               | 175        | 129       |
| 03-1-30%               | 7        | 126        | 176                                                                 | 41              | 69         | 115        | 51        | 118               | 180        | 57        |
| 03-2-30%               | 8        | 151        | 219                                                                 | 80              | 106        | 165        | 57        | 154               | 194        | 119       |
| 03-3-30%               | 9        | 129        | 206                                                                 | 74              | 94         | 130        | 43        | 141               | 175        | 99        |
| 04-1-40%               | 10       | 149        | 214                                                                 | 70              | 71         | 132        | 52        | 112               | 152        | 86        |
| 04-2-40%               | 11       | 156        | 216                                                                 | 84              | 72         | 120        | 60        | 137               | 153        | 97        |
| 04-3-40%               | 12       | 113        | 181                                                                 | 68              | 90         | 131        | 63        | 134               | 149        | 95        |
| 05-1-50%               | 13       | 143        | 178                                                                 | 74              | 54         | 100        | 51        | 92                | 133        | 62        |
| 05-2-50%               | 14       | 138        | 185                                                                 | 81              | 99         | 171        | 107       | 92                | 134        | 58        |
| 05-3-50%               | 15       | 153        | 234                                                                 | 93              | 60         | 103        | 34        | 124               | 163        | 100       |
| 06-1-60%               | 16       | 86         | 132                                                                 | 33              | 62         | 120        | 59        | 108               | 145        | 74        |
| 06-2-60%               | 17       | 129        | 188                                                                 | 78              | 41         | 83         | 33        | 122               | 140        | 90        |
| 06-3-60%               | 18       | 134        | 222                                                                 | 60              | 135        | 185        | 116       | 124               | 150        | 90        |
| 07-1-70%               | 19       | 100        | 140                                                                 | 41              | 126        | 173        | 119       | 120               | 144        | 86        |
| 07-2-70%               | 20       | 154        | 196                                                                 | 84              | 137        | 178        | 120       | 148               | 153        | 105       |
| 07-3-70%               | 21       | 137        | 217                                                                 | 60              | 126        | 164        | 77        | 125               | 152        | 76        |
| 08-1-80%               | 22       | 153        | 244                                                                 | 104             | 71         | 131        | 61        | 176               | 187        | 116       |
| 08-2-80%               | 23       | 148        | 247                                                                 | 102             | 103        | 166        | 113       | 152               | 147        | 108       |
| 08-3-80%               | 24       | 150        | 242                                                                 | 104             | 81         | 124        | 53        | 120               | 141        | 98        |
| 09-1-90%               | 25       | 184        | 241                                                                 | 124             | 169        | 183        | 121       | 144               | 165        | 102       |
| 09-2-90%               | 26       | 154        | 240                                                                 | 120             | 86         | 152        | 90        | 122               | 140        | 94        |
| 09-3-90%               | 27       | 153        | 217                                                                 | 118             | 102        | 143        | 55        | 87                | 121        | 72        |
| 10-1-100%              | 28       | 141        | 223                                                                 | 95              | 114        | 176        | 79        | 101               | 118        | 48        |
| 10-2-100%              | 29       | 139        | 219                                                                 | 105             | 91         | 146        | 61        | 114               | 160        | 124       |
| 10-3-100%              | 30       | 153        | 223                                                                 | 95              | 76         | 127        | 52        | 131               | 185        | 110       |
| 11-1-110%              | 31       | 200        | 255                                                                 | 155             | 172        | 175        | 117       | 97                | 134        | 100       |
| 11-2-110%              | 32       | 160        | 225                                                                 | 97              | 159        | 176        | 110       | 103               | 154        | 111       |
| 11-3-110%              | 33       | 153        | 217                                                                 | 120             | 93         | 131        | 58        | 109               | 118        | 80        |
| 12-1-120%              | 34       | 157        | 217                                                                 | 97              | 140        | 148        | 83        | 80                | 127        | 62        |
| 12-2-120%              | 35       | 158        | 240                                                                 | 114             | 93         | 145        | 83        | 102               | 147        | 47        |
| 12-3-120%              | 36       | 153        | 237                                                                 | 97              | 102        | 143        | 75        | 122               | 162        | 101       |
| 13-1-130%              | 37       | 138        | 224                                                                 | 89              | 90         | 140        | 77        | 129               | 147        | 78        |
| 13-2-130%              | 38       | 124        | 176                                                                 | 68              | 177        | 181        | 112       | 129               | 147        | 78        |
| 13-3-130%              | 39       | 151        | 238                                                                 | 125             | 146        | 160        | 72        | 101               | 144        | 86        |
| 14-1-140%<br>14-2-140% | 40       | 68         | 115<br>177                                                          | 35              | 106        | 125        | 52<br>95  | <u>127</u><br>128 | 175        | 76<br>127 |
| 14-2-140%              | 41       | 114<br>100 |                                                                     | 70              | 91<br>121  | 136        |           | 128               | 166<br>153 |           |
| 14-3-140%              | 42       | 57         | 166                                                                 | 56<br>17        |            | 167        | 105<br>57 |                   |            | 78        |
| 15-1-150%              | 43<br>44 | <u> </u>   | 111<br>167                                                          | 57              | 62<br>73   | 118<br>124 | 67        | 108<br>83         | 150<br>125 | 86<br>58  |
| 15-2-150%              |          |            |                                                                     |                 |            |            |           |                   |            |           |
| H1-1                   | 45<br>61 | 138<br>81  | 203<br>121                                                          | 87<br>33        | 123<br>133 | 180<br>117 | 39<br>104 | 90<br>152         | 145<br>127 | 74<br>97  |
| H1-1<br>H1-2           | 62       | 81         | 121                                                                 | 30              | 69         | 91         | 53        | 152               | 127        | 88        |
| H1-2<br>H1-3           | 63       | 75         | 119                                                                 | 75              | 152        | 123        | 105       | 206               | 193        | 159       |
| H1-3<br>H2-1           | 64       | 60         | 110                                                                 | 32              | 152        | 123        | 98        | 206               | 255        | 255       |
| H2-1<br>H2-2           | 64<br>65 | 60<br>79   | 121                                                                 | <u>32</u><br>30 |            | 112        | 105       | 235               | 255        | 255       |
|                        |          |            |                                                                     |                 | 165        |            |           |                   |            | 172       |
| H2-3                   | 66<br>67 | 102        | 144                                                                 | 48<br>32        | 165        | 147        | 127       | 217               | 195        |           |
| H3-1                   |          | 94         | 140                                                                 |                 | 126        | 109        | 93        | 210               | 191        | 148       |
| H3-2                   | 68       | 80         | 130                                                                 | 30<br>32        | 167        | 154        | 136       | 196<br>232        | 98         | 86        |
| H3-3                   | 69       | 94         | 118                                                                 | 32              | 161        | 145        | 130       | 232               | 218        | 183       |

Table 1. The parameter of digital image of rice leaf from a number of variations of nitrogen (N) sufficiency, pest attack, at the age of 1, 7, and 8 weeks

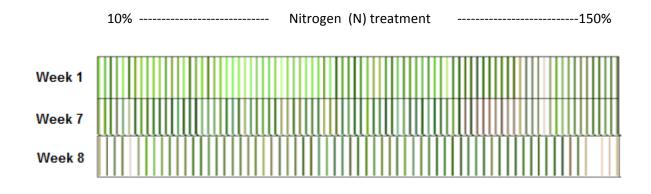



Figure 7. The color diversity of rice leaf on nitrogen (N) content treatments from 10% until 200%

#### CONCLUSION AND SUGGESTION

- 1. The variation of nitrogen content from 10% 150% of recommended dosage produces various rice leaf color, amount of tiller, amount of panicles, and plant tissue weight.
- 2. The increase of nitrogen content from 10% 200% causes color diversity from greenish yellow with the value of R: 86, G: 131, and B: 46, to dark green with the value of R: 119, G: 169, and B: 72.
- 3. The initial population of brown planthopper influences the population development. This rapid population increase is followed by rapid population decrease because of food source insufficiency from rice crop.
- 4. Rice leaf that is attacked by brown planthopper turns from green with the value of R: 206, G: 193, and B: 159 into brownish yellow with the value of R: 196, G: 98, and B: 86 along with the increase of brown planthopper population.

#### ACKNOWLEDGEMENT

The authors cordially thank to the Directorate of Research and Community Services (DITLITABMAS-DIKTI) for funding this research.

#### REFERENCES

- Ahmad, U. 2006. Pengolahan citra digital dan pemrogramannya. Graha Ilmu. Yogyakarta.
- Anonim, 2010. Standar Operasional Prosedur (SOP) Pengendalian Wereng Coklat dan Virus Kerdil. Informasi Ringkas Bank Pengetahuan Tanaman Pangan Indonesia. Balai Besar Penelitian Tanaman Padi.
- Blackmore, S. (1994). Precision Farming : an overview. Agricultural Engineer 49(3),86-88.

- Deptan RI, 2007. Peraturan Menteri Pertanian Nomor 40/Permentan/OT.140/04/2007 tentang Rekomendasi Pemupukan N, P, dan K Pada Padi Sawah Spesifik Lokasi. http://www.litbang.deptan.go.id/regulasi/one/11/file/Revisi-Permentanno-40.pdf. diakses 2 Mei 2012.
- Dibike, Y.B., and D.P.Solomatine. 1999. River Flow Forecasting Using Artificial Neural Networks. http://www.ihe.nl/hi/sol/papers/EGS99-annriverflow.pdf
- Fu, L.M. 1994. Neural Network in Computer Intelligence. McGraw-Hill,Inc. New York. 459p
- Hermantoro, 2011. Prediksi Kadar Bahan Organik Tanah dengan Pengolahan Citra dan Jaringan Syaraf Tiruan Menggunakan Telepon Genggam. Prosiding Seminar Nasional Informatika Pertanian 2011 "Akselerasi Pengembangan Informatika Pertanian untuk Pemberdayaan dan Perlindungan Petani".
- Munir & Rinaldi. 2004. Pengolahan Citra Digital. Informatika Bandung. Bandung.
- Paola, J. D. & Schowengerdt, R. A., 1995. A detailed comparison of neural network and maximum likelihood classifiers for urban land use classification, IEEE Trans. Geosci. Remote Sensing 33 (4), 981-996.
- Pham, D.T. 1994. Neural Network for Chemical Engineers. Elsevier Press. Amsterdam.
- Pujiharti, Y., J. Barus, dan B. Wijayanto. 2008. Teknologi Budidaya Padi. Seri buku inovasi: TP/01/2008. Balai Besar Pengkajian dan Pengembangan Teknologi Pertanian. Badan Penelitian dan PEngembangan Pertanian RI. 30hal.
- Srinivasan, A. (2006). Precision Agriculture: An Overview. In A. Srinivasan (Ed.), Handbook of Precision Agriculture: Principles and Applications (pp. 3-18). New York: The Haworth Press Inc.
- Suyamto, 2010. Strategi dan Implementasi Pemupukan Rasional Spesifik Lokasi. Pengembangan Inovasi Pertanian, 3(4), 306-318
- Toth, E., & Brath, H. 2002. Flood Forcasting Using Artificial Neural Networks in Black-Box and Conceptual Rainfall-Runoff Modelling. Http://www.iemss.org/iemss2002/proceedings/pdf/-volume%20ue/370\_toth.pdf
- Tri, Y., 2012. Pemberdayaan Petani melalui Denfarm Padi. Sinar Tani Edisi 22-28 Februari, No. 3445, Tahun XLII.
- Virgawati, S., S. Sumarsih, F.R. Kodong, D. Nuryadin, E. Murdiyanto, H. Lukito, & W. Choiriyati, 2010. Pusat Kegiatan Belajar Masyarakat (PKBM) Sebagai Media Penerapan Teknologi Precision Farming dengan Decision Support System untuk Optimalisasi Pengelolaan Tanaman Pangan Ramah Lingkungan. Laporan Akhir Hibah Penelitian ESD DP2M Dikti.
- Yoshida S, Forno DA, Cock JH, Gomez KA, 1976. Laboratory Manual for Physiological Study of Rice. IRRI. Los Banos. The Phillipines. 83p.



ISBN 978 - 979 - 18768 - 3 - 4

International Conference, Yogyakarta, Indonesia, November 12-14, 2013

Organized by: **Faculty of Agriculture,** Universitas Pembangunan Nasional "Veteran" Yogyakarta

and supported by:



10019

Agro Internationa

3

ar canada de la forma de la canada de la can

1 Singrence, Yogyakarta, Indonesia, No . In ve st me n

## 2013 ICGAI Committee

#### **Steering & Scientific committee**

- 1. Prof. Sakae Shibusawa Tokyo University of Agriculture and Technology, Japan
- 2. Prof. Dr. Nilda Burgos University of Arkansas, USA
- 3. Prof. Dr. Lin Qing Fujian Normal University, China
- 4. Prof. Paul Holford University of Western Sydney, Australia
- 5. Prof. Sri Rahardjo Universitas Gadjah Mada, Indonesia
- 6. Prof. Suharto Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
- 7. Prof. Jesusa D. Ortuoste Sultan Kudarat State University, Philippines
- 8. Prof. Sulaiman Hanapi Universitas Malaysia Sarawak, Malaysia
- 9. Prof. Endang Gumbira Sa'id Bogor Agricultural University, Indonesia
- 10. Dr. Wimalaratana University of Colombo, Sri Lanka
- 11. Dr. Coen van Ruiten HAS den Bosch, Netherlands
- 12. Dr. Rosa S. Rolle Agricultural and Food Engineering Technologies Service, FAO Agricultural Support Systems Division, Thailand)
- 13. Dr. Siti Syamsiar Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
- 14. Dr. Setyo Wardoyo Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
- 15. Ratna Roostika, PhD Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
- 16. Partoyo, PhD Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia

#### **Organizing Committee Members**

| Chair person         | : | Assoc. Prof. Dr. Sri Wuryani                          |
|----------------------|---|-------------------------------------------------------|
| Vice chair person    | : | Dr. Rr. Rukmowati Brotodjojo                          |
| Secretary            | : | Dr. Mofit Eko Poerwanto, Sari Virgawati, Tuti         |
|                      |   | Setyaningrum                                          |
| Treasure             | : | Dyah Arbiwati, Dwi Aulia Puspitaningrum               |
| Proceeding and Paper | : | Dr.Oktavia Sarhesti Padmini, Dr. Yanisworo WR,        |
|                      |   | Indah Widowati, R. Agus Widodo                        |
| Program Section      | : | Ari Wijayani, Heni Handri Utami, Vini Arumsari,       |
|                      |   | Dr. Budyastuti                                        |
| Presentation         | : | Ellen Rosyelina Sasmita, Dr. Budiarto, Didi Saidi     |
| Food and Beverage    | : | Wulandari D.E.R, Heti Herastuti,                      |
| Sponsorship          | : | Dr. Mustajab Hery Kusnadi, Vandrias Dewantoro         |
| Accommodation and    | : | Darban Haryanto, Lanjar Sudarto, Tutut Wirawati, Agus |
| Publication          |   | Santosa, Endah Budi Irawati, Endah Wahyurini,         |

# Preface

Over the past decades, rapid growth of global economic has lifted millions of people out of poverty. In line with rising population, rapid urbanization, and industrialization, it has also led to increase consumption of resources and generate of waste almost beyond the limits of the ecological carrying capacity.

The coming decades will likely witness of the increasing pressures on industries to shift to more resource-efficient and low-carbon production processes as part of global efforts to sustain growth, conserve resources and slow down the pace of climate change. Countries and regions that successfully manage this transition will get a better position to exploit the opportunities created by the shift towards a low-carbon world economy. It is green industry's initiation, a pattern of industrial development that is sustainable in economic, environment and social.

Universitas Pembangunan Nasional "Veteran" Yogyakarta in conjunction with its global partners is proud to announce the International Conference on Green Agro-Industry, to be held on November 11-14, 2013, at Yogyakarta, Indonesia. The basic aim of the conference is to contribute to the development of highly productive methods and technologies for the various segments of the agro-industries. This conference is designed to provide a forum for the presentation, discussion and debate on state-of-the-art and emerging technologies in the field of agro based industry and any issues related to sustain the environment.

Finally, we would like to express our gratitude to the Rector UPN "Veteran", Yogyakarta for the financial support, the Dean of the Faculty of Agriculture for hosting, and the Scientific and Steering Committee. We wish to thank the keynote speaker Director of PT Astra Agro Lestari Tbk and Plenary Speakers: Prof. Sakae Shibusawa (Tokyo University of Agriculture and Technology, Japan), Prof. Raj. Khosla, Ph.D. (Colorado State University, USA), Prof. Dr. Nilda Burgos (University of Arkansas, USA) Ir. Toine Hattink (Director of Department of Horticulture, HAS den Bosch, Netherlands) Prof. Dr. Endang Gumbira Sa'id (Bogor Agricultural University, Indonesia) . Nur Iswanto, PhD. (IKAGI, International Society of Sugar Cane Technologists Councillor), Prof. Wijitapure Wimalaratana. (Department of Economics, University of Colombo), Prof. Hassan M. El Shaer (Desert Research Center, Cairo, Egypt), Dr. Mofit Eko Poerwanto (UPN "Veteran" Yogyakarta, Indonesia) as well as participants for their contribution in making the International Conference on Green Agro-Industry.

We wish to thank PT Astra Agro lestari as the major sponsor and all other sponsors for their contribution in making this Conference possible. As a Chairperson, I highly appreciate the great efforts of the members of the organizing committee whose hard work made this seminar a great success.

> Yogyakarta, November 11, 2013 Sri Wuryani Chairperson, ICGAI 2013

# Contents

### **Table of Contents**

#### Committees Preface

## Keynote Speaker

| Managing Green    | Agro-Industry:  | Economic,            | Environmental  | and | Social | K | - | 1 |
|-------------------|-----------------|----------------------|----------------|-----|--------|---|---|---|
| Consideration. PT | Astra Agro Lest | tari Tbk ( <b>Jo</b> | oko Supriyono) |     |        |   |   |   |

## Plenary Speakers:

| 1 | Eco-friendly agrochemicals practices to support green agro-industry. <b>Nilda Burgos</b> . University of Arkansas, USA.                                                                                              | P-1    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2 | Sustainable Horticulture Supply Chains. <b>Toine Hattink.</b> Director of Department of Horticulture, HAS den Bosch, Netherlands.                                                                                    | P-10   |
| 3 | Zero waste technology in green agro-industry: Special Case for Palm Oil<br>Industrial Cluster. <b>Endang Gumbira Sa'id</b> (Bogor Agricultural<br>University, Indonesia)                                             | P-17   |
| 4 | Integrated Sugar Industry: Maximizing Energy Utilization of the Cane.<br><b>Nur Iswanto.</b> IKAGI, International Society of Sugar Cane Technologists<br>Councillor.                                                 | P-30   |
| 5 | Economic Perspective Of Sustainable Agro Industry. <b>Wijitapure</b><br><b>Wimalaratana</b> . Department of Economics, University of Colombo                                                                         | P-39   |
| 6 | Implementation of precision farming in green agro-industry concept.<br>Sakae Shibusawa. Department of Environmental and Agricultural<br>Engineering, Tokyo University of Agriculture and Technology, Fuchu,<br>Japan | P - 45 |
| 7 | New approaches in Management and Utilization of Agriculture Wastes in<br>the WANA Region. ( <b>Hassan M. El Shaer</b> ) (Desert Research Center,<br>Cairo, Egypt)                                                    | P-53   |
| 8 | Implementation of green agriculture technology for reducing CVPD.<br>Mofit Eko Poerwanto. UPN "Veteran" Yogyakarta, Indonesia)                                                                                       | P-65   |

## Economic and Business

| 1 | Micro, Small and Medium-Sized Enterprises of Banana's Variety<br>Products to Support the Green Agro-Iindustry. ( <b>Heni Handri Utami, Siti</b><br><b>Hamidah</b> )                                                               | 1  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2 | Impact of Plant Conservation on Additional Income Generation in Rural<br>Gardens: A Case Study of Talawi Mudik Village of West Sumatera.<br>( <b>Sumilah, Nirmala F. Devy and Hayani</b> )                                        | 8  |
| 3 | The Role of Women in Developing Entrepreneur / Merchandise Case in<br>Maju Makmur Small Group Activity (Sga) Kejajar District, Wonosobo<br>Regency, Central of Java. ( <b>Teguh Kismantoroadji and Indah</b><br><b>Widowati</b> ) | 16 |
| 4 | Analysis Effect Of Environmental Food Production Toward Consumer's Intermediate Behaviour Product Slice Noodle. (Novita Erma K.)                                                                                                  | 21 |

## Agronomy

| 1 | Application of Agricultural Waste to Reduce Inorganic Fertilizer and<br>Improve Sugarcane Plant Resistance to Stem Borer Attack. ( <b>R.R.</b><br><b>Rukmowati Brotodjojo, Oktavia S Padmini, Saefudin Saeroji</b> )                                                          | 31 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2 | Climatic Factor in Epidemic of Vascular Streak Dieback of Cocoa<br>(Herry Wirianata, Suprih Wijayani, Elisabeth Nanik K)                                                                                                                                                      | 40 |
| 3 | The Effectiveness of Several Dosages of Sour-Sop ( <i>Annonna Muricata</i> L.)<br>Leaves and Seeds Powder for Controling <i>Callosobruchus Sp.</i> and<br>Maintaining the Quality of Mungbean Storaged Seeds. ( <b>Ami Suryawati ,</b><br><b>Chimayatus Solichah</b> )        | 45 |
| 4 | Filed application of Oberon <sup>®</sup> and Envidor <sup>®</sup> on <i>oligonychus sacchari</i> (prostigmata: tetranychidae) and its predator <i>stethorus punctillum</i> (Coloptera: Coccinellidae). (Amin Nikpay, Masoud Arbabi, Peyman Sharafizadeh, Mahmood Poormahmood) | 54 |
| 5 | Implementation of Mineral Oil for Controlling Aphid and White Rust Disease of Chrysanthemum. (Mofit Eko Poerwanto & Ari Wijayani)                                                                                                                                             | 60 |
| 6 | The Role of Weeds in the Spread of Vector of Peanut Stripe Virus (PSTV). (Mofit Eko Poerwanto, Siwi Hardiastuti EK)                                                                                                                                                           | 66 |
| 7 | In Vitro and <i>In Vivo</i> Digestibility Evaluation of <i>Bacillus</i> Phytases in Plant<br>Ingredients and Diets by Tilapia, <i>Oreochromis Mossambicus</i> ( <b>Rande B.</b><br><b>Dechavez , Augusto E. Serrano Jr</b> .)                                                 | 72 |

| 8  | Isolation and Expression Analysis of Hydroxy Phenyl Pyruvate Reductase<br>(HPPR) Derived from Orthosiphonaristatus ( <b>Hairul Azman Roslan</b> ,<br><b>Zuliza Ahmad</b> )87                                                                                                                                                         | 89  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 9  | Evaluation of the Effect of <i>Azospirillum</i> -like Bacteria on the Growth and Yield of Green Onion (Allium cepa L.). ( <b>Carlos E. Lacamento</b> )                                                                                                                                                                               | 96  |
| 10 | Characterization and Evaluation of Microflora Bacteria on Various<br>Plantation Soils Against <i>Phytophthora Capsici</i> of Black Pepper ( <i>Piper</i><br><i>Nigrum</i> L.), ( <b>Awang Ahmad Sallehin Awang Husaini, Linda Nirwana</b><br><b>Caroline, Samuel Lihan, Hairul Azman Roslan, Mohd Hasnain Md</b><br><b>Hussain</b> ) | 106 |
| 11 | Heterologous Expression of Xylanase Gene from <i>Klebsiella Pneumoniae</i><br>in <i>E. Coli</i> Bl21 (De3) for Potential Use in Green Technology. ( <b>Suhaila</b><br><b>Zainol, Nikson Fatt Ming Chong, Awang Ahmad Sallehin Awang</b><br><b>Husaini</b> )                                                                          | 113 |
| 12 | Genetic Diversity of Fusarium Wilt Resistant Potato Planlet Produced by<br>Gamma Ray Irradiation. ( <b>Rahayu Sulistianingsih, Rina Sri Lestari and</b><br><b>Ari Wijayani</b> )                                                                                                                                                     | 118 |
| 13 | Nutrient Analysis of Palm Empty Fruit Bunch, Palm Fruit Fibers and Sawdust as Media for White Oyster Mushroom Cultivation. (Sulistiyanto. Y, Balfast. Usup. A)                                                                                                                                                                       | 125 |
| 14 | Growth and Yield of Sweet Potato Varieties Using Organic and Inorganic Fertilizers and Vermitea. (Ana Maria F. Maglalang, Tessie E Navarro)                                                                                                                                                                                          | 135 |
| 15 | Use of Poultry Manure as Carrier for Biofertilizers: Effects on Maize ( <i>Zea Mays</i> ) Growth. ( <b>Tunde Ezekiel Lawal, Olubukola Oluranti Babalola</b> )                                                                                                                                                                        | 147 |
| 16 | The Effect of Various Fertilizers on the Growth of Oil Palm Seedlings in The Main Nursery. (Pauliz Budi Hastuti, Ni Made Titiaryanti)                                                                                                                                                                                                | 154 |
| 17 | Gibberellic Acid Synthesis in the Developing Seeds of Cocoa (Yohana<br>Theresia Maria Astuti, Kumala Dewi, Santosa, A. Adi Prawoto)                                                                                                                                                                                                  | 161 |
| 18 | Alternative Propagation Technology for Rubber ( <i>Hevea Brasiliensis</i> ).<br>( <b>Onofre S. Corpuz</b> )                                                                                                                                                                                                                          | 169 |
| 19 | Testing and Evaluation of Upland Rice Varieties in Sultan Kudarat<br>Province ( <b>R. Ortuoste , J. Ortuoste</b> )                                                                                                                                                                                                                   | 182 |
| 20 | Improvement of Wheat (Triticum Aestivum L.) Crop Tolerant in Lowland through Mutation Induction. ( <b>Budyastuti Pringgohandoko</b> )                                                                                                                                                                                                | 193 |
| 21 | Utilization of Waste Palm Oil as a Source Soil Organic Matter for Support Green Agroindustry. (S. Setyo Wardoyo)                                                                                                                                                                                                                     | 202 |

| 22 | Improving Soil Productivity with Biochars (Arnoldus Klau Berek,<br>Nguyen V. Hue)                                                                                                                                                                                  | 209 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 23 | Land Management Salak Pondoh (Salacca Edulis Reinw) Especially<br>Based on Altitude at Turi Sleman. ( <b>Subroto Padmosudarso</b> )                                                                                                                                | 220 |
| 24 | Development of Purwaceng ( <i>Pimpinella pruatjan</i> Molkenb) to Support<br>Herbs Industry and Soil Conservation in Dieng Plateau, Central Java.<br>( <b>Partoyo, Eko Amiadji Julianto, M. Husain Kasim, Teguh</b><br><b>Kismantoroadji, and Indah Widowati</b> ) | 226 |
| 25 | Isolation and Characterization of Humic Acid of Various Waste Matterial<br>on Saline Soil and Their Effects to Paddy. ( <b>Wanti Mindari, W.</b><br><b>Guntoro, Zaenal Kusuma, Syekhfani</b> )                                                                     | 234 |
|    | Clean Technology                                                                                                                                                                                                                                                   |     |
| 1  | LCA Methods on The Treatment of Biomass Residues In a Palm-Oil System. (Edi Iswanto Wiloso, Reinout Heijungs)                                                                                                                                                      | 243 |
| 2  | Reducing Ammonia Gas Concentration from Composting of Leftover<br>Food by Natural Zeolite from Japan ( <b>Ida Ayu Gede Bintang Madrini,</b><br><b>Sakae Shibusawa, Yoichiro Kojima, Shun Hosaka</b> )                                                              | 254 |
| 3  | A Study of Soil Adsorption Toward Chromium in Liquid Waste from<br>Tanning Industry ( <b>Agung Sahida, Sari Virgawati, AZ. Purwono</b> )                                                                                                                           | 260 |
|    | Agriculture Enginering                                                                                                                                                                                                                                             |     |
| 1  | Growth and Leaves Digital Image Analysis of Rice Cultivated in Various<br>Levels of Nitrogen Concentration and Brown Planthopper Infestation.<br>(Partoyo, Mofit Eko Purwanto, Sari Virgawati, Frans Richard<br>Kodong, Sri Sumarsih)                              | 270 |
| 2  | Productivity, Soil Fertility, and Economic Benefit in Changes from<br>Conventional to Organic Rice Farming System at Sragen District.<br>( <b>Oktavia Sarhesti Padmini</b> ),                                                                                      | 280 |
| 3  | Utilization of visible-Near Infrared Real-Time Soil Sensor as a Practical<br>Tool for Precision Carbon Farming Practice. ( <b>B. S. N. Aliah, S.</b><br><b>Shibusawa, M. Kodaira</b> )                                                                             | 288 |
| 4  | Designing of Ergonomic Soybean Grinder to Increase Industry<br>Productivity (Case Study on Home Industry of "Tempe" In Bantul,<br>Yogyakarta). ( <b>Dyah Rachmawati Lucitasari and Deny</b> )                                                                      | 297 |

| 5 | Organic Farming Technology Using Guano Fertilizer and Mulch in | 303 |
|---|----------------------------------------------------------------|-----|
|   | Cultivating String Beans (Phaseolus vulgaris L)                |     |
|   |                                                                |     |

## Other Topic

| 1 | Study of Growth Hormone Gene Variety Based on Bioinformatics.      | 308 |
|---|--------------------------------------------------------------------|-----|
|   | (Mariana Rengkuan)                                                 |     |
| 2 | SWOT Analisys for Integrated Eco-Tourism Development in            | 318 |
|   | Strengthening National Resilience (Case Study in Gajah Wong River, |     |
|   | Yogyakarta, Indonesia). (Istiana Rahatmawati)                      |     |
| 3 | People Empowerment throught Green Water Resources (Study in Gajah  | 327 |
|   | Wong River) (Purbudi Wahyuni)                                      |     |

### Poster

| 1. | Prospect of Clove Leaf Based Essential Oil Industry in Indonesia: A Case<br>Study of District Samigaluh Kulonprogo Regency ( <b>Juarini, Ni Made</b><br><b>Suyastiri YP</b> )                | 335 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2  | The Analysis of Technological Contribution and Competitiveness<br>of Cokrotela Cake Company Yogyakarta to Support Green<br>Agroindustry. ( <b>Sri Wuryani, Budiarto, Ani M. Nurhayati</b> )  | 344 |
| 3  | Effect of Varieties and Blanching for Making Cocoyam<br>(Xanthosoma Sp) Flour and Food Product. (S.S. Antarlina ,<br>P.E.R. Prahardini, S.S. Antarlina , P.E.R. Prahardini)                  | 351 |
| 4  | Diversified Food Products of Pumpkin ( <i>Cucurbita moschata</i> ).<br>(Aniswatul Khamidah, SS. Antarlina)                                                                                   | 359 |
| 5  | Fresh Calyses as Health Drink from Roselle Cultivation in Polybags<br>Utilizing Open Spaces at Home. ( <b>Sugeng Priyanto and Wahyu Widodo</b> )                                             | 371 |
| 6  | Growth Performance and Potential Oil Content of Several Basil ( <i>Ocimum Basilicum</i> Linn) Variety as Fruit Fly Controller ( <b>S. Yuniastuti, L Rosmahani, E Korlina, W. Handayati</b> ) | 375 |
| 7  | Survival of Sugarcane White Grub in Treated Soil by Enthomopathogenic Fungi (Harjaka T, B.H. Sunarminto, E. Martono)                                                                         | 381 |
| 8  | Application of Nano Particles in Pest Management Programs - A Review.<br>(Masumeh Ziaee, Fatemeh Hamzavi)                                                                                    | 386 |

| 9   | A Review of Plant Essential Oils as a Component of Integrated Pest<br>Management in Stored Producs Protection. ( <b>Masumeh Ziaee, Fatemeh</b><br><b>Hamzavi</b> )                                                                                            | 394 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 10  | Screening of Sweet Potato Genotypes for Water Stress Resistance. (Agnes C. Perey, Belinda A. Tad-awan)                                                                                                                                                        | 403 |
| 11  | Yield Potency of Sweet Potato Varieties under Drought Condition in Sandy Land. ( <b>Tutut Wirawati, Endah Budi Irawati, Ami Suryawati</b> )                                                                                                                   | 418 |
| 12  | The Identification of Useful Vegetations on Different Ages of Oil Palm ( <i>Elaeis quineensis</i> Jack). ( <b>Ety Rosa Setyawati</b> )                                                                                                                        | 424 |
| 13  | Variation on Colchicine´S Concentrations and Germination Phases to<br>Produce Polyploid Tomato Plant. ( <b>Rati Riyati, Nurngaini, Basuki</b> )                                                                                                               | 433 |
| 14  | Utilization of Critical Land for Tuber Crops Cultivation as Raw Materials of Agro-Industry ( <b>Bargumono, Tuti Setyaningrum</b> )                                                                                                                            | 440 |
| 15  | Potential of Thermotolerance Isolates Bacteria from the Land that<br>Affected by Merapi Eruption as a Plant Growth Promoting Rhizobacteria<br>(PGPR). ( <b>Yanisworo W Ratih, Lelanti P Wiratri</b> )                                                         | 443 |
| 16  | The Application of PGPR ( <i>Plant Growth Promoting rhizobacteria</i> ) on<br>Chili Plant as an Interposed Plant between Salak Plant in Sub-District<br>Srumbung ( <b>Ellen R. Sasmita, Sri Sumarsih, Oktavia S. Padmini</b><br><b>and Endah B. Irawati</b> ) | 451 |
| 17  | A Study of Impact of Brick Industries on Soil Fertility in Potorono<br>Banguntapan Bantul Yogyakarta ( <b>R. Agus Widodo, Susila</b><br><b>Herlambang</b> )                                                                                                   | 462 |
| 18. | The Potential of Groundwater on Unconfined Aquifer in Jogonalan<br>Area Klaten Central Java. ( <b>Lanjar Sudarto</b> )                                                                                                                                        | 469 |
| 19. | Determination of Depth Groundwater Levels Based on Geophysical<br>with Geoelectric Method Around the Prambanan Temple Region<br>Yogyakarta Province. ( <b>Agus Santoso, Sismanto, Ari Setiawan,</b><br><b>Subagyo</b> )                                       | 475 |